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Chapter 1
Introduction

(TODO: )

Task description (Natvig: This is the task description I entered in DAIM. Should
probably be changed a bit...) The aim of the project is to implement a parallel
linear solver for large sparse problems on the Cell BE using the Simplex method.
Interior point methods may also be investigated.

(TODO: A paragraph about Miriam)
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Chapter 2
Background

(TODO: Chapter introduction)

2.1 Linear programming

(ITP: Section introductions)
This section is primarily based on [6] and [2].

2.1.1 Problem formulation. Standard and slack forms

The term linear programming (LP) refers to a type of optimisation problems in
which one seeks to maximise or minimise the value of a linear function of a
set of variables1. The values of the variables are constrained by a set of linear
equations and/or inequalities. Linear programming is a fairly general problem
type, and many important problems can be cast as LP problems — for instance,
shortest path problems and maximum flow problems (see [2]). However, the
true virtue of linear programming stems from its ability to model a vast range of
optimisation problems for which specialised algorithms do not exist, including
many situations from economics and industry processes.

An example of a simple linear programming problem would be a factory that
makes two kinds of products based on two different raw materials. (Natvig:
This example just uses some random numbers; I will construct an example,
probably using only integers, that can be solved neatly in a few iterations.) The
profit the company makes per unit of product A is $10.00, and the profit of prod-
uct B is $12.50. Producing one unit of A requires 2 units of raw material R and
3 units of raw material S; one unit of B requires 3 units of R and 1.5 units of S.
The company possesses 100 units of raw material R and 50 units of raw material

1Hence, LP is not (as the name would seem to suggest) a programming technique. The name
originated in the 1940s, when “program” referred to military supply plans and schedules(TODO:
citation).
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4 CHAPTER 2. BACKGROUND

S. We make the simplifying assumptions that all prices are constant and cannot
be affected by the company, and that the company is capable of selling every-
thing it produces. The company’s goal is to maximise the profit, which can be
described as 10.00x1 +12.50x2 where x1 is the number of units of product A and
x2 is the number of units of product B. The following constraints are in effect:

• 2x1 + 3x2 ≤ 100 (the production of A and B cannot consume more units of
raw material R than the company possesses)

• 3x1 + 1.5x2 ≤ 50 (same for raw material S)

• x1, x2 ≥ 0 (the company cannot produce negative amounts of its products)

We will use this example throughout this section. (Natvig: This has not yet been
done. I intend to interleave it with the presentation of the algorithm steps, unless
you think it should be presented separately afterwards.)

Note that in regular LP problems, one cannot restrict the variables to be inte-
gers — in fact, adding this requirement produces a new kind of problem known
as integer linear programming (ILP), which is NP-hard2. It is also, in general, a re-
quirement that all variables are nonnegative. This is often the case in real-world
problems that deal with physical quantities, but problems involving variables
that may be negative as well as positive can still be modeled by rewriting each
original variable as a difference of two nonnegative variables.

The function to be optimised is called the objective function. In the real world
situation that gives rise to an optimisation problem, the function may contain
a constant term, but it can be removed since that will affect all possible so-
lutions in the same way. The objective function can then be written as f =
c1x1 + c2x2 + . . . + cnxn =

∑n
j=1 cjxj , where the cj are constants. The vari-

ables in the objective function are often called decision variables, since our task
is not only to find the optimal value of the objective function, but also which
variable values that produce this optimal value. Throughout this report, we will
consistently use n to refer to the number of decision variables and m to refer
to the number of equations and/or inequalities. The variables will typically be
labelled x1 through xn.

Standard form An LP problem is commonly called a linear program. The equa-
tions and inequalities that (together with the objective function) constitute an
linear program may be represented in different forms. We shall first consider

2NP-hardness is a term from complexity theory, which deals with the relative difficulties of
solving different kinds of problems. The only known algorithms for solving NP-hard problems
require an amount of time that is exponential in the size of the problem, which renders those
algorithms useless for many real life problem sizes. For further reading on complexity theory,
consult [4].
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the standard form, in which only less-than-or-equal-to inequalities with all vari-
ables on the left hand side are allowed. (TODO: Why are not less-than allowed?)
A problem containing equalities of the form ai1x1 + . . . + ainxn = bi may be
rewritten by splitting each equality into two inequalities: ai1x1 + . . .+ainxn ≤ bi

and−ai1x1− . . .−ainxn ≤ −bi. Also, the goal must be to maximise the objective
function — if the original problem is to minimize f , we let our objective function
be −f . A linear program in standard form can be expressed as follows:

