
Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and

Electrical Engineering
Department of Computer and Information Science

Master Thesis

Linear programming on Cell/BE

by

Åsmund Eldhuset

Supervisor: Dr.Ing. Lasse Natvig
Co-supervisor: Dr. Anne C. Elster

Trondheim, June 1, 2009

iii

Abstract

(TODO:)

Acknowledgements

(TODO:)

v

Contents

Contents vii

List of Figures ix

List of Tables x

List of Symbols and Abbreviations xi

Listings xii

1 Introduction 1

2 Background 3
2.1 Linear programming . 3

2.1.1 Problem formulation. Standard and slack forms 3
2.1.2 The simplex method . 7
2.1.3 The revised simplex method 12
2.1.4 ASYNPLEX . 15
2.1.5 Interior point algorithms . 15
2.1.6 Use of LP to solve advanced flow problems 15
2.1.7 Existing LP solvers . 16

2.2 Cell Broadband Engine . 17
2.2.1 Architecture . 18
2.2.2 Programming methods . 18
2.2.3 Tools and libraries . 19

3 Design 21
3.1 Overall approach . 21
3.2 Initial experiments . 21

3.2.1 Arithmetic performance . 21
3.3 Standard simplex method . 22

3.3.1 PPE version . 22
3.3.2 SPE version . 22

vii

viii CONTENTS

3.4 Revised simplex method . 23
3.5 Thoughts on unimplemented features / ideas for future work . . 23

3.5.1 Dense interior point . 23
3.5.2 Sparse interior point . 23
3.5.3 Mixed precision . 24
3.5.4 Representation of sparse matrices 24
3.5.5 Vectorisation . 24
3.5.6 Autotuning . 24

4 Implementation and testing 25
4.1 Implementation problems . 25

4.1.1 Straightforward simplex implementation 25
4.1.2 Numerical stability . 26

4.2 Simplex algorithm . 26
4.3 Test plan . 26

4.3.1 Unit testing . 26
4.3.2 Large data sets . 27
4.3.3 Comparison to other implementations 27

5 Evaluation 29
5.1 Performance measurements . 29

5.1.1 (TODO: What to measure) 29
5.1.2 (TODO: How to measure) 29

5.2 Results . 29
5.2.1 Standard simplex method 29
5.2.2 Revised simplex method . 29

5.3 Discussion . 29

6 Conclusion 31
6.1 Experiences . 31
6.2 Future work . 31

Bibliography 33

A Code 37
A.1 Simplex algorithm, first version . 37
A.2 Utilities . 50

B Test sets 61
B.1 Sample netlib test set . 61
B.2 Test sets provided by Miriam AS 63

C Schedule 67

List of Figures

ix

List of Tables

x

List of Symbols
and Abbreviations

Abbreviation Description Definition

Cell BE Cell Broadband Engine page 17
ILP Integer linear programming page 4
ILP Instruction-level parallelism page 17
LP Linear programming page 3
LS Local Store page 18
MFC Memory Flow Controller page 18
PPE PowerPC Processor Element page 18
PPU PowerPC Processor Unit page 18
SPE Synergistic Processor Element page 18
SPU Synergistic Processor Unit page 18

xi

Listings

../simplex/matrix.h . 37

../simplex/matrix.cpp . 38

../simplex/TableauSimplex.h . 43

../simplex/TableauSimplex.cpp . 44

../simplex/main.cpp . 46

../simplex/mps.py . 50

../simplex/cplex.py . 53

../datasets/afiro.mps . 61

../datasets/dp 0.lp . 63

../datasets/dp 150.lp . 64

xii

Chapter 1
Introduction

(TODO:)

Task description (Natvig: This is the task description I entered in DAIM. Should
probably be changed a bit...) The aim of the project is to implement a parallel
linear solver for large sparse problems on the Cell BE using the Simplex method.
Interior point methods may also be investigated.

(TODO: A paragraph about Miriam)

1

Chapter 2
Background

(TODO: Chapter introduction)

2.1 Linear programming

(ITP: Section introductions)
This section is primarily based on [18], [3](TODO: and [8] if we write about

artificial variables).

2.1.1 Problem formulation. Standard and slack forms

The term linear programming (LP) refers to a type of optimisation problems in
which one seeks to maximise or minimise the value of a linear function of a
set of variables1. The values of the variables are constrained by a set of linear
equations and/or inequalities. Linear programming is a fairly general problem
type, and many important problems can be cast as LP problems — for instance,
shortest path problems and maximum flow problems (see [3]). However, the
true virtue of linear programming stems from its ability to model a vast range of
optimisation problems for which specialised algorithms do not exist, including
many situations from economics and industry processes.

The following framed text is an example of a simple linear programming
problem. We will use this example throughout this section to illustrate how the
linear programming algorithms work.

1Hence, LP is not (as the name would seem to suggest) a programming technique. The name
originated in the 1940s, when “program” referred to military supply plans and schedules(TODO:
citation).

3

4 CHAPTER 2. BACKGROUND

— Example —

A company owns a factory that makes two kinds of products based on two
different raw materials. (Natvig: This example just uses some random num-
bers; I will construct an example, probably using only integers, that can be
solved neatly in a few iterations.) The profit the company makes per unit of
product A is $30, and the profit of product B is $20. Producing one unit of
A requires 1 unit of raw material R and 1 unit of raw material S; one unit
of B requires 2 units of R and 1 unit of S. The company possesses 40 units
of R and 50 units of S. We make the simplifying assumptions that all prices
are constant and cannot be affected by the company, and that the company is
capable of selling everything it produces. The company’s goal is to maximise
the profit, which can be described as 30x1 + 20x2, where x1 is the number of
units of product A and x2 is the number of units of product B. The following
constraints are in effect:

• x1 + x2 ≤ 40 (the production of A and B cannot consume more units of
raw material R than the company possesses)

• 2x1 + x2 ≤ 50 (same for raw material S)

• x1, x2 ≥ 0 (the company cannot produce negative amounts of its prod-
ucts)

Note that in regular LP problems, one cannot restrict the variables to be inte-
gers — in fact, adding this requirement produces a new kind of problem known
as integer linear programming (ILP), which is NP-hard2. It is also, in general, a re-
quirement that all variables are nonnegative. This is often the case in real-world
problems that deal with physical quantities, but problems involving variables
that may be negative as well as positive can still be modeled by rewriting each
original variable as a difference of two nonnegative variables.

The function to be optimised is called the objective function. In the real world
situation that gives rise to an optimisation problem, the function may contain a
constant term, but it can be removed since that will affect all possible solutions
in the same way. The objective function can then be written as ζ = c1x1 + c2x2 +
. . .+cnxn =

∑n
j=1 cjxj , where the cj are constants. The variables in the objective

function are often called decision variables, since our task is not only to find the
optimal value of the objective function, but also which variable values that yield

2NP-hardness is a term from complexity theory, which deals with the relative difficulties of
solving different kinds of problems. The only known algorithms for solving NP-hard problems
require an amount of time that is exponential in the size of the problem, which renders those
algorithms useless for many real life problem sizes. For further reading on complexity theory,
consult [5].

2.1. LINEAR PROGRAMMING 5

this function value. Throughout this report, we will consistently use n to refer
to the number of decision variables and m to refer to the number of equations
and/or inequalities. The variables will typically be labelled x1 through xn.

Standard form An LP problem is commonly called a linear program. The equa-
tions and inequalities that (together with the objective function) constitute an
linear program may be represented in different forms. We shall first consider
the standard form, in which only less-than-or-equal-to inequalities with all vari-
ables on the left hand side are allowed. (TODO: Why are not less-than allowed?)
A problem containing equalities of the form ai1x1 + . . . + ainxn = bi may be
rewritten by splitting each equality into two inequalities: ai1x1 + . . .+ainxn ≤ bi
and−ai1x1− . . .−ainxn ≤ −bi. Also, the goal must be to maximise the objective
function — if the original problem is to minimize ζ, we let our objective function
be −ζ. A linear program in standard form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.1)

with respect to

n∑
j=1

aijxj ≤ bi, for i = 1, . . . ,m. (2.2)

x1, . . . , xn ≥ 0 (2.3)

Slack form The other common representation is slack form, which only allows
a set of equations (and a nonnegativity constraint for each variable). A slack
form program should be produced by rewriting a standard form program. An
inequality of the form ai1xi + . . . + ainxn ≤ bi is converted to an equation by
adding a slack variable wi. Together with the condition that wi ≥ 0, the equation
ai1x1 + . . . + ainxn + wi = bi is equivalent to the original inequality (whose
difference, or “slack”, between the left and right hand sides is represented by
wi). When the program is constructed in this manner, each slack variable only
appears in excactly one equation, which is an important property that will be
utilised later. A linear program in slack form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.4)

6 CHAPTER 2. BACKGROUND

with respect to

wi = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.5)

x1, . . . , xn, w1, . . . , wm ≥ 0 (2.6)

— Example —

In standard form, our example is expressed as

Maximise

ζ = 30x1 + 20x2

with respect to

x1 + x2 ≤ 40

2x1 + x2 ≤ 50

x1, x2 ≥ 0

In slack form, it becomes

Maximise

ζ = 30x1 + 20x2

with respect to

w1 = 40− x1 − x2

w2 = 50− 2x1 − x2

x1, x2, w1, w2 ≥ 0

A proposed solution (that is, a specification of a value for each variable) of a
linear program in slack form is called:

Feasible if it does not violate any of the constraints

Infeasible if it violates any constraint

Basic if it consists of setting all variables except the slack variables to zero

Optimal if it is feasible and no other feasible solutions yield a higher value for
the objective function

2.1. LINEAR PROGRAMMING 7

(TODO: Move this paragraph to next section? Natvig says “Ta med etter be-
hov”.) The linear programming theorem (TODO: Is it actually called this? Find
something to cite) states that the optimal solution of a linear program, if it ex-
ists, occurs when at least m variables are set to zero. (TODO: Combinatorics.
Mention cycling here?)

