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Introduction
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Chapter 2
Background

(TODO) Chapter introduc-
tion

2.1 Linear programming

(Natvig) Do we need section
introductions too?

2.1.1 Problem formulation. Standard and slack forms

The term linear programming (LP) refers to a type of optimisation problems in
which one seeks to maximise or minimise the value of a linear function of a set
of variables that are constrained by a set of linear equations and/or inequalities1.

Linear programming is a fairly general problem type, and many important
problems (TODO) can be cast as LP problems — for instance, network flow prob- (other than those

problems that are
initially formulated
as an LP problem)

lems and shortest path problems (see [?]).
Throughout this report, we will consistently use n to refer to the number

of variables and m to refer to the number of inequalities. The variables will
typically be (TODO: spell “label(l)ed”) x1 through xn.

The function to be optimised is called the objective function. (TODO) How- In the real world sit-
uation that gives rise
to an optimisation
problem, the func-
tion may contain a
constant term.

ever, since this term (TODO), we drop it from the objective function, which can
then be written as f = c1x1 + c2x2 + . . . + cnxn =

∑n
j=1 cjxj , where cj are the

coefficient values.
(TODO)

Nonnegativity of
variables, which is
often the case in real
world prolems.

The equations and inequalities that (together with the objective function)
constitute an LP problem may be represented in different forms. We shall first
consider the standard form, in which only less-than-or-equal-to inequalities with
all variables on the left hand side are allowed. (TODO) A problem containing an

Why are not less-
than allowed?

equalities of the form a1x1+. . .+anxn = b (Natvig) may be rewritten by splitting

Should I label the co-
efficients ai1, . . . , ain

instead to maintain
consistency with
the standard/slack
forms?

1Hence, LP is not (as the name would seem to suggest) a programming technique.
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4 CHAPTER 2. BACKGROUND

each equality into two inequalities: a1x1+. . .+anxn ≤ b and−a1x1−. . .−anxn ≤
−b. Also, the goal must be to maximise the objective function (if the original
problem is to minimize f , we let our objective function be−f ). A linear program
in standard form can be expressed as follows: (TODO)How to indent?

Maximise

f =
n∑

j=1

cjxj

with respect to

n∑
j=1

aijxj ≤ bi, for i = 1, . . . ,m.

The other common representation, which is employed by the simplex algo-
rithm (to be presented shortly), is slack form, which only allows a set of equa-
tions (and a nonnegativity constraint for each variable). An inequality of the
form a1x1 + . . . + anxn ≤ b is converted to an equation (TODO) by adding aequation or equal-

ity? slack variable w. Together with the condition that w ≥ 0, the equation a1x1 +
. . . + anxn + w = b is equivalent to the original inequality (whose difference, or
“slack”, between the left and right hand sides is represented by w).

A proposed solution of a linear program (that is, a specification of a value
for each variable) is called:

Feasible if it does not violate any of the constraints

Infeasible if it violates any constraint

Basic (TODO)

Optimal if it is feasible and no other feasible solutions yield a higher value for
the objective function

(TODO)The ??? theorem
((TODO: citation))
states that the op-
timal solution of a
linear program, if it
exists, occurs when
m variables are set
to zero and the n

others are nonzero.
CHECK

2.1.2 Simplex algorithm

The simplex algorithm was the (TODO) systematic algorithm developed for solv-

first?

ing linear programs. It requires the program to be in slack form. (TODO) The
nonnegativity constraints are not represented explicitly anywhere. (TODO)

The variables in the leftmost column are referred to as the basic variables,
and the variables inside the tableau are called nonbasic variables. It should be
noted that the slack form must have been created from a standard form, because
this ensures that there are n slack variables, where each slack variable occurs in
excactly one equation.



2.1. LINEAR PROGRAMMING 5

For now, let us assume that the solution that is obtained by setting all non-
basic variables to zero is feasible. This solution will provide a lower bound for
the value of the objective function (namely, the constant term). We will now
select one nonbasic variable xj and consider what happens if we increase its
value (since all nonbasic variables are currently zero, we cannot decrease any
of them). Since our goal is to maximise the objective function, we should select
a variable whose coefficient cj in the objective function is positive. If no such
variables exist, we cannot increase the objective function value further, and the
current solution is optimal (we can be certain of this since linear functions do
not have local maxima). How far can we increase this variable? Recall that each
line in the tableau expresses one basic variable as a function of all the nonbasic
variables; hence we can increase xj until one of the basic variables becomes zero.
Let us look at line i. If aij is positive, we can increase xj indefinitely without wi

ever becoming negative, and in that case, we have determined the problem to
be unbounded. If aij = 0, this equation is not affected at all by any change in xj ,
and the problem (TODO) is said to be (TODO). If aij is negative, the value of wi or tableau?
will decrease as xj increases, so the largest allowable increase is limited by the
current value of wi — which is bi, since all nonbasic variables initially are zero.
Thus, by setting xj = − bi

aij
, wi becomes zero. (TODO) limited by lowest

valueThe variable selected is called the entering variable, since it is about to enter
the collection of basic variables. We also need a leaving variable to be removed
from said collection. (TODO) We can eliminate the entering variable from (and how to find it?
introduce the leaving variable into) the set of nonbasic variables (the “main” part
of the tableau) by rewriting the selected equation and adding appropriate mul-
tiples of it to each of the other equations:

The algorithm presented so far is capable of solving linear programs whose
initial basic solution (the one obtained by setting all nonbasic variables to 0)
is feasible. (TODO) This may not always be the case. We get around this by Phase I and Phase II
introducing an auxiliary problem which will

Example

We will now demonstrate one iteration of the simplex algorithm, on the follow-
ing problem: (TODO)
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2.1.3 Interior point algorithms

2.1.4 Use of LP to solve advanced flow problems

2.2 Cell Broadband Engine

2.2.1 Architecture

2.2.2 Programming methods



Chapter 3
Design

(TODO)
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Chapter 4
Implementation and testing

(TODO)
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Chapter 5
Evaluation

(TODO)

11





Chapter 6
Conclusion

(TODO)

Future work
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Appendix A
Schedule

This appendix will obviously be deleted before submission.

Week 8 Finish the implementation of a dense Simplex for a regular CPU and
test with netlib datasets. Implement a vectorised (SIMD) dense Simplex
on the PPE

Week 9 Implement a vectorised dense Simplex running in parallel on the SPEs

Week 10 Study interior point algorithms

Week 11 Implement a dense, non-parallelised interior point algorithm

Week 12 Decide on whether to pursue simplex or interior point. Making a test
plan. Experiment with different approaches to sparse storage; look into
numerical stability with single-precision values

Week 13 — “ —

Week 14 First draft of report

Week 15 Easter vacation

Week 16 Look into autotuning?

Week 17

Week 18

Week 19

Week 20 Performance measurements and graphing

Week 21 Frenetic report writing

19



20 APPENDIX A. SCHEDULE

Week 22 — “ —

Week 23 Ordinary submission deadline. Will try to submit as close to this date
as possible

Week 24

Week 25

Week 26

Week 27 Natvig goes on vacation

Week 28

Week 29 Final deadline: July 19
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