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Chapter 1
Introduction

(TODO: )

Task description (Natvig: This is the task description I entered in DAIM. Should
probably be changed a bit...) The aim of the project is to implement a parallel
linear solver for large sparse problems on the Cell BE using the Simplex method.
Interior point methods may also be investigated.

(TODO: A paragraph about Miriam)

1





Chapter 2
Background

(TODO: Chapter introduction)

2.1 Linear programming

(ITP: Section introductions)
This section is primarily based on [8], [2](TODO: and [5] if we write about

artificial variables).

2.1.1 Problem formulation. Standard and slack forms

The term linear programming (LP) refers to a type of optimisation problems in
which one seeks to maximise or minimise the value of a linear function of a
set of variables1. The values of the variables are constrained by a set of linear
equations and/or inequalities. Linear programming is a fairly general problem
type, and many important problems can be cast as LP problems — for instance,
shortest path problems and maximum flow problems (see [2]). However, the
true virtue of linear programming stems from its ability to model a vast range of
optimisation problems for which specialised algorithms do not exist, including
many situations from economics and industry processes.

The following framed text is an example of a simple linear programming
problem. We will use this example throughout this section to illustrate how the
linear programming algorithms work.

1Hence, LP is not (as the name would seem to suggest) a programming technique. The name
originated in the 1940s, when “program” referred to military supply plans and schedules(TODO:
citation).

3
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— Example —

A company owns a factory that makes two kinds of products based on two
different raw materials. (Natvig: This example just uses some random num-
bers; I will construct an example, probably using only integers, that can be
solved neatly in a few iterations.) The profit the company makes per unit of
product A is $30, and the profit of product B is $20. Producing one unit of
A requires 1 unit of raw material R and 1 unit of raw material S; one unit
of B requires 2 units of R and 1 unit of S. The company possesses 40 units
of R and 50 units of S. We make the simplifying assumptions that all prices
are constant and cannot be affected by the company, and that the company is
capable of selling everything it produces. The company’s goal is to maximise
the profit, which can be described as 30x1 + 20x2, where x1 is the number of
units of product A and x2 is the number of units of product B. The following
constraints are in effect:

• x1 + x2 ≤ 40 (the production of A and B cannot consume more units of
raw material R than the company possesses)

• 2x1 + x2 ≤ 50 (same for raw material S)

• x1, x2 ≥ 0 (the company cannot produce negative amounts of its prod-
ucts)

Note that in regular LP problems, one cannot restrict the variables to be inte-
gers — in fact, adding this requirement produces a new kind of problem known
as integer linear programming (ILP), which is NP-hard2. It is also, in general, a re-
quirement that all variables are nonnegative. This is often the case in real-world
problems that deal with physical quantities, but problems involving variables
that may be negative as well as positive can still be modeled by rewriting each
original variable as a difference of two nonnegative variables.

The function to be optimised is called the objective function. In the real world
situation that gives rise to an optimisation problem, the function may contain a
constant term, but it can be removed since that will affect all possible solutions
in the same way. The objective function can then be written as ζ = c1x1 + c2x2 +
. . .+cnxn =

∑n
j=1 cjxj , where the cj are constants. The variables in the objective

function are often called decision variables, since our task is not only to find the
optimal value of the objective function, but also which variable values that yield

2NP-hardness is a term from complexity theory, which deals with the relative difficulties of
solving different kinds of problems. The only known algorithms for solving NP-hard problems
require an amount of time that is exponential in the size of the problem, which renders those
algorithms useless for many real life problem sizes. For further reading on complexity theory,
consult [4].
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this function value. Throughout this report, we will consistently use n to refer
to the number of decision variables and m to refer to the number of equations
and/or inequalities. The variables will typically be labelled x1 through xn.