Maximise

f =
n∑

j=1

cjxj (2.1)

with respect to

n∑
j=1

aijxj ≤ bi, for i = 1, . . . ,m. (2.2)

x1, . . . , xn ≥ 0 (2.3)

Slack form The other common representation is slack form, which only allows
a set of equations (and a nonnegativity constraint for each variable). A slack
form program should be produced by rewriting a standard form program. An
inequality of the form ai1xi + . . . + ainxn ≤ bi is converted to an equation by
adding a slack variable wi. Together with the condition that wi ≥ 0, the equation
ai1x1 + . . . + ainxn + wi = bi is equivalent to the original inequality (whose
difference, or “slack”, between the left and right hand sides is represented by
wi). When the program is constructed in this manner, each slack variable only
appears in excactly one equation, which is an important property that will be
utilised later. A linear program in slack form can be expressed as follows:

Maximise

f =
n∑

j=1

cjxj (2.4)

with respect to

wi = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.5)

x1, . . . , xn, w1, . . . , wm ≥ 0 (2.6)

A proposed solution (that is, a specification of a value for each variable) of a
linear program in slack form is called:
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Feasible if it does not violate any of the constraints

Infeasible if it violates any constraint

Basic if it consists of setting all variables except the slack variables to zero

Optimal if it is feasible and no other feasible solutions yield a higher value for
the objective function

(TODO: Move this paragraph to next section? Natvig says “Ta med etter be-
hov”.) The linear programming theorem (TODO: Is it actually called this? Find
something to cite) states that the optimal solution of a linear program, if it ex-
ists, occurs when at least m variables are set to zero. (TODO: Combinatorics.
Mention cycling here?)

2.1.2 The simplex method

The simplex method3, developed by George Dantzig[3], was the first systematic
approach for solving linear programs. It requires the linear program to be in
slack form. The coefficients are written down in a tableau that changes as the
method progresses. The nonnegativity constraints are not represented anywhere,
but are implicitly maintained by the method. Because the equations will un-
dergo extensive rewriting, it will be convenient to not distinguish the slack vari-
ables from the other variables, so we will relabel wi to xn+i−1 for i = 1, . . . ,m.
Thus, the total number of variables is n + m.

(TODO: Show the example problem in slack form and in tableau form)
The variables are partitioned into two sets. The variables in the leftmost

column (at the left side of the equations) are referred to as the basic variables, and
the variables inside the tableau are called nonbasic variables. At any stage of the
method, the set of the indices of the basic variables is denoted B, and the set of
nonbasic indices is denotedN . Initially, the set of basic variables is the set of the
original slack variables. The sizes of the basic and nonbasic sets are constant,
with |B| = m and |N | = n.

For now, let us assume that the solution that is obtained by setting all nonba-
sic variables to zero is feasible (which is the case only if all of the bi are nonneg-
ative); we will remove this restriction later. This trivial solution will provide a
lower bound for the value of the objective function (namely, the constant term).
We will now select one nonbasic variable xj and consider what happens if we
increase its value (since all nonbasic variables are currently zero, we cannot de-
crease any of them). Since our goal is to maximise the objective function, we

3The reason for not calling it “the simplex algorithm” is that there exist several versions of the
method, and that the general method formulation is somewhat underspecified because it does
not say how to choose the pivot elements.
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should select a variable whose coefficient cj in the objective function is posi-
tive. If no such variables exist, we cannot increase the objective function value
further, and the current solution (the one obtained by setting all nonbasic vari-
ables to zero, so that f = c0) is optimal — we can be certain of this since linear
functions do not have local maxima.

(TODO: relabel wi) It seems reasonable to select the variable with the great-
est coefficient, say, xe. How far can we increase this variable? Recall that each
line in the tableau expresses one basic variable as a function of all the nonbasic
variables; hence we can increase xe until one of the basic variables becomes zero.
Let us look at row i, which is now reduced to wi = bi − aiexe since all nonba-
sic variables except xe are zero. If aie is positive, the value of wi will decrease
as xe increases, so the largest allowable increase is limited by bi. Thus, by set-
ting xe = bi

aie
, wi becomes zero. However, other equations may impose stricter

conditions. By looking at all rows where aie is positive, we can determine an
l such that bl

ale
is minimal and set xe = bl

ale
. This will cause xl to become zero.

If all aie are nonnegative, we can increase xe indefinitely without any wi ever
becoming negative, and in that case, we have determined the linear program to
be unbounded; the method should report this to the user and terminate.

