
Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and

Electrical Engineering
Department of Computer and Information Science

Master Thesis

Linear programming on Cell/BE

by

Åsmund Eldhuset

Supervisor: Dr.Ing. Lasse Natvig
Co-supervisor: Dr. Anne C. Elster

Trondheim, June 1, 2009

iii

Abstract

(TODO:)

Acknowledgements

(TODO:)

v

Contents

Contents vii

List of Figures ix

List of Tables x

Listings xi

List of Symbols and Abbreviations xiii

1 Introduction 1

2 Background 3
2.1 Linear programming . 3

2.1.1 Problem formulation. Standard and slack forms 3
2.1.2 The simplex method . 6
2.1.3 Interior point algorithms . 8
2.1.4 Use of LP to solve advanced flow problems 8

2.2 Cell Broadband Engine . 8
2.2.1 Architecture . 8
2.2.2 Programming methods . 8

3 Design 9

4 Implementation and testing 11
4.1 Simplex algorithm . 11
4.2 Test plan . 11

4.2.1 Unit testing . 11
4.2.2 Large data sets . 11

5 Evaluation 13
5.1 Performance measurement . 13
5.2 Results . 13
5.3 Discussion . 13

vii

viii CONTENTS

6 Conclusion 15

Bibliography 17

A Schedule 21

List of Figures

ix

List of Tables

x

Listings

xi

List of Symbols
and Abbreviations

Abbreviation Description Definition

ILP Integer linear programming page 4
LP Linear programming page 3

xiii

Chapter 1
Introduction

(TODO:)

1

Chapter 2
Background

(TODO: Chapter introduction)

2.1 Linear programming

(Natvig: Do we need section introductions too?)
This section is primarily based on [3](Natvig: Should this be a book in bibtex

or something else (since I am using the electronic version)?) and [1].

2.1.1 Problem formulation. Standard and slack forms

The term linear programming (LP) refers to a type of optimisation problems in
which one seeks to maximise or minimise the value of a linear function of a
set of variables1. The values of the variables are constrained by a set of linear
equations and/or inequalities. Linear programming is a fairly general problem
type, and many important problems can be cast as LP problems — for instance,
shortest path problems and maximum flow problems (see [1]). However, the
true virtue of linear programming stems from its ability to model a vast range of
optimisation problems for which specialised algorithms do not exist, including
many situations from economics and industry processes.

An example of a simple linear programming problem would be a factory that
makes two kinds of products based on two different raw materials. (Natvig:
This example just uses some random numbers; I will construct an example,
probably using only integers, that can be solved neatly in a few iterations.) The
profit the company makes per unit of product A is $10.00, and the profit of prod-
uct B is $12.50. Producing one unit of A requires 2 units of raw material R and
3 units of raw material S; one unit of B requires 3 units of R and 1.5 units of S.

1Hence, LP is not (as the name would seem to suggest) a programming technique. The name
originated in the 1940s, when “program” referred to military supply plans and schedules(TODO:
citation).

3

4 CHAPTER 2. BACKGROUND

The company possesses 100 units of raw material R and 50 units of raw material
S. We make the simplifying assumptions that all prices are constant and cannot
be affected by the company, and that the company is capable of selling every-
thing it produces. The company’s goal is to maximise the profit, which can be
described as 10.00x1 +12.50x2 where x1 is the number of units of product A and
x2 is the number of units of product B. The following constraints are in effect:

• 2x1 + 3x2 ≤ 100 (the production of A and B cannot consume more units of
raw material R than the company possesses)

• 3x1 + 1.5x2 ≤ 50 (same for raw material S)

• x1, x2 ≥ 0 (the company cannot produce negative amounts of its products)

We will use this example throughout this section. (Natvig: This has not yet been
done. I intend to interleave it with the presentation of the algorithm steps, unless
you think it should be presented separately afterwards.)

Note that in regular LP problems, one cannot restrict the variables to be inte-
gers — in fact, adding this requirement produces a new kind of problem known
as integer linear programming (ILP), which is NP-hard2. It is also, in general, a re-
quirement that all variables be nonnegative. This is often the case in real-world
problems that deal with physical quantities, but problems involving variables
that may be negative as well as positive can still be modeled by rewriting each
original variable as a difference of two nonnegative variables.

The function to be optimised is called the objective function. In the real world
situation that gives rise to an optimisation problem, the function may contain a
constant term, but it can be removed since that will affect all possible solutions in
the same way(Natvig: I don’t like this formulation, but can’t think of anything
better. Do you have a better idea? (Are you at all allowed to directly suggest
rephrasings?)). The objective function can then be written as f = c1x1 + c2x2 +
. . . + cnxn =

∑n
j=1 cjxj , where the cj are constants. Throughout this report,

we will consistently use n to refer to the number of variables and m to refer
to the number of equations and/or inequalities. The variables will typically be
labelled x1 through xn.