2.1.2 The simplex method

The simplex method3, developed by George Dantzig[4], was the first systematic
approach for solving linear programs. It requires the linear program to be in
slack form. The initial coefficients and constants are written down in a tableau
that will change as the method progresses. The nonnegativity constraints are
not represented anywhere, but are implicitly maintained by the method. Be-
cause the equations will undergo extensive rewriting, it will be convenient to
not distinguish the slack variables from the other variables, so we will relabel wi

to xn+i−1 for i = 1, . . . ,m. Thus, the total number of variables is n+m. Further-
more, we will use overlines over the coefficients in the tableau to denote their
current value (which will change in each iteration of the simplex method), and
the indices of the coefficients will refer to the coefficients’ position within the
tableau — for instance, −aij is located in row i, column j. We also introduce a
constant term ζ (initially zero) in the objective function, which will help us keep
track of the best function value we have found so far. The topmost row and
leftmost column are not really a part of the tableau; they are simply headers —
the topmost row shows which variables correspond to which columns, and the
leftmost column shows the slack variables for each row. The first actual tableau
row (below the double line) contains the objective function coefficients cj ; the
first actual tableau column (to the right of the double line) contains the bi con-
stants, and the rest of the tableau contains the negatives of the coefficients from
the equations: −aij . Initially, cj = cj , bi = bi, and aij = aij . With n = 3 and
m = 3, the initial tableau will look like this:

x1 x2 x3

ζ ζ c1 c2 c3

x4 b1 −a11 −a12 −a13

x5 b2 −a21 −a22 −a23

x6 b3 −a31 −a32 −a33

Note that this is essentially just a tabular version of the standard form — for
instance, the last row is interpreted as the equation x6 = b3−a31x1−a32x2−a33x3.

3The reason for not calling it the “simplex algorithm” is that there exist several versions of the
method, and that the general method formulation is somewhat underspecified because it does
not say how to choose the pivot elements.

8 CHAPTER 2. BACKGROUND

— Example —

In tableau form, our example becomes

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Note that w1 and w2 have been renamed to x3 and x4, respectively.

The variables are partitioned into two sets. The variables in the leftmost
column (at the left side of the equations) are referred to as the basic variables,
and the variables inside the tableau are called nonbasic variables. At any stage
of the method, the set of the indices of the basic variables is denoted B, and
the set of nonbasic indices is denoted N . Initially, N = {1, . . . , n}, and B =
{n + 1, . . . , n + m}. The sizes of the basic and nonbasic sets are constant, with
|B| = m and |N | = n.

For now, let us assume that the solution that is obtained by setting all nonba-
sic variables to zero is feasible (which is the case only if all of the bi are nonneg-
ative); we will remove this restriction later. This trivial solution will provide a
lower bound for the value of the objective function (namely, the constant term).
We will now select one nonbasic variable xj and consider what happens if we
increase its value (since all nonbasic variables are currently zero, we cannot de-
crease any of them). Since our goal is to maximise the objective function, we
should select a variable whose coefficient cj in the objective function is positive.
If no such variables exist, we cannot increase the objective function value fur-
ther, and the current solution (the one obtained by setting all nonbasic variables
to zero, so that ζ = ζ) is optimal — we can be certain of this since linear functions
do not have local maxima.

(TODO: relabel wi) It seems reasonable to select the variable with the great-
est coefficient, say, xe. How far can we increase this variable? Recall that each
line in the tableau expresses one basic variable as a function of all the nonbasic
variables; hence we can increase xe until one of the basic variables becomes zero.
Let us look at row i, which is now reduced to wi = bi − aiexe since all nonba-
sic variables except xe are zero. If aie is positive, the value of wi will decrease
as xe increases, so the largest allowable increase is limited by bi. Thus, by set-
ting xe = bi

aie
, wi becomes zero. However, other equations may impose stricter

conditions. By looking at all rows where aie is positive, we can determine an
l such that bl

ale
is minimal and set xe = bl

ale
. This will cause xl to become zero.

If all aie are nonnegative, we can increase xe indefinitely without any wi ever
becoming negative, and in that case, we have determined the linear program to
be unbounded; the method should report this to the user and terminate.

2.1. LINEAR PROGRAMMING 9

— Example —

Recall the tableau:

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Since 30 is the greatest objective function coefficient, we select x1 to be
increased. x3 becomes zero if x1 = b1

a11
= 40

1 , and x4 becomes zero if
x1 = b2

a12
= 50

2 . The latter is the most restrictive constraint, so x4 will become
zero when we increase x1.

The next step, called pivoting, is an operation that exchanges a nonbasic vari-
able and a basic variable. The purpose of pivoting is to produce a new situation
in which no bi is negative, so that we can repeat the previous steps all over again.
The nonbasic variable that was selected to be increased, xe, is called the enter-
ing variable, since it is about to enter the collection of basic variables. xl, which
becomes zero when xe is increased appropriately, is called the leaving variable,
since it is to be removed from said collection. Keep in mind that since xl is a
basic variable, it only occurs in one equation, namely

xl = bl −
∑
j∈N

aljxj . (2.7)

We can eliminate the entering variable from (and introduce the leaving variable
into) the set of nonbasic variables (the “main” part of the tableau) by rewriting
Equation 2.7:

xe =
1
ale

bl − xl −
∑

j∈N−{e}

aljxj

 . (2.8)

Now that we have an expression for xe, we can substitute it into all of the other
equations — this will eliminate xe and introduce xl into the rest of the tableau.

10 CHAPTER 2. BACKGROUND

For all i ∈ B − {l}, we have:

xi = bi −
∑
j∈N

aijxj (2.9)

= bi − aiexe −
∑

j∈N−{e}

aijxj (2.10)

= bi −
aie

ale

bl − xl −
∑

j∈N−{e}

aljxj

− ∑
j∈N−{e}

aijxj (2.11)

=
(
bi −

aie

ale
bl

)
− aie

ale
xl −

∑
j∈N−{e}

(
aij −

aie

ale
alj

)
xj . (2.12)

Although this might look complicated, it amounts to subtracting aie
ale

times the
tableau row for xl from all other tableau rows (including the objective function
row), and then (TODO:)

Equation 2.8 is the new form of the tableau row that originally corresponded
to the basic variable xl. The new row, which corresponds to xe, can be easily
obtained from the old one by dividing the row by ale and setting the coefficient
of what is now xl to 1

ale
.

Finally, we remove l from B and add it to N , and remove e from N and add
it to B.

and adding appropriate multiples of it to each of the other equations: (TODO:
Complete this) This step is called a pivot. After pivoting, we again have a tableau
in which all bi are nonnegative, and the entire process may be repeated.

A 3 × 3 tableau will look like this after one pivot with x2 as the entering
variable and x5 as the entering variable:(TODO:)

x1 x5 x3

ζ ζ c1 c2 c3

x4 b1 − b2
a22

−a11
a22

−a12
a22

−a13
a22

x2
b2
a22

−a21
a22

−a22
a22

−a23
a22

x6
b3
a22

−a31
a22

−a32
a22

−a33
a22

2.1. LINEAR PROGRAMMING 11

— Example —

After one pivot with x1 as the entering variable and x4 as the leaving variable,
we get the following tableau:

x4 x2

ζ 750 −15 5
x3 15 0.5 −0.5
x1 25 −0.5 −0.5

For the next pivot operation, only x2 can be selected as the entering variable,
which causes x3 to be selected as the leaving variable. After the pivot, the
tableau looks like this:

x4 x3

ζ 900 −10 −10
x2 30 1 −2
x1 10 −1 1

Since all objective function coefficients are now negative, we have reached
an optimal solution with the value ζ = ζ = 900. This solution value
is obtained by setting the nonbasic variables (x3 and x4) to 0, in which
case x1 = 10 and x2 = 30. We can easily verify that these variable val-
ues do not violate any constraints, and by substituting the values into the
original objective function, we can verify that the optimal value is indeed
ζ = 30x1 + 20x2 = 30 · 10 + 20 · 30 = 900.

Degeneracy and cycling (TODO: Briefly discuss degenerate pivots.) A tableau
is degenerate if (TODO:). Degeneracy may cause trouble because a pivot on a de-
generate row will not cause the objective function value to change. With severely
bad luck, the algorithm may end up cycling through a number of degenerate
states. This, however, rarely happens — according to [18], (TODO:)

Initialisation

The method presented so far is capable of solving linear programs whose initial
basic solution (the one obtained by setting all nonbasic variables to 0) is feasible.
(TODO: Phase I and Phase II) This may not always be the case. We get around
this by introducing an auxiliary problem which is based on the initial problem and
is guaranteed to have a basic feasible solution, and whose solution will provide
us with a starting point for solving the original problem. (TODO: Complete this)

12 CHAPTER 2. BACKGROUND

Formal algorithm statement

(TODO: Use the algorithm package to give a compact description of the sim-
plex method) (TODO: Should ideally be recognisable in the real code; maybe
reference the real code here (or the other way around?))

Complexity and numerical instability

(TODO:)
(ITP: Other stuff that should perhaps be added: geometric interpretation;

duality)
(TODO: Warm start)

2.1.3 The revised simplex method

The revised simplex method (TODO: citation) is essentially just a linear algebra
reformulation of the mathematical operations of the standard simplex method.
Rather than

The exposition in this section is based on [18] and [6]. Note that all vectors
are column vectors unless stated otherwise.

While this may sound even more time consuming, it turns out that a few
tricks will remove the need to perform inversions all of the time. Since most
real life problems are sparse, the matrix computations can take that into account
and save a lot of time compared to the standard simplex method (in which each
iteration requires O(mn) arithmetic operations for the pivot operation).

For these reasons, the revised simplex method is almost always preferred
over the standard simplex method in practical implementations (see, for in-
stance, our list of available solvers in Section 2.1.7).

We begin with expressing the slack form constraint tableau in matrix nota-
tion. An LP problem in slack form (with renaming of the slack variables) looks
like the following:

Maximise

ζ =
n∑

j=1

cjxj (2.13)

with respect to

xn+i = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.14)

x1, . . . , xn+m ≥ 0 (2.15)

If we let

2.1. LINEAR PROGRAMMING 13

A =

a11 a12 · · · a1n 1
a11 a12 · · · a1n 1

...
...

. . .
...