The next step, called pivoting, is an operation that exchanges a nonbasic vari-
able and a basic variable. The purpose of pivoting is to produce a new situation
in which no bi is negative, so that we can repeat the previous steps all over again.
The nonbasic variable that was selected to be increased, xe, is called the enter-
ing variable, since it is about to enter the collection of basic variables. xl, which
becomes zero when xe is increased appropriately, is called the leaving variable,
since it is to be removed from said collection. Keep in mind that since xl is a
basic variable, it only occurs in one equation. We can eliminate the entering
variable from (and introduce the leaving variable into) the set of nonbasic vari-
ables (the “main” part of the tableau) by rewriting the selected equation and
adding appropriate multiples of it to each of the other equations: (TODO: Com-
plete this) This step is called a pivot. After pivoting, we again have a tableau in
which all bi are nonnegative, and the entire process may be repeated.

Degeneracy (TODO: Briefly discuss degenerate pivots.)

Initialisation

The method presented so far is capable of solving linear programs whose initial
basic solution (the one obtained by setting all nonbasic variables to 0) is feasible.
(TODO: Phase I and Phase II) This may not always be the case. We get around
this by introducing an auxiliary problem which is based on the initial problem and
is guaranteed to have a basic feasible solution, and whose solution will provide
us with a starting point for solving the original problem. (TODO: Complete this)



8 CHAPTER 2. BACKGROUND

Formal algorithm statement

(TODO: Use the algorithm package to give a compact description of the sim-
plex method) (TODO: Should ideally be recognisable in the real code; maybe
reference the real code here (or the other way around?))

Complexity and numerical instability

(TODO: )
(ITP: Other stuff that should perhaps be added: geometric interpretation;

duality)

2.1.3 Interior point algorithms

2.1.4 Use of LP to solve advanced flow problems

(TODO: Consult Miriam on this)

2.2 Cell Broadband Engine

The Cell Broadband Engine (Cell BE) is a single chip multiprocessor architecture
jointly developed by IBM, Sony and Toshiba. The initial design goals was to cre-
ate an architecture that would be suitable for the demands of future gaming and
multimedia applications (meaning not only high computational power, but also
high responsiveness to user interaction and network communications), with a
performance of 100 times that of Sony PlayStation 2[5]. Several obstacles to such
goals exist; in particular the infamous brick walls[1]:

Memory wall (TODO: )

Power wall (TODO: )

ILP wall Instruction-level parallelism (ILP) techniques such as pipelines and (TODO:
)

2.2.1 Architecture

Overview

The Cell BE consists of one PowerPC Processing Element (PPE) and eight Synergis-
tic Processing Elements (SPE)

PPE

PowerPC Processing Unit (PPU)
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SPE

Synergistic Processing Unit (SPU)

Memory bus and DMA controller

Base addresses (both in local storage and in system memory (TODO: correct?))
for all DMA transfers must be aligned on a 16-byte (quadword) border(TODO:
term?), and the data to be transferred must be a multiple of 16 bytes. Perfor-
mance is improved if aligned, whole cache lines (128 bytes(TODO: verify)) are
transferred at a time.

Another method that is available for communication between the cores is

2.2.2 Programming methods

2.2.3 Tools and libraries

(Natvig’s comment: Good: which libs are used in the project? Better: Which libs
are relevant for the project?)





Chapter 3
Design

(TODO: Chapter introduction)

3.1 Overall approach

(TODO: Gradual, step by step approach)

3.2 Dense simplex

In order to become familiar with programming the Cell BE, we initially imple-
mented a few versions of the simplex method for dense problems. (Natvig’s
comment: This can be justified when we have a task description and “angrepsmåte”)

3.2.1 PPE version

(TODO: Far from finished) As described in Section 2.2.1, the PPE supports SIMD
instructions (also referred to as vector instructions) capable of operating on four
single precision floating point values simultaneously. Since the simplex method
primarily consists of row operations on the tableau, it is an excellent target for
such vectorisation — the only problem is the low arithmetic intensity, which
may reduce performance because a lot of data needs to be loaded into the reg-
isters, and only a very simple and fast operation is being performed on each
element before it is thrown out again.