Standard form The equations and inequalities that (together with the objec-
tive function) constitute an LP problem may be represented in different forms.
We shall first consider the standard form, in which only less-than-or-equal-to in-
equalities with all variables on the left hand side are allowed. (TODO: Why are
not less-than allowed?) A problem containing equalities of the form a1x1 + . . .+

2NP-hardness is a term from complexity theory, which deals with the relative difficulties of
solving different kinds of problems. The only known algorithms for solving NP-hard problems
require an amount of time that is exponential in the size of the problem, which renders those
algorithms useless for many real life problem sizes.

2.1. LINEAR PROGRAMMING 5

anxn = b (Natvig: Should I label the coefficients ai1, . . . , ain instead to maintain
consistency with the standard/slack forms?) may be rewritten by splitting each
equality into two inequalities: a1x1+. . .+anxn ≤ b and−a1x1−. . .−anxn ≤ −b.
Also, the goal must be to maximise the objective function — if the original prob-
lem is to minimize f , we let our objective function be −f . A linear program in
standard form can be expressed as follows: (TODO: How to indent “Maximise”
and “with respect to”?)

Maximise

f =
n∑

j=1

cjxj

with respect to

n∑
j=1

aijxj ≤ bi, for i = 1, . . . ,m.

x1, . . . , xn ≤ 0

Slack form The other common representation is slack form, which only allows
a set of equations (and a nonnegativity constraint for each variable). An in-
equality of the form a1x1 + . . . + anxn ≤ b is converted to an equation by
adding a slack variable w. Together with the condition that w ≥ 0, the equa-
tion a1x1 + . . . + anxn + w = b is equivalent to the original inequality (whose
difference, or “slack”, between the left and right hand sides is represented by
w). A linear program in slack form can be expressed as follows:

Maximise

f =
n∑

j=1

cjxj

with respect to

wi = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m.

x1, . . . , xn ≤ 0

A proposed solution of a linear program (that is, a specification of a value
for each variable) is called:

Feasible if it does not violate any of the constraints

Infeasible if it violates any constraint

Basic if it consists of setting all variables except the slack variables to zero

6 CHAPTER 2. BACKGROUND

Optimal if it is feasible and no other feasible solutions yield a higher value for
the objective function

(TODO: Move this paragraph to next section?) The linear programming the-
orem (TODO: Is it actually called this? Find something to cite) states that the
optimal solution of a linear program, if it exists, occurs when at least m vari-
ables are set to zero. (TODO: Combinatorics. Mention cycling here?)

2.1.2 The simplex method

The simplex method3, developed by George Dantzig[2], was the first systematic
approach for solving linear programs.(TODO: Decide on whether to call it “method”
or “algorithm”, and resolve inconsistencies in the following text) It requires the
program to be in slack form. The coefficients are written down in a tableau that
changes as the method progresses. The nonnegativity constraints are not rep-
resented explicitly anywhere. Because the equations will undergo extensive
rewriting, it will be convenient to not distinguish the slack variables from the
other variables, so we will relabel wi to xn+i−1 for i = 1, . . . ,m.

(TODO: Show the example problem in slack form and in tableau form)
The variables are partitioned into two sets. The variables in the leftmost

column (at the left side of the equations) are referred to as the basic variables, and
the variables inside the tableau are called nonbasic variables. At any stage of the
algorithm, the set of the indices of the basic variables is denoted B, and the set
of nonbasic indices is denoted N . Initially, the set of basic variables is the set of
the original slack variables. The sizes of the basic and nonbasic sets are constant,
with |B| = m and |N | = n.

For now, let us assume that the solution that is obtained by setting all nonba-
sic variables to zero is feasible (which is the case only if all of the bi are nonneg-
ative); we will remove this restriction later. This trivial solution will provide a
lower bound for the value of the objective function (namely, the constant term).
We will now select one nonbasic variable xj and consider what happens if we
increase its value (since all nonbasic variables are currently zero, we cannot de-
crease any of them). Since our goal is to maximise the objective function, we
should select a variable whose coefficient cj in the objective function is posi-
tive. If no such variables exist, we cannot increase the objective function value
further, and the current solution (the one obtained by setting all nonbasic vari-
ables to zero, so that f = c0) is optimal — we can be certain of this since linear
functions do not have local maxima.

It seems reasonable to select the variable with the greatest coefficient, say,
xl. How far can we increase this variable? Recall that each line in the tableau

3The reason for not calling it “the simplex algorithm” is that there exist several versions of the
method, and that the general method formulation is somewhat underspecified because it does
not say how to choose the pivot elements.

2.1. LINEAR PROGRAMMING 7

expresses one basic variable as a function of all the nonbasic variables; hence we
can increase xl until one of the basic variables becomes zero. Let us look at row
i. If aij is negative, the value of wi will decrease as xl increases, so the largest
allowable increase is limited by the current value of wi — which is bi, since all
nonbasic variables were set to zero. Thus, by setting xl = − bi

aij
, wi becomes

zero. However, other equations may impose stricter conditions. By looking at
all rows where aij is negative, we can determine min

(
− bi

ail

)
and set xj equal

to it. If all ail are nonnegative, we can increase xl indefinitely without any wi

ever becoming negative, and in that case, we have determined the program to
be unbounded; the algorithm should report this to the user and terminate.