. . .
am1 am2 · · · amn 1

 (2.16)

b = [b1 · · · bm]> (2.17)

c = [c1 · · · cn 0 · · · 0]> (m zeroes at the end) (2.18)

x = [x1 · · · xn xn+1 · · · xn+m]> (2.19)

we can express the problem in a very compact manner:

Maximise

ζ = cx (2.20)

with respect to

Ax = b (2.21)

x ≥ 0 (2.22)

In order to be able to handle the pivot operations, we will need to split each
of our matrices and vectors into two in order to reflect which entries correspond
to basic variables and which ones do not. As before, we let N be the collection
of nonbasic variable indices (initially {1, . . . , n}), and B the collection of basic
variable indices (initially {n + 1, . . . , n + m}). All the basic variables are put
in the vector xB, and the nonbasic variables are put in xN — the order of the
variables within these vectors do not matter, as long as the entries of the other
matrices are arranged correspondingly. We split A into two matrices: an m × n
matrix N, containing all columns from A that correspond to nonbasic variables
(initially, this will be all the columns containing the aij entries), and B, which
is initially an m × m identity matrix. Similarly, we split c into one vector cN
for the objective function coefficients belonging to nonbasic variables (initially,
cN = [c1 · · · cn]>) and one vector cB for the coefficients belonging to basic
variables (initially anm element zero vector). After each pivot operation, entries
of these matrices and vectors will swap positions according to how the collections
of basic and nonbasic variables have changed, but the values themselves will
never change during the course of the algorithm. This means that numerical
stability may be significantly improved. Note that the “right hand side” vector
b remains a single vector that will never change. Using these “split” matrices
and vectors, we can express the problem as

14 CHAPTER 2. BACKGROUND

Maximise

ζ = c>NxN + c>BxB (2.23)

with respect to

NxN + BxB = b (2.24)

x ≥ 0 (2.25)

During execution of the (standard) simplex method, it is always the case that
each basic variable occurs in exactly one equation, and hence each basic variable
can be written as a function of the nonbasic variables. Therefore, B must be
invertible, so we can multiply (2.24) by B−1 and rearrange it to get

xB = B−1b−B−1NxN . (2.26)

Combining this with (2.23), we get

ζ = c>NxN + c>BxB (2.27)

= c>NxN + c>B (B−1b−B−1NxN) (2.28)

= c>BB
−1b + (c>N − c>BB

−1N)xN . (2.29)

This is very interesting, because it provides explicit formulas for the simplex
tableau at any time given the current basic/nonbasic variable configuration.
From (2.26) (which can be rewritten as B−1NxN + xB = B−1b), we see that
the current body of the standard simplex tableau (known as [aij](TODO: this
must match the preceding subsection)) can be expressed as B−1N, and the right
hand side of the tableau (known as [bi] — this is also the current values of the
basic variables) is B−1b. Similarly, we see from (2.29) that c>BB

−1b corresponds
to the current value of the objective function (obtained by setting xN = 0), and
the current objective function coefficients (also called the reduced costs) from the
tableau (known as [cj]) are c>N − c>BB

−1N. Armed with this knowledge, we can
formulate the revised simplex method:

(TODO: Phase I and II)

2.1. LINEAR PROGRAMMING 15

loa 1: The revised simplex method

1: procedure REVISEDSIMPLEX(m, n, N, cN , b)
2: Let cB be an m element zero vector
3: Let B be an m×m identity matrix
4: Let B−1 be an m×m identity matrix
5: loop
6: ĉ>N ← c>N − c>BB

−1N . Compute the reduced costs
7: Search ĉN for a negative number; let e be the index of the correspond-

ing nonbasic variable
8: if no negative number found in ĉN then
9: return c>BB

−1b, B−1b . Optimal value and basic variable values
10: end if
11: Let Ne be the column of N corresponding to xe

12: âe ← B−1Ne . Compute the tableau coefficients of xe

13: b̂← B−1b . Compute the basic variable values
14: for all i ∈ B do
15: asd
16: end for
17: return “The problem is unbounded”
18: end loop
19: end procedure

This method, however, would seem problematic in that it seems to require B
to be inverted in every single iteration. However, it turns out that since only one
column of B changes between iterations, the new B−1 can be calculated from
the old one by changing one column (this change can be performed by multi-
plying by a certain sparse matrix)(TODO: a little bit on eta files). This approach
is described in greater detail in Section 8.3 of [18].

2.1.4 ASYNPLEX

[6]

2.1.5 Interior point algorithms

2.1.6 Use of LP to solve advanced flow problems

A flow network is a graph where a flow of some substance (expressed in e.g.
(TODO: spell “litres”) per second) is associated with each edge. In addition, each
edge may have upper and lower bounds (known as capacities) on the flow value,
and possibly a cost that will be incurred per unit of flow that is sent through the
edge. The goal may, for instance, be to send as much flow as possible from a

16 CHAPTER 2. BACKGROUND

designated source node to a designated sink (destination) node, or to send a cer-
tain flow as cheaply as possible. Other variations are also possible. If there are
no lower bounds and no costs, there exist efficient algorithms for the flow prob-
lem, such as the Edmonds-Karp algorithm[3]. In more complex situations, no
specialised algorithms exist, but LP comes to the rescue. Cormen et al.[3] give a
good overview of how to express a flow problem as an LP problem, which we
(TODO: spell “summarise”) here:

• There is one variable for each edge, expressing the amount of flow through
that edge. (TODO: Cormen has two?)

• (TODO: Finish)

(TODO: Consult Miriam on this)

2.1.7 Existing LP solvers

ILOG CPLEX

CPLEX, developed by the company ILOG, is the industry standard LP solver(Natvig:
Who/what can I cite here?). Being proprietary closed-source software, we can-
not examine its inner workings (but they are probably too complex for this
project). While our department does not have a CPLEX license, we can still to
some extent compare the answers from our solvers to those that CPLEX gives(TODO:
as long as the solver is good enough, I guess the answers will always be correct
— or?) — sites such as (TODO: citation) provide CPLEX’ answers to the netlib
problem sets, and Miriam has a license that they can use to find the answers to
their own data sets. (TODO: Something on why Miriam doesn’t just use CPLEX
rather than bothering with PS3?)

GLPK

Gnu Linear Programming Kit
Unfortunately, the code base is extremely large, comprising more than (TODO:

) lines of C code distributed across nearly 100 files. While only a handful of these
files contain functionality that is directly related to the simplex method, reverse
engineering it still would be a daunting task — especially given that their coding
conventions apparently calls for very short variable names.

GLPK is released by its authors under version 3 of the GNU General Public
License.

Xpress

http://www.dashoptimization.com/home//products/products_optimizer.

html

http://www.dashoptimization.com/home//products/products_optimizer.html
http://www.dashoptimization.com/home//products/products_optimizer.html

2.2. CELL BROADBAND ENGINE 17

OOPS

http://www.maths.ed.ac.uk/˜gondzio/parallel/solver.html

CLP

COIN-OR Linear Program Solver (http://www.coin-or.org/Clp/).

retroLP

As opposed to virtually all other LP solvers, retroLP[19] implements the original
simplex method, not the revised method. The former is advantageous for dense
problems, which occur in some special applications such as “wavelet decompo-
sition, digital filter design, text categorization, image processing and relaxations
of scheduling problems.”[20] As compared to GLPK, the code is fairly short and
readable — but it still consists of (TODO:) lines.

retroLP is released by its authors under version 2 of the GNU General Public
License.

Vanderbei’s code

Vanderbei has published a freely available implementation of the revised sim-
plex algorithm as presented in his book[18], at http://www.princeton.edu/

˜rvdb/LPbook/. While it comprises more than 9000 lines, the core parts are
fairly short and well separated from the rest of the code (much of which deals
with different input formats).

(TODO: Licence?)

2.2 Cell Broadband Engine

The Cell Broadband Engine (Cell BE) is a single chip multiprocessor architecture
jointly developed by IBM, Sony and Toshiba. The initial design goals was to cre-
ate an architecture that would be suitable for the demands of future gaming and
multimedia applications (meaning not only high computational power, but also
high responsiveness to user interaction and network communications), with a
performance of 100 times that of Sony PlayStation 2[9]. Several obstacles to such
goals exist; in particular the infamous brick walls[2]:

Memory wall (TODO:)

Power wall (TODO:)

ILP wall Instruction-level parallelism (ILP) techniques such as pipelines and (TODO:
)

http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://www.coin-or.org/Clp/
http://www.princeton.edu/~rvdb/LPbook/
http://www.princeton.edu/~rvdb/LPbook/

18 CHAPTER 2. BACKGROUND

2.2.1 Architecture

Overview

The Cell BE consists of one PowerPC Processor Element (PPE) and eight Synergistic
Processing Elements (SPE)

PPE

PowerPC Processor Unit (PPU) Separate register files for fixed-point, floating-
point, and vector. 32 SIMD registers.

SPE

Unified register file with 128 128-bit registers
Synergistic Processor Unit (SPU)

Memory bus and DMA controller

Base addresses (both in local storage and in system memory (TODO: correct?))
for all DMA transfers must be aligned on a 16-byte (quadword) border(TODO:
term?), and the data to be transferred must be a multiple of 16 bytes. Perfor-
mance is improved if aligned, whole cache lines (128 bytes(TODO: verify)) are
transferred at a time.

Local Store (LS) Memory Flow Controller (MFC)
Another method that is available for communication between the cores is

2.2.2 Programming methods

The vector data type

Compiler intrinsics

Compiler directives

__attribute__((aligned(16))), spu_sel, __builtin_expect, _align_hint, malloc_align, restrict

loop unrolling, function inlining (watch for code size!)

Branch prediction and avoidance Given the deep pipeline of the SPEs(TODO:
verify), branch mispredictions are very expensive. A couple of compiler direc-
tives are available to let the programmer help the compiler and the SPE:

1. __builtin_expect(expression, expected) will evaluate and return
expression while informing the compiler that the programmer expects
the result to be expected. This is typically placed in the condition of an
if/else.

2.2. CELL BROADBAND ENGINE 19

2. If the condition of an if/else is not easily predictable, but the if/else
bodies are very simple, one might be better off by computing both bod-
ies and using a special selection instruction to determine which result will
be kept. spu_sel(a, b, condition) will return either a or b depend-
ing on the truth value of condition. This translates to (TODO: a single)
instruction which does not involve branches.

2.2.3 Tools and libraries

(Natvig’s comment: Good: which libs are used in the project? Better: Which libs
are relevant for the project?)