(TODO: Something on why we chose C++?)
(Natvig’s comment: Avoid the “not invented here” syndrome. Look into

reusing existing code/libraries) We wrote a class called Matrix, which repre-
sents a dense matrix and supports standard matrix operations. The initial ver-
sion was nonvectorised (SISD) and used just standard C++. Rewriting this to
utilise the vector operations involved only a few fairly trivial steps:

11
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• Use malloc_align instead of new to get memory blocks that are aligned
on proper boundaries (TODO: Not sure if this was even necessary)

• Pad the rows with zeroes such that the number of elements in each row is
a multiple of four, so that the vector operations will not “fall of the end” of
each row

• Rewrite the loops in the matrix operation functions (such as addRows and
multiplyRow to use vector operations. (Natvig’s comment: Preferrably
pseudocode here) data is a pointer to the array that contains the entire
matrix. physicalCols is the number of columns rounded up to the near-
est multiple of VECTOR_WIDTH, which is set to 4.

void Matrix::addRows(int sourceRow, int destinationRow,

float factor) {

vector float factor_v = (vector float){factor, factor,

factor, factor};

vector float * source_v = (vector float *)(data +

sourceRow * physicalCols);

vector float * destination_v = (vector float *)(data +

destinationRow * physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

destination_v[j] = vec_madd(source_v[j], factor_v,

destination_v[j]);

}

}

(TODO: Do loop unrolling as well?)

3.2.2 SPE version

3.3 Sparse simplex

3.4 Dense interior point

3.5 Sparse interior point



Chapter 4
Implementation and testing

(TODO: Chapter introduction)

4.1 Simplex algorithm

4.2 Test plan

4.2.1 Unit testing

(TODO: )

4.2.2 Large data sets

(TODO: Something on the netlib LP problem set)

4.2.3 (TODO: Other implementations)

13





Chapter 5
Evaluation

(TODO: Chapter introduction)

5.1 Performance measurements

(TODO: Describe system specifications and how timing was performed)

5.1.1 (TODO: What to measure)

5.1.2 (TODO: How to measure)

5.2 Results

5.2.1 Dense simplex

5.2.2 Sparse simplex

5.2.3 Dense interior point

5.2.4 Sparse interior point

5.3 Discussion
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Chapter 6
Conclusion

(TODO: )

6.1 Experiences

6.2 Future work
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[1] K. ASANOVÍC, R. BODIK, B. CATANZARO, J. GEBIS, P. HUSBANDS, K. KEUTZER,
D. PATTERSON, W. PLISHKER, J. SHALF, S. WILLIAMS, AND K. YELICK, The Land-
scape of Parallel Computing Research: A View from Berkeley, Tech. Rep. UCB/EECS-
2006-183, Electrical Engineering and Computer Sciences — University of California
at Berkeley, December 2006. [cited at p. 8]

[2] T. H. CORMEN, C. R. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to Al-
gorithms, McGraw-Hill Science/Engineering/Math, 2nd ed., 2003. [cited at p. 3]

[3] G. DANTZIG, Linear Programming and Extensions, Princeton University Press, Prince-
ton, NJ, 1963. [cited at p. 6]

[4] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman, 1979. [cited at p. 4]

[5] J. A. KAHLE, M. N. DAY, H. P. HOFSTEE, C. R. JOHNS, T. R. MAEURER, AND

D. SHIPPY, Introduction to the cell multiprocessor, IBM J. Res. Dev., 49 (2005), pp. 589–
604. [cited at p. 8]

[6] R. J. VANDERBEI, Linear Programming: Foundations and Extensions, Springer, 2nd ed.,
2001. [cited at p. 3]

19





Appendices

21





Appendix A
Schedule

This appendix will obviously be deleted before submission.

Week 8 Finished the implementation of a dense Simplex for a regular CPU and
test with netlib datasets. Implement a vectorised (SIMD) dense Simplex
on the PPE

Week 9 Struggle with numerical instability

Week 10 Implement a vectorised dense Simplex running in parallel on the SPEs

Week 11 — “ — (delayed)

Week 12 — “ — (delayed)

Week 13 Study interior point algorithms

Week 14 First draft of report

Week 15 Easter vacation - read on interior point algorithms

Week 16 Implement a dense, non-parallelised interior point algorithm

Week 17 Decide on whether to pursue simplex or interior point. Making a test
plan. Experiment with different approaches to sparse storage; look into
numerical stability with single-precision values

Week 18 Look into autotuning?

Week 19

Week 20 Performance measurements and graphing

Week 21 Frenetic report writing

23



24 APPENDIX A. SCHEDULE

Week 22 — “ —

Week 23 Ordinary submission deadline. Will try to submit as close to this date
as possible

Week 24

Week 25

Week 26

Week 27 Natvig goes on vacation

Week 28

Week 29 Final deadline: July 19
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