The next step, called pivoting, is an operation that exchanges a nonbasic vari-
able and a basic variable. The purpose of pivoting is to produce a new situation
in which no bi is negative, so that we can repeat the previous steps all over again.
The nonbasic variable that was selected to be increased, xj , is called the entering
variable, since it is about to enter the collection of basic variables. The leaving
variable to be removed from said collection. (TODO: how to find it?) We can
eliminate the entering variable from (and introduce the leaving variable into)
the set of nonbasic variables (the “main” part of the tableau) by rewriting the
selected equation and adding appropriate multiples of it to each of the other
equations: (TODO: Complete this)

Degeneracy (TODO: Briefly discuss degenerate pivots.)

Initialisation

The algorithm presented so far is capable of solving linear programs whose ini-
tial basic solution (the one obtained by setting all nonbasic variables to 0) is
feasible. (TODO: Phase I and Phase II) This may not always be the case. We
get around this by introducing an auxiliary problem which is based on the initial
problem and is guaranteed to have a basic feasible solution, and whose solution
will provide us with a starting point for solving the original problem. (TODO:
Complete this)

Formal algorithm statement

(TODO: Use the algorithm package to give a compact description of the sim-
plex algorithm)

Complexity and numerical instability

(TODO:)
(Natvig: Other stuff that should perhaps be added: geometric interpretation;

duality)

8 CHAPTER 2. BACKGROUND

2.1.3 Interior point algorithms

2.1.4 Use of LP to solve advanced flow problems

(TODO: Consult Miriam on this)

2.2 Cell Broadband Engine

2.2.1 Architecture

2.2.2 Programming methods

Chapter 3
Design

(TODO: Chapter introduction)

9

Chapter 4
Implementation and testing

(TODO: Chapter introduction)

4.1 Simplex algorithm

4.2 Test plan

4.2.1 Unit testing

(TODO:)

4.2.2 Large data sets

(TODO: Something on the netlib LP problem set)

11

Chapter 5
Evaluation

(TODO: Chapter introduction)

5.1 Performance measurement

(TODO: Describe system specifications and how timing was performed) (Natvig:
Should this be here or under “Implementation and testing”?)

5.2 Results

5.3 Discussion

13

Chapter 6
Conclusion

(TODO:)

Future work

15

Bibliography

[1] T. H. CORMEN, C. R. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to Al-
gorithms, McGraw-Hill Science/Engineering/Math, 2nd ed., 2003. [cited at p. 3]

[2] G. DANTZIG, Linear Programming and Extensions, Princeton University Press, Prince-
ton, NJ, 1963. [cited at p. 6]

[3] R. J. VANDERBEI, Linear Programming: Foundations and Extensions, Springer, 2nd ed.,
2001. [cited at p. 3]

17

Appendices

19

Appendix A
Schedule

This appendix will obviously be deleted before submission.

Week 8 Finished the implementation of a dense Simplex for a regular CPU and
test with netlib datasets. Implement a vectorised (SIMD) dense Simplex
on the PPE

Week 9 Struggle with numerical instability

Week 10 Implement a vectorised dense Simplex running in parallel on the SPEs

Week 11 Study interior point algorithms

Week 12 Implement a dense, non-parallelised interior point algorithm

Week 13 Decide on whether to pursue simplex or interior point. Making a test
plan. Experiment with different approaches to sparse storage; look into
numerical stability with single-precision values

Week 14 First draft of report

Week 15 Easter vacation

Week 16 Same as week 13

Week 17 Look into autotuning?

Week 18

Week 19

Week 20 Performance measurements and graphing

Week 21 Frenetic report writing

21

22 APPENDIX A. SCHEDULE

Week 22 — “ —

Week 23 Ordinary submission deadline. Will try to submit as close to this date
as possible

Week 24

Week 25

Week 26

Week 27 Natvig goes on vacation

Week 28

Week 29 Final deadline: July 19

	Contents
	List of Figures
	List of Tables
	Listings
	List of Symbols and Abbreviations
	1 Introduction
	2 Background
	2.1 Linear programming
	2.1.1 Problem formulation. Standard and slack forms
	2.1.2 The simplex method
	2.1.3 Interior point algorithms
	2.1.4 Use of LP to solve advanced flow problems

	2.2 Cell Broadband Engine
	2.2.1 Architecture
	2.2.2 Programming methods

	3 Design
	4 Implementation and testing
	4.1 Simplex algorithm
	4.2 Test plan
	4.2.1 Unit testing
	4.2.2 Large data sets

	5 Evaluation
	5.1 Performance measurement
	5.2 Results
	5.3 Discussion

	6 Conclusion
	Bibliography
	A Schedule