BlockLib

[21]

Cell Superscalar

(CellSs) [13]

RapidMind

http://www.rapidmind.net/

(TODO: Locate a BLAS library)

http://www.rapidmind.net/

Chapter 3
Design

(TODO: Chapter introduction)

3.1 Overall approach

(TODO: Gradual, step by step approach)

3.2 Initial experiments

3.2.1 Arithmetic performance

(Natvig: Should we do this ourselves, or find someone who has already done
it?)

All data in registers

Single precision

Double precision

All data in LS

Single precision

Double precision

Double buffering of data from main storage

(Natvig: Maybe we can find out that data transfer takes so much time that the
DP performance loss doesn’t have too much of an impact?)

21

22 CHAPTER 3. DESIGN

Single precision

Double precision

3.3 Standard simplex method

In order to become familiar with programming the Cell BE, we initially imple-
mented a few versions of the standard simplex method (which is best suited for
dense problems). (Natvig’s comment: This can be justified when we have a task
description and “angrepsmåte”) As mentioned in Section 4.1, it turned out that
it is extremely hard to make the standard simplex method work reliably on even
medium-sized data sets

Our Cell implementation is a fairly straightforward parallelisation of the re-
vised simplex method (that is, it is only a parallel formulation of the same algo-
rithm), so it gives the same results as our sequential implementation. Given that
the sequential implementation normally yields a wrong answer for problems of
nontrivial size, it is not particularily useful for computations, but Miriam (who
has invested in a Cell (TODO: Move this information to the introduction)) was
still interested in a demonstration of how much impact the data transfers have
on performance. Therefore, we provide here a description of our parallelisation
strategy, and in Section 5.2.1 we provide detailed timings of some test runs.

3.3.1 PPE version

(TODO: Far from finished) As described in Section 2.2.1, the PPE supports SIMD
instructions (also referred to as vector instructions) capable of operating on four
single precision floating point values simultaneously. Since the simplex method
primarily consists of row operations on the tableau, it is an excellent target for
such vectorisation — the only problem is the low arithmetic intensity, which
may reduce performance because a lot of data needs to be loaded into the reg-
isters, and only a very simple and fast operation is being performed on each el-
ement before it is thrown out again.(TODO: How much does this matter, given
the fast LS? However, if the data is too large to fit in the LS, things will probably
slow down a lot.)

(TODO: Something on why we chose C++?)

3.3.2 SPE version

Our approach is fairly obvious1:

1After having written the application, we found that [19] essentially uses the same approach,
albeit for cluster computers with MPI.(Natvig: I’m trying to express that although it’s not difficult
to come up with this approach, I did do it myself, before finding that paper. Is that something I
should do?)

3.4. REVISED SIMPLEX METHOD 23

1. The PPE, which initially holds the entire tableau, distributes the tableau
rows evenly among the SPEs (TODO: SPE or SPU?), giving each SPE a
batch of consecutive rows.

2. The first SPE analyses the objective function to determine the leaving vari-
able and sends the column number to the PPE, which distributes this num-
ber to the other SPEs. If no leaving variable was found, the optimal solu-
tion has been found, and the SPEs are asked to send their basic variable
values to the PPE and terminate. (TODO: which pivot rule?)

3. Each SPE determines the strictest bound (that is imposed by its subset of
the rows) on the value of the leaving variable and sends the bound (TODO:
and the corresponding row number) to the PPE.

4. The PPE determines which SPE that “wins” and requests this SPE to trans-
fer the pivot row to main memory; afterwards, all the other SPEs are re-
quested to receive this row(TODO: wording). If no SPEs found a finite
bound, the problem is unbounded, and the SPEs are asked to terminate.

5. Each SPE performs row operations on its part of the tableau, using the
pivot row, and notify the PPE upon completion. Go to step 2.

3.4 Revised simplex method

3.5 Thoughts on unimplemented features / ideas for
future work

(TODO: Stuff we didn’t get the time to do...)

3.5.1 Dense interior point

(TODO: Already done, according to Mujahed (or was it only the Cholesky fac-
torisation step? - acquire reference)

3.5.2 Sparse interior point

The most time consuming step of many interior point algorithms is a Cholesky
factorisation.(TODO: citation) Monien and Schulze[12] discuss approaches to
parallelising this operation for sparse matrices, and one of those methods, called
the multifrontal method, is elaborated by Schulze[16].

Andersen and Andersen[1] present a parallel shared memory version of the
interior point algorithm that is (or was at the time) underlying the Xpress solver
(see Section 2.1.7). Yet another parallel interior point algorithm is presented by
Karypis et al.[10].

24 CHAPTER 3. DESIGN

(TODO: Opportunities for implementing this on cell?)

3.5.3 Mixed precision

[11]

3.5.4 Representation of sparse matrices

Sparse matrices and vectors can be represented in numerous ways; Shahnaz et
al.[17] give a good review of different storage schemes. Several operations in a
linear solver will depend on the choice of such a representation. If one takes care
to place the code for each such operation in a separate function, only a modest
amount of work will be required to create implementations of several storage
schemes (with the added benefit that these implementations can be tested sepa-
rately, and as long as they work, the entire solver will still work). Then, one can
measure how performance is impacted by the choice of storage scheme.

It should be noted that some formats are intended for general matrices, while
others make assumptions about the distribution of nonzeroes — the latter cate-
gory may be risky to use internally in the solver, since one cannot tell in advance
what kind of patterns might emerge in the intermediate matrices produced in
the course of the algorithm. (TODO: are we sure about this?) Vanderbei’s im-
plementation uses the Compressed Column Storage format, also known as the
Harwell-Boeing Sparse Matrix Storage Format[17].

3.5.5 Vectorisation

3.5.6 Autotuning

Chapter 4
Implementation and testing

(TODO: Chapter introduction)

4.1 Implementation problems

4.1.1 Straightforward simplex implementation

Our initial plan was to begin with something we thought to be fairly straightfor-
ward and then gradually proceed towards harder problems, along these lines:

1. Implement the standard simplex method on a sequential machine.

2. Parallelise the standard simplex method on Cell (if the Cell turns out to be
very hard to program, we could first parallelise it on a regular multicore
machine using e.g. OpenMP (see http://openmp.org/wp/) to make
sure our parallelisation approach is correct).

3. Implement the revised simplex method on a sequential machine.

4. Parallelise the revised simplex method on Cell.

5. Investigate interior point methods and implement them if time permits.

Steps 1 and 2 initially seemed to have been as simple as we had assumed
them to be (step 1 was based on the descriptions and pseudocode from [3] and
[18]), and the Cell parallelisation went well. These implementations are listed in
Appendix A.1. Unfortunately, (TODO:)

Our beliefs were reinforced by the fact that well-known works such as [3]
and [18] make no mention of the standard simplex method being particularily
unstable (they only say that other methods are being used in practice because
they are more efficient). Also, [14] provided an implementation of the standard
simplex method — but when we actually tried it, it turned out to run into the

25

http://openmp.org/wp/

26 CHAPTER 4. IMPLEMENTATION AND TESTING

same kinds of stability problems as our code (TODO: Make a section detailing
experiments on this). In the third edition[15], it has been replaced by an imple-
mentation of the revised simplex method.

We succeeded in finding an implementation of the standard simplex method
that seemed to work well, called retroLP[20]. However, the code base was quite
large, and

We eventually resigned and contacted a group of mathematicians with which
Lasse is acquainted, asking them for help on how to make the standard simplex
method work stably[7].

4.1.2 Numerical stability

(TODO: something on float vs. double?)
In order to prove that the stability problems are not caused by errors in

our implementation, we have made our code support use of the GNU multiple
precision arithmetic library (GMP — see http://gmplib.org/), which among
other things has a data type for representing arbitrary-size rational numbers ex-
actly. Since the simplex methods only apply the four basic arithmetic operations
throughout their operation, all numbers in the tableau will remain rational1.
Compile the code by running the buildgmp.sh script; this will link to GMP
and tell our code to use the mpq_class data type for all arithmetic operations.
When using GMP, the code obviously slows down by a significant factor, but it
does produce the right answer for all netlib sets.

(TODO: Actually validate this for all sets)

4.2 Simplex algorithm

4.3 Test plan

4.3.1 Unit testing

While one might argue that testing an LP solver by running it against a collec-
tion of large data sets provides sufficient evidence that the implementation is
correct, one will gain even more confidence in the implementation by creating
unit tests. Any decent programmer knows how to structure a program by break-
ing it down into functions, each performing a limited, well-defined part of the
overall task. Unit testing, on the other hand, is often neglected, even though
it is highly beneficial during development. There is a lot of literature on the
subject(TODO: citation), but the basic idea is simple: write code that tests other
code. This is fairly straightforward to do as long as the code is partitioned into

1Assuming, of course, that they were initially rational — but all data formats for representat-
ing of LP problems are based on floating point numbers, which are inherently rational.

http://gmplib.org/

4.3. TEST PLAN 27

functions in a reasonable manner. Code should be written to test each nontrivial
function for a number of different parameter combinations.

Another important aspect is that unit testing gives regression testing for free.
If one discovers a bug, one should immediately add a test that demonstrates the
bug before one fixes the code. That way, one can easily demonstrate that the bug
has been fixed, and since this test is now a part of the test suite (all of which
should be run after each change to any code) it will immediately discover the
bug if it resurfaces — after all, in large applications bugs in one part of the code
can often be triggered .

While some of these considerations are most relevant for software compa-
nies, (TODO:)

(TODO: Actually write some unit tests...)

4.3.2 Large data sets

(TODO: Something on the netlib LP problem set)

4.3.3 Comparison to other implementations

Miriam currently uses the ILOG CPLEX solver, and it would therefore be rea-
sonable to compare the time consumption of our algorithm to those of CPLEX.
(TODO: Convert some netlib test sets to cplex format and get Chris to run them)
GLPK seems to be the most well-known open source solver, so we might also
want to compare our results against it. Of course, since our implementation is
based on Vanderbei’s code, we will want to measure speedups relative to his
implementation. Hall[6] provides relative speedups of ASYNPLEX runs on a
few netlib sets, with which we can compare our speedups.