Standard form An LP problem is commonly called a linear program. The equa-
tions and inequalities that (together with the objective function) constitute an
linear program may be represented in different forms. We shall first consider
the standard form, in which only less-than-or-equal-to inequalities with all vari-
ables on the left hand side are allowed. (TODO: Why are not less-than allowed?)
A problem containing equalities of the form ai1x1 + . . . + ainxn = bi may be
rewritten by splitting each equality into two inequalities: ai1x1 + . . .+ainxn ≤ bi
and−ai1x1− . . .−ainxn ≤ −bi. Also, the goal must be to maximise the objective
function — if the original problem is to minimize ζ, we let our objective function
be −ζ. A linear program in standard form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.1)

with respect to

n∑
j=1

aijxj ≤ bi, for i = 1, . . . ,m. (2.2)

x1, . . . , xn ≥ 0 (2.3)

Slack form The other common representation is slack form, which only allows
a set of equations (and a nonnegativity constraint for each variable). A slack
form program should be produced by rewriting a standard form program. An
inequality of the form ai1xi + . . . + ainxn ≤ bi is converted to an equation by
adding a slack variable wi. Together with the condition that wi ≥ 0, the equation
ai1x1 + . . . + ainxn + wi = bi is equivalent to the original inequality (whose
difference, or “slack”, between the left and right hand sides is represented by
wi). When the program is constructed in this manner, each slack variable only
appears in excactly one equation, which is an important property that will be
utilised later. A linear program in slack form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.4)
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with respect to

wi = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.5)

x1, . . . , xn, w1, . . . , wm ≥ 0 (2.6)

— Example —

In standard form, our example is expressed as

Maximise

ζ = 30x1 + 20x2

with respect to

x1 + x2 ≤ 40

2x1 + x2 ≤ 50

x1, x2 ≥ 0

In slack form, it becomes

Maximise

ζ = 30x1 + 20x2

with respect to

w1 = 40− x1 − x2

w2 = 50− 2x1 − x2

x1, x2, w1, w2 ≥ 0

A proposed solution (that is, a specification of a value for each variable) of a
linear program in slack form is called:

Feasible if it does not violate any of the constraints

Infeasible if it violates any constraint

Basic if it consists of setting all variables except the slack variables to zero

Optimal if it is feasible and no other feasible solutions yield a higher value for
the objective function
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(TODO: Move this paragraph to next section? Natvig says “Ta med etter be-
hov”.) The linear programming theorem (TODO: Is it actually called this? Find
something to cite) states that the optimal solution of a linear program, if it ex-
ists, occurs when at least m variables are set to zero. (TODO: Combinatorics.
Mention cycling here?)

2.1.2 The simplex method

The simplex method3, developed by George Dantzig[3], was the first systematic
approach for solving linear programs. It requires the linear program to be in
slack form. The initial coefficients and constants are written down in a tableau
that will change as the method progresses. The nonnegativity constraints are
not represented anywhere, but are implicitly maintained by the method. Be-
cause the equations will undergo extensive rewriting, it will be convenient to
not distinguish the slack variables from the other variables, so we will relabel wi

to xn+i−1 for i = 1, . . . ,m. Thus, the total number of variables is n+m. Further-
more, we will use overlines over the coefficients in the tableau to denote their
current value (which will change in each iteration of the simplex method), and
the indices of the coefficients will refer to the coefficients’ position within the
tableau — for instance, −aij is located in row i, column j. We also introduce a
constant term ζ (initially zero) in the objective function, which will help us keep
track of the best function value we have found so far. The topmost row and
leftmost column are not really a part of the tableau; they are simply headers —
the topmost row shows which variables correspond to which columns, and the
leftmost column shows the slack variables for each row. The first actual tableau
row (below the double line) contains the objective function coefficients cj ; the
first actual tableau column (to the right of the double line) contains the bi con-
stants, and the rest of the tableau contains the negatives of the coefficients from
the equations: −aij . Initially, cj = cj , bi = bi, and aij = aij . With n = 3 and
m = 3, the initial tableau will look like this:

x1 x2 x3

ζ ζ c1 c2 c3

x4 b1 −a11 −a12 −a13

x5 b2 −a21 −a22 −a23

x6 b3 −a31 −a32 −a33

Note that this is essentially just a tabular version of the standard form — for
instance, the last row is interpreted as the equation x6 = b3−a31x1−a32x2−a33x3.

