Norwegian University of Science and Technology Faculty of Information Technology, Mathematics and Electrical Engineering Department of Computer and Information Science

Linear programming on Cell/BE

by

Åsmund Eldhuset

Supervisor: Dr.Ing. Lasse Natvig
Co-supervisor: Dr. Anne C. Elster

Abstract

(TODO)

Acknowledgements

(TODO)

Contents

Contents vii
List of Figures viii
List of Tables ix
Listings x
List of Symbols and Abbreviations xi
1 Introduction 1
2 Background 3
2.1 Linear programming 3
2.1.1 Problem formulation. Standard and slack forms 3
2.1.2 Simplex algorithm 6
2.1.3 Interior point algorithms 7
2.1.4 Use of LP to solve advanced flow problems 7
2.2 Cell Broadband Engine 7
2.2.1 Architecture 7
2.2.2 Programming methods 7
3 Design 9
4 Implementation and testing 11
5 Evaluation 13
6 Conclusion 15
Bibliography 17
A Schedule 21

List of Figures

List of Tables

Listings

List of Symbols and Abbreviations

Abbreviation	Description	Definition
LP	Linear programming	page 3

Introduction

(TODO)
\square

Background

(TODO)

2.1 Linear programming

(Natvig)
This section is primarily based on [?] and [?].

2.1.1 Problem formulation. Standard and slack forms

The term linear programming (LP) refers to a type of optimisation problems in which one seeks to maximise or minimise the value of a linear function of a set of variables ${ }^{1}$. The values of the variables are constrained by a set of linear equations and/or inequalities. Linear programming is a fairly general problem type, and many important problems (TODO) can be cast as LP problems - for instance, network flow problems and shortest path problems (see [?]).

An example of a simple linear programming problem would be a factory that makes two kinds of products based on two different raw materials. The profit the company makes per unit of product A is $\$ 10.00$, and the profit of product B is $\$ 12.50$. Producing one unit of A requires 2 units of raw material R and 3 units of raw material S; one unit of B requires 3 units of R and 1.5 units of S. The company possesses 100 units of raw material R and 50 units of raw material S. We make the simplifying assumptions that all prices are constant and cannot be affected by the company, and that the company is capable of selling everything it produces. The company's goal is to maximise the profit, which can be described as $10.00 x_{1}+12.50 x_{2}$ where x_{1} is the number of units of product A and x_{2} is the number of units of product B. The following constraints are in effect:

[^0]- $2 x_{1}+3 x_{2} \leq 100$ (the production of A and B cannot consume more units of raw material R than the company possesses)
- $3 x_{1}+1.5 x_{2} \leq 50$ (same for raw material S)
- $x_{1}, x_{2} \geq 0$ (the company cannot produce negative amounts of its products)

We will use this example throughout this section.
Note that in regular LP problems, one cannot restrict the variables to be integers - in fact, adding this requirement makes the problem NP-hard ${ }^{2}$. It is also, in general, a requirement that all variables are nonnegative. Real-world problems involving variables that may be negative as well as positive can still be modeled by writing each original variable as a difference of two nonnegative variables.

	\bar{z}	x_{1}	x_{2}	x_{3}
z				
x_{4}				
x_{5}				

Throughout this report, we will consistently use n to refer to the number of variables and m to refer to the number of inequalities. The variables will typically be (TODO: spell "label(l)ed") x_{1} through x_{n}.

The function to be optimised is called the objective function. In the real world situation that gives rise to an optimisation problem, the function may contain a constant term, but it can be removed since that will affect all possible solutions in the same way. The objective function can then be written as $f=c_{1} x_{1}+c_{2} x_{2}+$ $\ldots+c_{n} x_{n}=\sum_{j=1}^{n} c_{j} x_{j}$, where the c_{j} are called the coefficients.
of yariables, which is often the case in real vorld prolems.

Why are not lesshan allowed?
Should I label the coefficients $a_{i 1}, \ldots, a_{i n}$ nstead to maintain onsistency with he standard/slack
(TODO)

Standard form The equations and inequalities that (together with the objective function) constitute an LP problem may be represented in different forms. We shall first consider the standard form, in which only less-than-or-equal-to inequalities with all variables on the left hand side are allowed. (TODO) A problem containing equalities of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}=b$ (Natvig) may be rewritten by splitting each equality into two inequalities: $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq b$ and $-a_{1} x_{1}-\ldots-a_{n} x_{n} \leq-b$. Also, the goal must be to maximise the objective function - if the original problem is to minimize f, we let our objective function be $-f$. A linear program in standard form can be expressed as follows: (TODO)

[^1]Maximise

$$
f=\sum_{j=1}^{n} c_{j} x_{j}
$$

with respect to

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \text { for } i=1, \ldots, m . \\
& x_{1}, \ldots, x_{n} \leq 0
\end{aligned}
$$

Slack form The other common representation is slack form, which only allows a set of equations (and a nonnegativity constraint for each variable). An inequality of the form $a_{1} x_{1}+\ldots+a_{n} x_{n} \leq b$ is converted to an equation by adding a slack variable w. Together with the condition that $w \geq 0$, the equation $a_{1} x_{1}+\ldots+a_{n} x_{n}+w=b$ is equivalent to the original inequality (whose difference, or "slack", between the left and right hand sides is represented by $w)$. A linear program in slack form can be expressed as follows:

Maximise

$$
f=\sum_{j=1}^{n} c_{j} x_{j}
$$

with respect to

$$
\begin{aligned}
w_{i} & =b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}, \text { for } i=1, \ldots, m . \\
x_{1}, \ldots, x_{n} & \leq 0
\end{aligned}
$$