Chapter 5
Evaluation

(TODO: Chapter introduction)

5.1 Performance measurements

(TODO: Describe system specifications and how timing was performed)

5.1.1 (TODO: What to measure)

5.1.2 (TODO: How to measure)

5.2 Results

5.2.1 Standard simplex method

5.2.2 Revised simplex method

5.3 Discussion

29

Chapter 6
Conclusion

(TODO:)

6.1 Experiences

Building an industrial-strength LP solver is a vast amount of work and must
only be undertaken with someone who has extensive knowledge of both pro-
gramming and numerics.

6.2 Future work

31

Bibliography

[1] E. D. ANDERSEN AND K. D. ANDERSEN, A parallel interior-point algorithm for linear
programming on a shared memory machine, Tech. Rep. 1998008, Université catholique
de Louvain, Center for Operations Research and Econometrics (CORE), January
1998. [cited at p. 23]

[2] K. ASANOVÍC, R. BODIK, B. CATANZARO, J. GEBIS, P. HUSBANDS, K. KEUTZER,
D. PATTERSON, W. PLISHKER, J. SHALF, S. WILLIAMS, AND K. YELICK, The Land-
scape of Parallel Computing Research: A View from Berkeley, Tech. Rep. UCB/EECS-
2006-183, Electrical Engineering and Computer Sciences — University of Califor-
nia at Berkeley, December 2006. [cited at p. 17]

[3] T. H. CORMEN, C. R. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to
Algorithms, McGraw-Hill Science/Engineering/Math, 2nd ed., 2003. [cited at p. 3, 16,

25]

[4] G. DANTZIG, Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, 1963. [cited at p. 7]

[5] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, 1979. [cited at p. 4]

[6] J. A. J. HALL AND K. I. M. MCKINNON, ASYNPLEX, an asynchronous parallel
revised simplex algorithm, Annals of Operations Research, 81 (1998), pp. 27–50.
[cited at p. 12, 15, 27]

[7] HENRIK ANDERSSON (POSTDOC, UNIVERSITY OF BERGEN), (Private e-mail corre-
spondence), April 2009. [cited at p. 26]

[8] F. S. HILLIER AND G. J. LIEBERMAN, Introduction to Operations Research, McGraw-
Hill Science/Engineering/Math, July 2004. [cited at p. 3]

[9] J. A. KAHLE, M. N. DAY, H. P. HOFSTEE, C. R. JOHNS, T. R. MAEURER, AND

D. SHIPPY, Introduction to the cell multiprocessor, IBM J. Res. Dev., 49 (2005), pp. 589–
604. [cited at p. 17]

[10] G. KARYPIS, A. GUPTA, AND V. KUMAR, A parallel formulation of interior point algo-
rithms, in Supercomputing ’94: Proceedings of the 1994 ACM/IEEE conference on
Supercomputing, New York, NY, USA, 1994, ACM, pp. 204–213. [cited at p. 23]

33

34 BIBLIOGRAPHY

[11] J. KURZAK AND J. DONGARRA, Implementation of mixed precision in solving systems
of linear equations on the Cell processor: Research Articles, Concurrency and Compu-
tation: Practice & Experience, 19 (2007), pp. 1371–1385. [cited at p. 24]

[12] B. MONIEN AND J. SCHULZE, Parallel Sparse Cholesky Factorization. [cited at p. 23]

[13] J. P. PEREZ, P. BELLENS, R. M. BADIA, AND J. LABARTA, CellSs: making it easier to
program the cell broadband engine processor, IBM Journal of Research and Develop-
ment, 51 (2007). [cited at p. 19]

[14] W. PRESS, S. TEUKOLSKY, W. VETTERLING, AND B. FLANNERY, Numerical Recipes
in C, Cambridge University Press, 2nd ed., 1992. [cited at p. 25]

[15] W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING, AND B. P. FLANNERY, Nu-
merical Recipes: The Art of Scientific Computing, Cambridge University Press, 3rd ed.,
August 2007. [cited at p. 26]

[16] J. SCHULZE, Parallel Sparse Cholesky Factorization. [cited at p. 23]

[17] R. SHAHNAZ, A. USMAN, AND I. CHUGHTAI, Review of Storage Techniques for Sparse
Matrices, December 2005, pp. 1–7. [cited at p. 24]

[18] R. J. VANDERBEI, Linear Programming: Foundations and Extensions, Springer,
2nd ed., 2001. [cited at p. 3, 11, 12, 15, 17, 25]

[19] G. YARMISH, A Distributed Implementation of the Simplex Method, PhD thesis, Poly-
technic University, March 2001. [cited at p. 17, 22]

[20] G. YARMISH AND R. V. SLYKE, retroLP, An Implementation of the Standard Sim-
plex Method, Tech. Rep. TR-CIS-2001-05, Polytechnic University, August 2001.
[cited at p. 17, 26]

[21] M. ÅLIND, M. V. ERIKSSON, AND C. W. KESSLER, BlockLib: A Skeleton Library for
Cell Broadband Engine, in (TODO:), 2008, p. (TODO:). [cited at p. 19]

Appendices

35

Appendix A
Code

A.1 Simplex algorithm, first version

matrix.h

#ifndef MATRIX_H

#define MATRIX_H

#include <iostream>

#include <vector>

#include <cmath>

#ifdef USE_GMP

#include <gmpxx.h>

#endif

class Matrix;

class Matrix {

friend class RowIndexDescriptor;

friend std::ostream & operator << (std::ostream &, const
Matrix &);

public:
Matrix(int, int);
Matrix(int rows, int cols, TYPE * data);

Matrix(int, int, bool);
Matrix(const Matrix &);

const Matrix & operator = (const Matrix &);

˜Matrix();

int getRows() const { return rows; }

int getCols() const { return cols; }

TYPE operator () (int r, int c) const;
TYPE & operator () (int r, int c);

37

38 APPENDIX A. CODE

Matrix operator + (const Matrix &) const;
Matrix operator - (const Matrix &) const;
Matrix operator * (const Matrix &) const;
Matrix operator * (TYPE) const;
Matrix transpose() const;
Matrix invert() const;
void multiplyRow(int row, TYPE factor);

void addRows(int sourceRow, int destinationRow, TYPE factor);

void swapRows(int firstRow, int secondRow);

void print(const std::vector<int> & basic, const std::vector<

int> & nonbasic);

private:
int rows;

int cols;

TYPE * data;

};

std::ostream & operator << (std::ostream &, const Matrix &);

inline void incr(TYPE & a, const TYPE & b) {

#ifdef ZEROING_RULE_EPSILON

a += b;

if (abs(a) <= EPSILON) {

a = 0;

}

#else
#ifdef ZEROING_RULE_RATIO

TYPE result = a + b;

if (result == 0 || (abs(a / result) >= RATIO && abs(b /

result) >= RATIO)) {

a = 0;

}

else {

a = result;

}

#else
a += b;

#endif
#endif
}

#endif

matrix.cpp

#include "matrix.h"

A.1. SIMPLEX ALGORITHM, FIRST VERSION 39

#include <cmath>

using namespace std;

Matrix::Matrix(int rows, int cols) {

// if (rows <= 0 || cols <= 0)

// throw std::exception();

this->rows = rows;

this->cols = cols;

this->data = new TYPE[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this->data[i] = 0;

}

Matrix::Matrix(int rows, int cols, TYPE * data) {

// if (rows <= 0 || cols <= 0)

// throw std::exception();

this->rows = rows;

this->cols = cols;

this->data = new TYPE[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this->data[i] = data[i];

}

Matrix::Matrix(int rows, int cols, bool identity) {

// if (rows <= 0 || cols <= 0)

// throw std::exception();

this->rows = rows;

this->cols = cols;

this->data = new TYPE[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this->data[i] = 0;

if (identity && rows == cols) {

for (int i = 0; i < rows; ++i) {

(*this)(i, i) = 1;

}

}

}

Matrix::Matrix(const Matrix & source) {

this->rows = source.rows;

this->cols = source.cols;

this->data = new TYPE[source.rows * source.cols];

for (int i = 0; i < source.rows * source.cols; ++i)

this->data[i] = source.data[i];

}

40 APPENDIX A. CODE

const Matrix & Matrix::operator = (const Matrix & source) {

this->rows = source.rows;

this->cols = source.cols;

delete this->data;
this->data = new TYPE[source.rows * source.cols];

for (int i = 0; i < source.rows * source.cols; ++i)

this->data[i] = source.data[i];

return *this;
}

Matrix::˜Matrix() {

delete [] data;

}

TYPE Matrix::operator () (int r, int c) const {

if (r < 0 || c < 0 || r >= rows || c >= cols)

throw "Index out of range";

return data[r * cols + c];

}

TYPE & Matrix::operator () (int r, int c) {

if (r < 0 || c < 0 || r >= rows || c >= cols)

throw "Index out of range";

return data[r * cols + c];

}

ostream & operator << (ostream & out, const Matrix & matrix) {

out << "=== " << matrix.rows << " x " << matrix.cols << " ===

" << endl;

for (int r = 0; r < matrix.rows; ++r) {

out << matrix.data[r * matrix.cols];

for (int c = 1; c < matrix.cols; ++c)

out << ’ ’ << matrix.data[r * matrix.cols + c];

out << endl;

}

out << "======" << endl;

return out;

}

void Matrix::print(const vector<int> & basic, const vector<int>
& nonbasic) {

cout << "=== " << rows << " x " << cols << " ===" << endl;

for (int r = 0; r < rows; ++r) {

if (r == 0)

cout << "z = ";

else

A.1. SIMPLEX ALGORITHM, FIRST VERSION 41

cout << "x" << basic[r - 1] << " = ";

cout << data[r * cols];

for (int c = 1; c < cols; ++c)

if (data[r * cols + c] != 0)

cout << " " << data[r * cols + c] << "x" << nonbasic[c

- 1];

cout << endl;

}

cout << "======" << endl;

}

Matrix Matrix::operator + (const Matrix & other) const {

if (rows != other.rows && cols != other.cols)

throw "Matrix sizes are not equal";

Matrix result(rows, cols);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

result(r, c) = (*this)(r, c) + other(r, c);

}

}

return result;

}

Matrix Matrix::operator - (const Matrix & other) const {

if (rows != other.rows && cols != other.cols)

throw "Matrix sizes are not equal";

Matrix result(rows, cols);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

result(r, c) = (*this)(r, c) - other(r, c);