3The reason for not calling it the “simplex algorithm” is that there exist several versions of the
method, and that the general method formulation is somewhat underspecified because it does
not say how to choose the pivot elements.
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— Example —

In tableau form, our example becomes

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Note that w1 and w2 have been renamed to x3 and x4, respectively.

The variables are partitioned into two sets. The variables in the leftmost
column (at the left side of the equations) are referred to as the basic variables,
and the variables inside the tableau are called nonbasic variables. At any stage
of the method, the set of the indices of the basic variables is denoted B, and
the set of nonbasic indices is denoted N . Initially, N = {1, . . . , n}, and B =
{n + 1, . . . , n + m}. The sizes of the basic and nonbasic sets are constant, with
|B| = m and |N | = n.

For now, let us assume that the solution that is obtained by setting all nonba-
sic variables to zero is feasible (which is the case only if all of the bi are nonneg-
ative); we will remove this restriction later. This trivial solution will provide a
lower bound for the value of the objective function (namely, the constant term).
We will now select one nonbasic variable xj and consider what happens if we
increase its value (since all nonbasic variables are currently zero, we cannot de-
crease any of them). Since our goal is to maximise the objective function, we
should select a variable whose coefficient cj in the objective function is positive.
If no such variables exist, we cannot increase the objective function value fur-
ther, and the current solution (the one obtained by setting all nonbasic variables
to zero, so that ζ = ζ) is optimal — we can be certain of this since linear functions
do not have local maxima.

(TODO: relabel wi) It seems reasonable to select the variable with the great-
est coefficient, say, xe. How far can we increase this variable? Recall that each
line in the tableau expresses one basic variable as a function of all the nonbasic
variables; hence we can increase xe until one of the basic variables becomes zero.
Let us look at row i, which is now reduced to wi = bi − aiexe since all nonba-
sic variables except xe are zero. If aie is positive, the value of wi will decrease
as xe increases, so the largest allowable increase is limited by bi. Thus, by set-
ting xe = bi

aie
, wi becomes zero. However, other equations may impose stricter

conditions. By looking at all rows where aie is positive, we can determine an
l such that bl

ale
is minimal and set xe = bl

ale
. This will cause xl to become zero.

If all aie are nonnegative, we can increase xe indefinitely without any wi ever
becoming negative, and in that case, we have determined the linear program to
be unbounded; the method should report this to the user and terminate.
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— Example —

Recall the tableau:

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Since 30 is the greatest objective function coefficient, we select x1 to be
increased. x3 becomes zero if x1 = b1

a11
= 40

1 , and x4 becomes zero if
x1 = b2

a12
= 50

2 . The latter is the most restrictive constraint, so x4 will become
zero when we increase x1.

The next step, called pivoting, is an operation that exchanges a nonbasic vari-
able and a basic variable. The purpose of pivoting is to produce a new situation
in which no bi is negative, so that we can repeat the previous steps all over again.
The nonbasic variable that was selected to be increased, xe, is called the enter-
ing variable, since it is about to enter the collection of basic variables. xl, which
becomes zero when xe is increased appropriately, is called the leaving variable,
since it is to be removed from said collection. Keep in mind that since xl is a
basic variable, it only occurs in one equation, namely

xl = bl −
∑
j∈N

aljxj . (2.7)

We can eliminate the entering variable from (and introduce the leaving variable
into) the set of nonbasic variables (the “main” part of the tableau) by rewriting
Equation 2.7:

xe =
1
ale

bl − xl −
∑

j∈N−{e}

aljxj

 . (2.8)

Now that we have an expression for xe, we can substitute it into all of the other
equations — this will eliminate xe and introduce xl into the rest of the tableau.
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For all i ∈ B − {l}, we have:

xi = bi −
∑
j∈N

aijxj (2.9)

= bi − aiexe −
∑

j∈N−{e}

aijxj (2.10)

= bi −
aie

ale

bl − xl −
∑

j∈N−{e}

aljxj

− ∑
j∈N−{e}

aijxj (2.11)

=
(
bi −

aie

ale
bl

)
− aie

ale
xl −

∑
j∈N−{e}

(
aij −

aie

ale
alj

)
xj . (2.12)

Although this might look complicated, it amounts to subtracting aie
ale

times the
tableau row for xl from all other tableau rows (including the objective function
row), and then (TODO: )

Equation 2.8 is the new form of the tableau row that originally corresponded
to the basic variable xl. The new row, which corresponds to xe, can be easily
obtained from the old one by dividing the row by ale and setting the coefficient
of what is now xl to 1

ale
.