A proposed solution of a linear program (that is, a specification of a value for each variable) is called:

Feasible if it does not violate any of the constraints
Infeasible if it violates any constraint

Basic (TODO)

Optimal if it is feasible and no other feasible solutions yield a higher value for the objective function
(TODO)

2.1.2 Simplex algorithm

The simplex algorithm, developed by (TODO)[?], was the (TODO) systematic algorithm developed for solving linear programs. It requires the program to be in slack form. (TODO) The nonnegativity constraints are not represented explicitly anywhere. (TODO)

Tableaux The variables in the leftmost column are referred to as the basic variables, and the variables inside the tableau are called nonbasic variables. At any stage of the algorithm, the set of the indices of the basic variables is denoted \mathcal{B}, and the set of nonbasic indices is denoted \mathcal{N}. It should be noted that the slack form must have been created from a standard form, because this ensures that there are m slack variables, where each slack variable occurs in excactly one equation. Initially, the set of basic variables is the set of slack variables, and the sizes of the basic and nonbasic sets are constant, with $|\mathcal{B}|=m$ and $|\mathcal{N}|=n$.

For now, let us assume that the solution that is obtained by setting all nonbasic variables to zero is feasible (which is the case only if none of the b_{i} are negative); we will remove this restriction later. This trivial solution will provide a lower bound for the value of the objective function (namely, the constant term). We will now select one nonbasic variable x_{j} and consider what happens if we increase its value (since all nonbasic variables are currently zero, we cannot decrease any of them). Since our goal is to maximise the objective function, we should select a variable whose coefficient c_{j} in the objective function is positive. If no such variables exist, we cannot increase the objective function value further, and the current solution (the one obtained by setting all nonbasic variables to zero, so that $f=c_{0}$) is optimal - we can be certain of this since linear functions do not have local maxima.

It seems reasonable to select the variable with the greatest coefficient, say, x_{l}. How far can we increase this variable? Recall that each line in the tableau expresses one basic variable as a function of all the nonbasic variables; hence we can increase x_{l} until one of the basic variables becomes zero. Let us look at row i. If $a_{i j}$ is negative, the value of w_{i} will decrease as x_{l} increases, so the largest allowable increase is limited by the current value of w_{i} - which is b_{i}, since all nonbasic variables were set to zero. Thus, by setting $x_{l}=-\frac{b_{i}}{a_{i j}}{ }^{\prime} w_{i}$ becomes zero. However, other equations may impose stricter conditions. By looking at all rows where $a_{i j}$ is negative, we can determine $\min \left(-\frac{b_{i}}{a_{i i}}\right)$ and set x_{j} equal to it. If all $a_{i l}$ are nonnegative, we can increase x_{l} indefinitely without any w_{i} ever becoming negative, and in that case, we have determined the program to be unbounded; the algorithm should report this to the user and terminate.

The next step, called pivoting, is an operation that exchanges a nonbasic variable and a basic variable. The purpose of pivoting is to produce a new situation in which no b_{i} is negative, so that we can repeat the previous steps all over again.

The nonbasic variable that was selected to be increased, x_{j}, is called the entering variable, since it is about to enter the collection of basic variables. The leaving variable to be removed from said collection. (TODO) We can eliminate the en- how to find it? tering variable from (and introduce the leaving variable into) the set of nonbasic variables (the "main" part of the tableau) by rewriting the selected equation and adding appropriate multiples of it to each of the other equations:

Initialisation

The algorithm presented so far is capable of solving linear programs whose initial basic solution (the one obtained by setting all nonbasic variables to 0) is feasible. (TODO) This may not always be the case. We get around this by introducing an auxiliary problem which based on the initial problem that is guaranteed

Degeneracy

Example

We will now demonstrate one iteration of the simplex algorithm, on the following problem: (TODO)

2.1.3 Interior point algorithms

2.1.4 Use of LP to solve advanced flow problems

(TODO)

Consult Miriam on this

2.2 Cell Broadband Engine

2.2.1 Architecture

2.2.2 Programming methods

Design

(TODO)

Chapter

Implementation and testing

(TODO)

Evaluation

(TODO)

Conclusion

(TODO)

Future work

Bibliography

Appendices

Appendix A

Schedule

This appendix will obviously be deleted before submission.

Week 8 Finished the implementation of a dense Simplex for a regular CPU and test with net lib datasets. Implement a vectorised (SIMD) dense Simplex on the PPE

Week 9 Struggle with numerical instability
Week 10 Implement a vectorised dense Simplex running in parallel on the SPEs
Week 11 Study interior point algorithms
Week 12 Implement a dense, non-parallelised interior point algorithm
Week 13 Decide on whether to pursue simplex or interior point. Making a test plan. Experiment with different approaches to sparse storage; look into numerical stability with single-precision values

Week 14 First draft of report
Week 15 Easter vacation

Week 16 Same as week 13

Week 17 Look into autotuning?
Week 18

Week 19

Week 20 Performance measurements and graphing
Week 21 Frenetic report writing

Week 22 —" —
Week 23 Ordinary submission deadline. Will try to submit as close to this date as possible

Week 24

Week 25

Week 26
Week 27 Natvig goes on vacation

Week 28

Week 29 Final deadline: July 19

[^0]: ${ }^{1}$ Hence, LP is not (as the name would seem to suggest) a programming technique.

[^1]: ${ }^{2}$ NP-hardness is a term from complexity theory, which deals with the relative difficulties of solving different kinds of problems. The only known algorithms for solving NP-hard problems require an amount of time that is exponential in the size of the problem, which renders those algorithms useless for many real life problem sizes.