}

}

return result;

}

Matrix Matrix::operator * (const Matrix & other) const {

if (cols != other.rows)

throw "Matrices are not compatible";

Matrix result(rows, other.cols);

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < other.cols; ++j) {

TYPE sum = 0;

for (int k = 0; k < cols; ++k) {

sum += (*this)(i, k) * other(k, j);

}

if (abs(sum) < 0.00001f)

sum = 0.0f;

42 APPENDIX A. CODE

result(i, j) = sum;

}

}

return result;

}

Matrix Matrix::operator * (TYPE factor) const {

Matrix result(rows, cols);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

result(r, c) = (*this)(r, c) * factor;

}

}

return result;

}

Matrix Matrix::transpose() const {

Matrix result(cols, rows);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

result(c, r) = (*this)(r, c);

}

}

return result;

}

void Matrix::multiplyRow(int row, TYPE factor) {

if (factor == 1) return;
for (int j = 0; j < cols; ++j) {

(*this)(row, j) *= factor;

}

}

void Matrix::addRows(int sourceRow, int destinationRow, TYPE

factor) {

if (factor == 0) return;
for (int j = 0; j < cols; ++j) {

incr((*this)(destinationRow, j), (*this)(sourceRow, j) *
factor);

}

}

void Matrix::swapRows(int firstRow, int secondRow) {

if (firstRow == secondRow) return;
for (int j = 0; j < cols; ++j) {

TYPE tmp = (*this)(firstRow, j);

(*this)(firstRow, j) = (*this)(secondRow, j);

A.1. SIMPLEX ALGORITHM, FIRST VERSION 43

(*this)(secondRow, j) = tmp;

}

}

Matrix Matrix::invert() const {

if (rows != cols) throw "Non-square matrices cannot be

inverted";

Matrix self(*this);
Matrix inverse(rows, cols, true);
for (int rc = 0; rc < cols; ++rc) {

// Locate row with nonzero in this column

int searchRow = rc;

while (searchRow < rows && self(searchRow, rc) == 0)

++searchRow;

if (searchRow == rows)

throw "Matrix is singular";

// Swap with current row; now the current row has nonzero

in this column

self.swapRows(rc, searchRow);

inverse.swapRows(rc, searchRow);

TYPE factor = 1 / self(rc, rc);

self.multiplyRow(rc, factor);

inverse.multiplyRow(rc, factor);

for (int r = 0; r < rows; ++r) {

if (r == rc) continue;
TYPE factor = -self(r, rc);

self.addRows(rc, r, factor);

inverse.addRows(rc, r, factor);

}

}

return inverse;

}

TableauSimplex.h

#ifndef TALBEAUSIMPLEX_H

#define TALBEAUSIMPLEX_H

#include "matrix.h"

#include <string>

#include <vector>

enum SimplexResult {

SUBOPTIMAL,

OPTIMAL,

UNBOUNDED,

44 APPENDIX A. CODE

CYCLING

};

class TableauSimplex {

public:
static SimplexResult solve(Matrix & tableau, std::vector<int>

& basic, std::vector<int> & nonbasic);

static void pivot(Matrix & tableau, std::vector<int> & basic,

std::vector<int> & nonbasic, int leaving, int entering);

static std::string resultToString(SimplexResult result);

};

#endif

TableauSimplex.cpp

#include "TableauSimplex.h"

#include <cmath>

#include <vector>

#include <climits>

using namespace std;

#define INFINITY 1.0e32f

void TableauSimplex::pivot(Matrix & tableau, std::vector<int> &

basic, std::vector<int> & nonbasic, int leaving, int
entering) {

cout << "Pivoting: " << leaving << " leaves, " << entering <<

" enters" << endl;

float xFactor = tableau(leaving, entering);

int leavingLabel = basic[leaving - 1];

basic[leaving - 1] = nonbasic[entering - 1];

nonbasic[entering - 1] = leavingLabel;

/* cout << "Basic: ";

for (unsigned int i = 0; i < basic.size(); ++i)

cout << " " << basic[i];

cout << endl << "Nonbasic:";

for (unsigned int i = 0; i < nonbasic.size(); ++i)

cout << " " << nonbasic[i];

cout << endl;*/

// Cancel out occurrences of the entering variable

for (int i = 0; i < tableau.getRows(); ++i) {

if (i == leaving) continue;
float factor = -tableau(i, entering) / xFactor;

A.1. SIMPLEX ALGORITHM, FIRST VERSION 45

float savedColVal = tableau(i, entering);

tableau.addRows(leaving, i, factor);

tableau(i, entering) = savedColVal / xFactor;

}

tableau.multiplyRow(leaving, -1 / xFactor);

tableau(leaving, entering) = 1 / xFactor;

}

SimplexResult TableauSimplex::solve(Matrix & tableau, vector<

int> & basic, vector<int> & nonbasic) {

int n = tableau.getCols() - 1, m = tableau.getRows() - 1;

Matrix x(n, 1);

for (int i = 1; i < n; ++i)

cout << tableau(0, i) << ’ ’;

cout << endl;

// Find entering variable by searching the objective function

(row 0) for a positive coefficient (disregard the

constant in column 0)

int entering = -1;

for (int j = 1; j <= n; ++j) {

//if (tableau(0, j) > 0 && (entering == -1 || tableau(0,

entering) < tableau(0, j)))// || (tableau(0, entering)

== tableau(0, j) &&*/ nonbasic[j - 1] < nonbasic[

entering - 1]))

if (tableau(0, j) > 0 && (entering == -1 || tableau(0, j) >

tableau(0, entering) || tableau(0, j) == tableau(0,

entering) && nonbasic[j - 1] < nonbasic[entering - 1]))

{

cout << "Choosing " << j << " over " << entering << " to

enter; reduced cost is " << tableau(0, j) << endl;

entering = j;

}

}

if (entering == -1)

return OPTIMAL;

cout << "Entering variable: " << nonbasic[entering - 1] << "

(column " << entering << ")" << endl;

// Find leaving variable by searching the column of the

entering variable and determine the strictest bound

int leaving = -1;

float largestRatio;

for (int i = 1; i <= m; ++i) {

46 APPENDIX A. CODE

float ratio;

if (tableau(i, 0) == 0) {

if (tableau(i, entering) == 0)

ratio = 0;

else if (tableau(i, entering) < 0)

ratio = INFINITY;

else
ratio = -INFINITY;

}

else
ratio = -tableau(i, entering) / tableau(i, 0);

if (ratio <= 0) continue;
if (leaving == -1 || ratio > largestRatio || (ratio ==

largestRatio && basic[i - 1] < basic[leaving - 1])) {

cout << "Choosing " << i << " over " << leaving << " to

leave; ratio is " << ratio << endl;

largestRatio = ratio;

leaving = i;

}

}

if (leaving == -1)

return UNBOUNDED;

cout << "Leaving variable: " << basic[leaving - 1] << " (row

" << leaving << "); ratio is " << largestRatio << endl;

pivot(tableau, basic, nonbasic, leaving, entering);

return SUBOPTIMAL;

}

main.cpp

#include "matrix.h"

#include "TableauSimplex.h"

#include <cmath>

#include <iostream>

#include <vector>

#include <cstdlib>

#include <fstream>

#include <cstring>

#include "gmpInterop.h"

using namespace std;

A.1. SIMPLEX ALGORITHM, FIRST VERSION 47

int main(int argc, char * argv[]) {

int rows, cols;

bool initiallyFeasible = true;
bool print = argc >= 3 && strcmp(argv[2], "print") == 0;

ifstream infile(argv[1]);

infile >> rows >> cols;

Matrix A(rows, cols + 1);

for (int r = 0; r < rows; ++r) {

for (int c = 1; c < cols; ++c) {

readNumber(infile, A(r, c));

if (r > 0) A(r, c) = -A(r, c); // Put the if back when

doing maximisation

}

readNumber(infile, A(r, 0));

cout << A(r, 0) << endl;

if (r > 0 && A(r, 0) < 0)

initiallyFeasible = false;
A(r, cols) = 1;

}

vector<int> basic, nonbasic;

// Nonbasic variables are labeled 1 .. n

for (int i = 1; i < cols; ++i)

nonbasic.push_back(i);

nonbasic.push_back(0); // Phase I variable

// Basic variables are labeled n+1 .. n+m

for (int i = cols; i < cols + rows - 1; ++i)

basic.push_back(i);

char cc;

int itcount = 0;

// Remember that our A is -A in the article!

Matrix obj(1, cols); // Saves the original objective function

if (!initiallyFeasible) {

cout << "Entering Phase I" << endl;

for (int c = 0; c < cols; ++c) {

obj(0, c) = A(0, c);

A(0, c) = 0;

}

A(0, cols) = -1; // The goal is to maximize -x0

int leaving = 1;

for (int i = 2; i < rows; ++i) {

if (A(i, 0) < A(leaving, 0))

48 APPENDIX A. CODE

leaving = i;

}

TableauSimplex::pivot(A, basic, nonbasic, leaving, cols);

if (print) A.print(basic, nonbasic);

while (TableauSimplex::solve(A, basic, nonbasic) ==

SUBOPTIMAL) {

++itcount;

if (print) A.print(basic, nonbasic);

cout << itcount << ": " << A(0, 0) << endl;

// cin >> cc;

/* for (int r = 0; r < A.getRows(); ++r)

for (int c = 0; c < A.getCols(); ++c)

if (abs(A(r, c)) < 0.00001)

A(r, c) = 0;*/

}

cout << TableauSimplex::solve(A, basic, nonbasic) << ’ ’ <<

itcount << endl;

cout << "Phase I completed" << endl;

if (print) A.print(basic, nonbasic);

/* for (int r = 0; r < A.getRows(); ++r)

for (int c = 0; c < A.getCols(); ++c)

if (abs(A(r, c)) < 0.00001)

A(r, c) = 0;*/

if (A(0, 0) != 0) {

cout << "Status: infeasible" << endl;

return 0;

}

if (print) A.print(basic, nonbasic);

}

// Locate x0 and

int x0 = -1;

for (int i = 0; i < cols; ++i) {

if (nonbasic[i] == 0) {

x0 = i + 1;

nonbasic.erase(nonbasic.begin() + i);

break;
}

}

Matrix * newTableau;

if (x0 == -1) {

for (int j = 0; j < rows - 1; ++j) {

if (basic[j] == 0) {

x0 = j + 1;

basic.erase(basic.begin() + j);

break;