Finally, we remove l from B and add it to N , and remove e from N and add
it to B.

and adding appropriate multiples of it to each of the other equations: (TODO:
Complete this) This step is called a pivot. After pivoting, we again have a tableau
in which all bi are nonnegative, and the entire process may be repeated.

A 3 × 3 tableau will look like this after one pivot with x2 as the entering
variable and x5 as the entering variable:(TODO: )

x1 x5 x3

ζ ζ c1 c2 c3

x4 b1 − b2
a22

−a11
a22

−a12
a22

−a13
a22

x2
b2
a22

−a21
a22

−a22
a22

−a23
a22

x6
b3
a22

−a31
a22

−a32
a22

−a33
a22
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— Example —

After one pivot with x1 as the entering variable and x4 as the leaving variable,
we get the following tableau:

x4 x2

ζ 750 −15 5
x3 15 0.5 −0.5
x1 25 −0.5 −0.5

For the next pivot operation, only x2 can be selected as the entering variable,
which causes x3 to be selected as the leaving variable. After the pivot, the
tableau looks like this:

x4 x3

ζ 900 −10 −10
x2 30 1 −2
x1 10 −1 1

Since all objective function coefficients are now negative, we have reached
an optimal solution with the value ζ = ζ = 900. This solution value
is obtained by setting the nonbasic variables (x3 and x4) to 0, in which
case x1 = 10 and x2 = 30. We can easily verify that these variable val-
ues do not violate any constraints, and by substituting the values into the
original objective function, we can verify that the optimal value is indeed
ζ = 30x1 + 20x2 = 30 · 10 + 20 · 30 = 900.

Degeneracy and cycling (TODO: Briefly discuss degenerate pivots.) A tableau
is degenerate if (TODO: ). Degeneracy may cause trouble because a pivot on a de-
generate row will not cause the objective function value to change. With severely
bad luck, the algorithm may end up cycling through a number of degenerate
states. This, however, rarely happens — according to [8], (TODO: )

Initialisation

The method presented so far is capable of solving linear programs whose initial
basic solution (the one obtained by setting all nonbasic variables to 0) is feasible.
(TODO: Phase I and Phase II) This may not always be the case. We get around
this by introducing an auxiliary problem which is based on the initial problem and
is guaranteed to have a basic feasible solution, and whose solution will provide
us with a starting point for solving the original problem. (TODO: Complete this)
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Formal algorithm statement

(TODO: Use the algorithm package to give a compact description of the sim-
plex method) (TODO: Should ideally be recognisable in the real code; maybe
reference the real code here (or the other way around?))

Complexity and numerical instability

(TODO: )
(ITP: Other stuff that should perhaps be added: geometric interpretation;

duality)

2.1.3 Interior point algorithms

2.1.4 Use of LP to solve advanced flow problems

A flow network is a graph where a flow of some substance (expressed in e.g.
(TODO: spell “litres”) per second) is associated with each edge. In addition, each
edge may have upper and lower bounds (known as capacities) on the flow value,
and possibly a cost that will be incurred per unit of flow that is sent through the
edge. The goal may, for instance, be to send as much flow as possible from a
designated source node to a designated sink (destination) node, or to send a cer-
tain flow as cheaply as possible. Other variations are also possible. If there are
no lower bounds and no costs, there exist efficient algorithms for the flow prob-
lem, such as the Edmonds-Karp algorithm[2]. In more complex situations, no
specialised algorithms exist, but LP comes to the rescue. Cormen et al.[2] give a
good overview of how to express a flow problem as an LP problem, which we
(TODO: spell “summarise”) here:

• There is one variable for each edge, expressing the amount of flow through
that edge. (TODO: Cormen has two?)