A.1. SIMPLEX ALGORITHM, FIRST VERSION 49

}

}

cout << "x0 is not nonbasic, and has value " << A(x0, 0) <<

endl;

if (A(x0, 0) != 0)

return 0;

newTableau = new Matrix(rows - 1, cols + 1);

for (int i = /*1*/0; i < rows - 1; ++i) {

for (int j = 0; j < cols + 1; ++j) {

(*newTableau)(i, j) = A(i < x0 ? i : i + 1, j);

}

}

}

else {

newTableau = new Matrix(rows, cols);

for (int i = /*1*/0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

(*newTableau)(i, j) = A(i, j < x0 ? j : j + 1);

}

}

}

if (!initiallyFeasible) {

if (print) newTableau->print(basic, nonbasic);

(*newTableau)(0, 0) = obj(0, 0);//TODO:?

for (int j = 1; j < cols; ++j)

if (nonbasic[j - 1] < cols)

(*newTableau)(0, j) = obj(0, nonbasic[j - 1]);

for (int i = 1; i < rows; ++i) {

if (basic[i - 1] < cols) {

//cout << i << ’ ’ << obj(0, basic[i - 1]) << endl;

(*newTableau).addRows(i, 0, obj(0, basic[i - 1]));

}

}

// for (int j = 0; j < newTableau.getCols(); ++j)

// newTableau(0, j) = -newTableau(0, j);//TODO:??

//TODO: retain vars from obj

}

if (print) newTableau->print(basic, nonbasic);

cout << "Entering phase II" << endl;

itcount = 0;

SimplexResult result;

while ((result = TableauSimplex::solve(*newTableau, basic,

nonbasic)) == SUBOPTIMAL) {

++itcount;

if (print) newTableau->print(basic, nonbasic);

50 APPENDIX A. CODE

cout << "iteration " << itcount << ": obj. value is " << (*
newTableau)(0, 0) << endl;

// cin >> cc;

}

cout << "Status: " << TableauSimplex::resultToString(result)

<< endl;

if (result == OPTIMAL) {

for (int i = 1; i < newTableau->getRows(); ++i) {

if (basic[i - 1] <= newTableau->getCols() && (*newTableau

)(i, 0) != 0) {

cout << "x" << basic[i - 1] << ": ";

printNumber((*newTableau)(i, 0));

cout << endl;

}

}

cout << "Objective function value: ";

printNumberFull((*newTableau)(0, 0));

cout << endl;

}

return 0;

}

A.2 Utilities

Important note: These parsers are not fully compliant with the official MPS and
CPLEX file format specifications. They work with the data sets we have used,
but have not been thoroughly tested beyond that.

mps.py — MPS file format parser

from sys import stdin

class Row:

label = None

type = None

values = None

index = None

def __init__(self, label, type, index):

self.label = label

self.type = type

self.index = index

self.values = {}

def __str__(self):

return self.label + " (" + self.type + "): " + str(self.

values)

A.2. UTILITIES 51

lines = []

for line in stdin:

lines.append(line)

rows = {}

columnLabels = []

columnIndices = {}

i = 0

while i < len(lines):

line = lines[i]

i += 1

if line[0] == ’ ’:

pass
else:

header = line.strip()

if header == "ROWS":

rowIndex = 0

while lines[i][0] == ’ ’:

items = lines[i].split()

row = Row(items[1].strip(), items[0].strip(), rowIndex)

if row.type == "N":

objectiveIndex = rowIndex

rows[row.label] = row

rowIndex += 1

i += 1

#print row.index, ":", row.label

tableau = [None] * len(rows)

elif header == "COLUMNS":

columnIndex = -1

while lines[i][0] == ’ ’:

items = lines[i].split()

lim = 2 if len(items) == 5 else 1

columnLabel = items[0].strip()

if not columnIndices.has_key(columnLabel):

columnIndex += 1

columnLabels.append(columnLabel)

columnIndices[columnLabel] = columnIndex

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rows[rowLabel].values[columnLabel] = value

#print rows[rowLabel].index, ",", columnIndices[

columnLabel], "=", value

i += 1

for j in xrange(len(tableau)):

tableau[j] = [0] * (len(columnLabels) + 1)

52 APPENDIX A. CODE

for row in rows.values():

#print "row", row.index, ":", len(row.values)

for colLabel in row.values:

tableau[row.index][columnIndices[colLabel]] = row.

values[colLabel]

elif header == "RHS":

while lines[i][0] == ’ ’:

items = lines[i].split()

lim = 2 if len(items) == 5 else 1

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rowIndex = rows[rowLabel].index

tableau[rowIndex][-1] = value

#print "RHS of", rowIndex, "=", value

i += 1

#print sum([len(r.values) for r in rows.values()])

#for row in tableau:

tmp = row[-1]

row[-1] = row[0]

row[0] = tmp

print [x for x in row if x != 0]

for row in rows.values():

tab = tableau[row.index]

if row.type == "G":

#print row.index, "is G; multiplying with -1"

for i in xrange(len(tab)):

tab[i] = -tab[i]

elif row.type == "E":

#print row.index, "is E; creating new row at index ", len(

tableau)

tableau.append([-x for x in tab])

#print "objective function is at row", objectiveIndex, ";

swapping"

tmp = tableau[objectiveIndex]

tableau[objectiveIndex] = tableau[0]

tableau[0] = tmp

ti = 0

while ti < len(tableau):

nonzero = 0

for x in tableau[ti]:

if x != 0:

nonzero = 1

break
if not nonzero:

A.2. UTILITIES 53

tableau.pop(ti)

ti -= 1

ti += 1

#print tableau

#for ti in xrange(len(tableau)):

tab = tableau[ti]

newTab = []

for t in tab[:-1]:

newTab.append(t)

newTab.append(-t)

newTab.append(tab[-1])

tableau[ti] = newTab

#tableau[0] = [-x for x in tableau[0]] #for minimisation?

print len(tableau), len(tableau[0])

for tab in tableau:

for cell in tab:

print cell,

print
sys.exit(0)

print "max: ",

printedAny = 0

for ci in xrange(len(tableau[0]) - 1):

if tableau[0][ci] != 0:

if printedAny:

print " + ",

printedAny = 1

print str(tableau[0][ci]) + " x" + str(ci + 1),

print ";"

for tab in tableau[1:]:

printedAny = 0

for ai in xrange(len(tab) - 1):

if tab[ai] != 0:

if printedAny:

print " + ",

printedAny = 1

print str(tab[ai]) + " x" + str(ai + 1),

print " <= " + str(tab[-1]) + ";"

for xi in xrange(len(tableau[0]) - 1):

print "x" + str(xi + 1) + " >= 0;"

cplex.py — ILOG CPLEX file format parser

#!/usr/bin/python

#TODO: "Free" variables may be < 0!

54 APPENDIX A. CODE

from sys import stdin, stderr, argv

class Equation:

comparator = ""

constant = 0

values = {}

name = ""

def __init__(self, comparator, constant, name):

self.comparator = comparator

self.constant = constant

self.values = {}

self.name = name

class Bound:

variable = ""

lower = 0

upper = None

free = False

fixed = False

def __init__(self, variable):#, lower, upper):

self.variable = variable

self.lower = lower

self.upper = upper

def truncate(name):

if len(name) <= 8:

return name

else:
return "v" + str(hash(name) % 10000000)

def expand(string, length):

if len(string) > length:

raise ValueError("string too long")

return string + " " * (length - len(string))

class LP:

pos = 0

A.2. UTILITIES 55

lines = []

variables = {}

equations = []

variableList = []

bounds = []

direction = "max"

def __init__(self):

lines = []

variables = {}

equations = []

variableList = []

def printMatrix(self):

eqnCount = 0

for eq in self.equations:

if eq.comparator == "=":

eqnCount += 2

else:
eqnCount += 1

print eqnCount, len(self.variables) + 1

for eq in self.equations:

line = [0] * (len(self.variables) + 1)

line[-1] = eq.constant

for value in eq.values:

line[self.variables[value]] = eq.values[value]

negated = [-x for x in line]

if eq.comparator == "<=" or eq.comparator == "=" or eq.

comparator == "obj":

for x in line:

print x,

print
if eq.comparator == ">=" or eq.comparator == "=":

for x in negated:

print x,

print
for i in xrange(len(self.variableList)):

stderr.write(str(i + 1) + ": " + self.variableList[i] + "

\n")

#WARNING: Truncates names to 10 characters!

def printMPS(self):

print "NAME UNKNOWN"

#print "OBJSENSE"

#print " " + self.direction.upper()

print "ROWS"

for eq in self.equations:

56 APPENDIX A. CODE

if eq.comparator == "=":

print " E ",

elif eq.comparator[0] == "<":

print " L ",

elif eq.comparator[0] == ">":

print " G ",

elif eq.comparator == "obj":

print " N ",

else:
raise NameError("Illegal comparator: " + eq.comparator)

print expand(truncate(eq.name), 8)

print "COLUMNS"

for var in self.variableList:

for eq in self.equations:

if eq.values.has_key(var):

line = expand(" " + truncate(var), 14) + truncate(

eq.name)

print expand(line, 24) + str(eq.values[var])

print "RHS"

for eq in self.equations:

if eq.constant != 0:

print expand(" B " + truncate(eq.name), 24)

+ str(eq.constant)

print "BOUNDS"

for bound in self.bounds:

if bound.free:

print " FR BOUND " + truncate(bound.variable)

elif bound.fixed:

print expand(" FX BOUND " + truncate(bound.variable

), 24) + str(bound.upper)

else:
if bound.lower != 0:

print expand(" LO BOUND " + truncate(bound.

variable), 24) + str(bound.lower)

if bound.upper != None:

print expand(" UP BOUND " + truncate(bound.