• (TODO: Finish)

(TODO: Consult Miriam on this)

2.1.5 Existing LP solvers

ILOG CPLEX

CPLEX, developed by the company ILOG, is the industry standard LP solver(Natvig:
Who/what can I cite here?). Being proprietary closed-source software, we can-
not examine its inner workings (but they are probably too complex for this
project). While our department does not have a CPLEX license, we can still to
some extent compare the answers from our solvers to those that CPLEX gives —
sites such as (TODO: citation) provide CPLEX’ answers to the netlib problem
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sets, and Miriam has a licence that they can use to find the answers to their own
data sets. (TODO: Something on why Miriam doesn’t just use CPLEX rather
than bothering with PS3?)

GLPK

Gnu Linear Programming Kit
Unfortunately, the code base is extremely large, comprising more than (TODO:

) lines of C code distributed across nearly 100 files. While only a handful of these
files contain functionality that is directly related to the simplex method, reverse
engineering it still would be a daunting task — especially given that their coding
conventions apparently calls for very short variable names.

GLPK is released by its authors under version 3 of the GNU General Public
License.

OOPS

retroLP

As opposed to virtually all other LP solvers, retroLP[9] implements the original
simplex method, not the revised method. The former is advantageous for dense
problems, which occur in some special applications such as “wavelet decompo-
sition, digital filter design, text categorization, image processing and relaxations
of scheduling problems.”[10] As compared to GLPK, the code is fairly short and
readable — but it still consists of (TODO: ) lines.

retroLP is released by its authors under version 2 of the GNU General Public
License.

2.2 Cell Broadband Engine

The Cell Broadband Engine (Cell BE) is a single chip multiprocessor architecture
jointly developed by IBM, Sony and Toshiba. The initial design goals was to cre-
ate an architecture that would be suitable for the demands of future gaming and
multimedia applications (meaning not only high computational power, but also
high responsiveness to user interaction and network communications), with a
performance of 100 times that of Sony PlayStation 2[6]. Several obstacles to such
goals exist; in particular the infamous brick walls[1]:

Memory wall (TODO: )

Power wall (TODO: )

ILP wall Instruction-level parallelism (ILP) techniques such as pipelines and (TODO:
)



14 CHAPTER 2. BACKGROUND

2.2.1 Architecture

Overview

The Cell BE consists of one PowerPC Processor Element (PPE) and eight Synergistic
Processing Elements (SPE)

PPE

PowerPC Processor Unit (PPU) Separate register files for fixed-point, floating-
point, and vector. 32 SIMD registers.

SPE

Unified register file with 128 128-bit registers
Synergistic Processor Unit (SPU)

Memory bus and DMA controller

Base addresses (both in local storage and in system memory (TODO: correct?))
for all DMA transfers must be aligned on a 16-byte (quadword) border(TODO:
term?), and the data to be transferred must be a multiple of 16 bytes. Perfor-
mance is improved if aligned, whole cache lines (128 bytes(TODO: verify)) are
transferred at a time.

Local Store (LS) Memory Flow Controller (MFC)
Another method that is available for communication between the cores is

2.2.2 Programming methods

The vector data type

Compiler intrinsics

Compiler directives

__attribute__((aligned(16))), spu_sel, __builtin_expect, _align_hint, malloc_align, restrict

loop unrolling, function inlining (watch for code size!)

2.2.3 Tools and libraries

(Natvig’s comment: Good: which libs are used in the project? Better: Which libs
are relevant for the project?)

BlockLib

[11]
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CellSS

[7]





Chapter 3
Design

(TODO: Chapter introduction)

3.1 Overall approach

(TODO: Gradual, step by step approach)

3.2 Initial experiments

3.2.1 Arithmetic performance

(Natvig: Should we do this ourselves, or find someone who has already done
it?)