variable), 24) + str(bound.upper)

print "ENDATA"

def printForWebSolver(self):

print "max: ",

for eq in self.equations:

printedAny = 0

for varName in eq.values:

if printedAny:

print "+",

printedAny = 1

A.2. UTILITIES 57

print eq.values[varName], varName,

if eq.comparator != "obj":

print eq.comparator, eq.constant,

print ";"

for v in self.variableList:

print v, " >= 0;"

def parseObjective(self):

tokens = self.lines[self.pos]

self.pos += 1

self.parseEquation(tokens, 1)

def parseEquation(self, tokens, isObjective):

if tokens[1] != ’+’ and tokens[1] != ’-’:

tokens.insert(1, ’+’)

if isObjective:

eq = Equation("obj", 0, "OBJ")

else:
eq = Equation(tokens[-2], float(tokens[-1]), tokens

[0][:-1])

self.equations.append(eq)

i = 1

limit = len(tokens) - 1 if isObjective else len(tokens) - 3

while i < limit:

if tokens[i] == ’-’:

sign = -1

elif tokens[i] == ’+’:

sign = 1

else:
print "Illegal sign on line", self.pos, ":", tokens

if isObjective and self.direction == "max":

sign *= -1

try:
value = float(tokens[i + 1])

i += 2

except ValueError:

value = 1

i += 1

name = tokens[i]

self.addVariable(name)

eq.values[name] = sign * value

i += 1

def parseEquations(self):

while 1:

tokens = self.lines[self.pos]

if tokens[0][-1] != ’:’: break

58 APPENDIX A. CODE

self.pos += 1

self.parseEquation(tokens, 0)

def addVariable(self, name):

if not self.variables.has_key(name):

self.variables[name] = len(self.variables)

self.variableList.append(name)

def parseBounds(self):

while 1:

tokens = self.lines[self.pos]

if len(tokens) == 1: break
self.pos += 1

if len(tokens) == 2 and tokens[1] == "Free":

bound = Bound(tokens[0])

bound.free = True

self.bounds.append(bound)

elif len(tokens) == 3:

#TODO: can the eq be turned around?

#eq = Equation(tokens[1], float(tokens[2]))

#eq.values[tokens[0]] = 1

#self.equations.append(eq)

#self.addVariable(tokens[0])

bound = Bound(tokens[0])

if tokens[1][0] == "<":

bound.upper = float(tokens[2])

elif tokens[1][0] == ">":

bound.lower = float(tokens[2])

elif tokens[1][0] == "=":

bound.fixed = True

bound.upper = float(tokens[2])

else:
raise NameError("Illegal bound type")

self.bounds.append(bound)

elif len(tokens) == 5:

#eq = Equation(">=", float(tokens[0]))

#eq.values[tokens[2]] = 1

#self.equations.append(eq)

#eq = Equation("<=", float(tokens[4]))

#eq.values[tokens[2]] = 1

#self.equations.append(eq)

#self.addVariable(tokens[2])

bound = Bound(tokens[2])

bound.lower = float(tokens[0])

bound.upper = float(tokens[4])

self.bounds.append(bound)

else:

A.2. UTILITIES 59

print "Unrecognised bounds line:", self.pos, ":",

tokens

def parse(self):

for line in stdin:

tokens = line.split()

if len(tokens) == 0 or tokens[0] == ’\\’: continue
self.lines.append(tokens)

self.pos = 0

while self.pos < len(self.lines):

if self.lines[self.pos][0] == "Maximize":

self.direction = "max"

self.pos += 1

self.parseObjective()

elif self.lines[self.pos][0] == "Minimize":

self.direction = "min"

self.pos += 1

self.parseObjective()

elif self.lines[self.pos][0] == "Subject":

self.pos += 1

self.parseEquations()

elif self.lines[self.pos][0] == "Bounds":

self.pos += 1

self.parseBounds()

else:
self.pos += 1

lp = LP()

lp.parse()

if len(argv) >= 2 and argv[1] == "web":

lp.printForWebSolver()

else:
#lp.printMatrix()

lp.printMPS()

Appendix B
Test sets

B.1 Sample netlib test set

This is the afiro set, in MPS format(TODO: citation). It contains (TODO: rows,
columns and nonzeroes).

NAME AFIRO

ROWS

E R09

E R10

L X05

L X21

E R12

E R13

L X17

L X18

L X19

L X20

E R19

E R20

L X27

L X44

E R22

E R23

L X40

L X41

L X42

L X43

L X45

L X46

L X47

L X48

L X49

61

62 APPENDIX B. TEST SETS

L X50

L X51

N COST

COLUMNS

X01 X48 .301 R09 -1.

X01 R10 -1.06 X05 1.

X02 X21 -1. R09 1.

X02 COST -.4

X03 X46 -1. R09 1.

X04 X50 1. R10 1.

X06 X49 .301 R12 -1.

X06 R13 -1.06 X17 1.

X07 X49 .313 R12 -1.

X07 R13 -1.06 X18 1.

X08 X49 .313 R12 -1.

X08 R13 -.96 X19 1.

X09 X49 .326 R12 -1.

X09 R13 -.86 X20 1.

X10 X45 2.364 X17 -1.

X11 X45 2.386 X18 -1.

X12 X45 2.408 X19 -1.

X13 X45 2.429 X20 -1.

X14 X21 1.4 R12 1.

X14 COST -.32

X15 X47 -1. R12 1.

X16 X51 1. R13 1.

X22 X46 .109 R19 -1.

X22 R20 -.43 X27 1.

X23 X44 -1. R19 1.

X23 COST -.6

X24 X48 -1. R19 1.

X25 X45 -1. R19 1.

X26 X50 1. R20 1.

X28 X47 .109 R22 -.43

X28 R23 1. X40 1.

X29 X47 .108 R22 -.43

X29 R23 1. X41 1.

X30 X47 .108 R22 -.39

X30 R23 1. X42 1.

X31 X47 .107 R22 -.37

X31 R23 1. X43 1.

X32 X45 2.191 X40 -1.

X33 X45 2.219 X41 -1.

X34 X45 2.249 X42 -1.

X35 X45 2.279 X43 -1.

X36 X44 1.4 R23 -1.

X36 COST -.48

B.2. TEST SETS PROVIDED BY MIRIAM AS 63

X37 X49 -1. R23 1.

X38 X51 1. R22 1.

X39 R23 1. COST 10.

RHS

B X50 310. X51 300.

B X05 80. X17 80.

B X27 500. R23 44.

B X40 500.

ENDATA

B.2 Test sets provided by Miriam AS

These sets are in the ILOG CPLEX format.

dp 0.lp

\Problem name: CPLEX solver

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0

CapE52: v52_49 - RgCapE52 = 0

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0

OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 - RgCapS60 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 - RgCapS61 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 - RgCapS62 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 -

x546_49 = 0

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

64 APPENDIX B. TEST SETS

Dem53_49: d53_49 <= 150

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0

SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 200

0 <= v51_49 <= 200

0 <= v52_49 <= 200

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 299.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 120

0 <= RgCapS60 <= 200

0 <= RgCapS61 <= 120

0 <= RgCapS62 <= 120

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

0 <= RgCapD54 <= 200

End

dp 150.lp

\Problem name: CPLEX solver

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0

CapE52: v52_49 - RgCapE52 = 0

B.2. TEST SETS PROVIDED BY MIRIAM AS 65

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0

OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 -

x546_49 = 0

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

Dem53_49: d53_49 <= 150

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0

SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 100

0 <= v51_49 <= 100

0 <= v52_49 <= 100

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 0.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 1

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

66 APPENDIX B. TEST SETS

0 <= RgCapD54 <= 200

End

Appendix C
Schedule

This appendix will obviously be deleted before submission.

Week 20 Study Vanderbei code and obtain a good understanding of how what
tricks are required to make revised simplex work in practice; write rough
outline of bacground chapter on revised simplex

Either: If the C++ code is too cumbersome to work with:

Week 21 Implement revised simplex (sequentially) in C#, based on Van-
derbei

Week 22 Implement ASYNPLEX in C#, based on the above code

Or: If the C++ code is okay to work with:

Week 21 Rewrite Vanderbei’s code to become more readable and struc-
tured in a way that is more suitable for ASYNPLEX

Week 22 Implement ASYNPLEX in C++, based on the above code

Week 23 Rewrite ASYNPLEX implementation from thread-based C++ or C#
code to Cell

Week 24 Run experiments on timing, precision and communication/computa-
tion ratio

Week 25 Frenetic report writing

Week 26 — “ —

Week 27 — “ —; Natvig goes on vacation; I’ll try to submit by Friday, July 3

Week 28 Scouting camp (can be dropped if absolutely necessary)

Week 29 Final deadline: Sunday, July 19

67

	Contents
	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	Listings
	1 Introduction
	2 Background
	2.1 Linear programming
	2.1.1 Problem formulation. Standard and slack forms
	2.1.2 The simplex method
	2.1.3 The revised simplex method
	2.1.4 ASYNPLEX
	2.1.5 Interior point algorithms
	2.1.6 Use of LP to solve advanced flow problems
	2.1.7 Existing LP solvers

	2.2 Cell Broadband Engine
	2.2.1 Architecture
	2.2.2 Programming methods
	2.2.3 Tools and libraries

	3 Design
	3.1 Overall approach
	3.2 Initial experiments
	3.2.1 Arithmetic performance

	3.3 Standard simplex method
	3.3.1 PPE version
	3.3.2 SPE version

	3.4 Revised simplex method
	3.5 Thoughts on unimplemented features / ideas for future work
	3.5.1 Dense interior point
	3.5.2 Sparse interior point
	3.5.3 Mixed precision
	3.5.4 Representation of sparse matrices
	3.5.5 Vectorisation
	3.5.6 Autotuning

	4 Implementation and testing
	4.1 Implementation problems
	4.1.1 Straightforward simplex implementation
	4.1.2 Numerical stability

	4.2 Simplex algorithm
	4.3 Test plan
	4.3.1 Unit testing
	4.3.2 Large data sets
	4.3.3 Comparison to other implementations

	5 Evaluation
	5.1 Performance measurements
	5.1.1 (TODO: What to measure)
	5.1.2 (TODO: How to measure)

	5.2 Results
	5.2.1 Standard simplex method
	5.2.2 Revised simplex method

	5.3 Discussion

	6 Conclusion
	6.1 Experiences
	6.2 Future work

	Bibliography
	A Code
	A.1 Simplex algorithm, first version
	A.2 Utilities

	B Test sets
	B.1 Sample netlib test set
	B.2 Test sets provided by Miriam AS

	C Schedule