All data in registers

Single precision

Double precision

All data in LS

Single precision

Double precision

Double buffering of data from main storage

(Natvig: Maybe we can find out that data transfer takes so much time that the
DP performance loss doesn’t have too much of an impact?)

17
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Single precision

Double precision

3.3 Dense simplex

In order to become familiar with programming the Cell BE, we initially imple-
mented a few versions of the simplex method for dense problems. (Natvig’s
comment: This can be justified when we have a task description and “angrepsmåte”)

3.3.1 PPE version

(TODO: Far from finished) As described in Section 2.2.1, the PPE supports SIMD
instructions (also referred to as vector instructions) capable of operating on four
single precision floating point values simultaneously. Since the simplex method
primarily consists of row operations on the tableau, it is an excellent target for
such vectorisation — the only problem is the low arithmetic intensity, which
may reduce performance because a lot of data needs to be loaded into the reg-
isters, and only a very simple and fast operation is being performed on each
element before it is thrown out again.

(TODO: Something on why we chose C++?)
(Natvig’s comment: Avoid the “not invented here” syndrome. Look into

reusing existing code/libraries) We wrote a class called Matrix, which repre-
sents a dense matrix and supports standard matrix operations. The initial ver-
sion was nonvectorised (SISD) and used just standard C++. Rewriting this to
utilise the vector operations involved only a few fairly trivial steps:

• Use malloc_align instead of new to get memory blocks that are aligned
on proper boundaries (TODO: Not sure if this was even necessary)

• Pad the rows with zeroes such that the number of elements in each row is
a multiple of four, so that the vector operations will not “fall of the end” of
each row

• Rewrite the loops in the matrix operation functions (such as addRows and
multiplyRow to use vector operations. (Natvig’s comment: Preferrably
pseudocode here) data is a pointer to the array that contains the entire
matrix. physicalCols is the number of columns rounded up to the near-
est multiple of VECTOR_WIDTH, which is set to 4.

void Matrix::addRows(int sourceRow, int destinationRow,

float factor) {

vector float factor_v = (vector float){factor, factor,

factor, factor};
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vector float * source_v = (vector float *)(data +

sourceRow * physicalCols);

vector float * destination_v = (vector float *)(data +

destinationRow * physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

destination_v[j] = vec_madd(source_v[j], factor_v,

destination_v[j]);

}

}

(TODO: Do loop unrolling as well?)

3.3.2 SPE version

Our approach is fairly obvious1:

1. The PPE, which initially holds the entire tableau, distributes the tableau
rows evenly among the SPEs (TODO: SPE or SPU?), giving each SPE a
batch of consecutive rows.

2. The first SPE analyses the objective function to determine the leaving vari-
able and sends the column number to the PPE, which distributes this num-
ber to the other SPEs. If no leaving variable was found, the optimal solu-
tion has been found, and the SPEs are asked to send their basic variable
values to the PPE and terminate. (TODO: which pivot rule?)

3. Each SPE determines the strictest bound (that is imposed by its subset of
the rows) on the value of the leaving variable and sends the bound (TODO:
and the corresponding row number) to the PPE.

4. The PPE determines which SPE that “wins” and requests this SPE to trans-
fer the pivot row to main memory; afterwards, all the other SPEs are re-
quested to receive this row(TODO: wording). If no SPEs found a finite
bound, the problem is unbounded, and the SPEs are asked to terminate.

5. Each SPE performs row operations on its part of the tableau, using the
pivot row, and notify the PPE upon completion. Go to step 2.

1After having written the application, we found that [9] essentially uses the same approach,
albeit for cluster computers with MPI.(Natvig: I’m trying to express that although it’s not difficult
to come up with this approach, I did do it myself, before finding that paper. Is that something I
should do?)
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Appendix A
Code

A.1 Simplex algorithm, first version

matrix.h

#include <iostream>

class Matrix;

class RowIndexDescriptor {

public:
RowIndexDescriptor(const Matrix *, int);
float & operator [] (int) const;

private:
const Matrix * matrix;

int row;

};

class Matrix {

friend class RowIndexDescriptor;

friend std::ostream & operator << (std::ostream &, const
Matrix &);

public:
Matrix(int, int);
Matrix(int, int, bool);
Matrix(const Matrix &);

˜Matrix();

int getRows() { return rows; }

int getCols() { return cols; }

RowIndexDescriptor operator [] (int) const;
Matrix operator * (const Matrix &) const;
Matrix invert() const;
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void multiplyRow(int row, float factor);

void addRows(int sourceRow, int destinationRow, float factor)

;

void swapRows(int firstRow, int secondRow);

private:
int rows;

int cols;

float * data;

};

std::ostream & operator << (std::ostream &, const Matrix &);

matrix.cpp

#include "matrix.h"

using namespace std;

RowIndexDescriptor::RowIndexDescriptor(const Matrix * matrix,

int row) {

this->matrix = matrix;

this->row = row;

}

float & RowIndexDescriptor::operator [] (int col) const {

return matrix->data[row * matrix->cols + col];

}

Matrix::Matrix(int rows, int cols) {

// if (rows <= 0 || cols <= 0)

// throw std::exception();

this->rows = rows;

this->cols = cols;

this->data = new float[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this->data[i] = 0;

}

Matrix::Matrix(int rows, int cols, bool identity) {

// if (rows <= 0 || cols <= 0)

// throw std::exception();

this->rows = rows;

this->cols = cols;

this->data = new float[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this->data[i] = 0;
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if (identity && rows == cols) {

for (int i = 0; i < rows; ++i) {

(*this)[i][i] = 1;

}

}

}

Matrix::Matrix(const Matrix & source) {

this->rows = source.rows;

this->cols = source.cols;

this->data = new float[source.rows * source.cols];

for (int i = 0; i < source.rows * source.cols; ++i)

this->data[i] = source.data[i];

}

Matrix::˜Matrix() {

delete data;

}

RowIndexDescriptor Matrix::operator [] (int row) const {

return RowIndexDescriptor(this, row);

}

ostream & operator << (ostream & out, const Matrix & matrix) {

out << "=== " << matrix.rows << " x " << matrix.cols << " ===

" << endl;

for (int r = 0; r < matrix.rows; ++r) {

out << matrix.data[r * matrix.cols];

for (int c = 1; c < matrix.cols; ++c)

out << ’\t’ << matrix.data[r * matrix.cols + c];

out << endl;

}

out << "======" << endl;

return out;

}

Matrix Matrix::operator * (const Matrix & other) const {

//if (cols != other->rows)

//throw;

Matrix result(rows, other.cols);

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < other.cols; ++j) {

float sum = 0;

for (int k = 0; k < cols; ++k) {

sum += (*this)[i][k] * other[k][j];

}

result[i][j] = sum;
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}

}

return result;

}

void Matrix::multiplyRow(int row, float factor) {

if (factor == 0) return;
for (int j = 0; j < cols; ++j) {

(*this)[row][j] *= factor;

}

}

void Matrix::addRows(int sourceRow, int destinationRow, float
factor) {

if (factor == 0) return;
for (int j = 0; j < cols; ++j) {

(*this)[destinationRow][j] += (*this)[sourceRow][j] *
factor;

}

}

void Matrix::swapRows(int firstRow, int secondRow) {

if (firstRow == secondRow) return;
for (int j = 0; j < cols; ++j) {

float tmp = (*this)[firstRow][j];
(*this)[firstRow][j] = (*this)[secondRow][j];
(*this)[secondRow][j] = tmp;

}

}

Matrix Matrix::invert() const {

if (rows != cols) throw "Non-square matrices cannot be

inverted";

Matrix self(*this);
Matrix inverse(rows, cols, true);
for (int rc = 0; rc < cols; ++rc) {

// Locate row with nonzero in this column

int searchRow = rc;

while (searchRow < rows && self[searchRow][rc] == 0)

++searchRow;

if (searchRow == rows)

throw rc;

// Swap with current row; now the current row has nonzero

in this column

self.swapRows(rc, searchRow);

inverse.swapRows(rc, searchRow);

float factor = 1 / self[rc][rc];
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