
Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics

and Electrical Engineering
Department of Computer and Information Science

Master’s Thesis

Linear programming on Cell/BE

by

Åsmund Eldhuset

Supervisor: Dr.Ing. Lasse Natvig
Co-supervisor: Dr. Anne C. Elster

Trondheim, July 19, 2009

iii

Abstract

(TODO:)

Acknowledgements

(TODO: Natvig, Elster, Mujahed, Chris, Henrik Andersson, Marielle Christiansen,
the people at Ugle)

v

Contents

Contents vii

List of Figures xi

List of Tables xii

List of Symbols and Abbreviations xiii

List of Code Listings xiv

List of Algorithms xv

1 Introduction 1

2 Background 3
2.1 Linear programming . 3

2.1.1 Problem formulation. Standard and slack forms 3
2.1.2 The simplex method . 7

2.1.2.1 Degeneracy and cycling 12
2.1.2.2 Initially infeasible problems 12
2.1.2.3 Formal algorithm statement 13
2.1.2.4 Complexity and numerical instability 14
2.1.2.5 Duality . 16
2.1.2.6 Warmstarting . 16

2.1.3 The revised simplex method 16
2.1.4 ASYNPLEX . 20
2.1.5 Interior point methods . 21
2.1.6 Use of LP to solve advanced flow problems 24
2.1.7 State of the art: sequential LP solvers 25
2.1.8 State of the art: parallel LP solvers 27

2.2 Cell Broadband Engine . 28
2.2.1 Architecture . 29
2.2.2 Programming methods . 29

vii

viii CONTENTS

2.2.3 Tools and libraries . 30
2.3 Miscellaneous topics . 31

2.3.1 pthreads . 31
2.3.2 Representation of sparse matrices 31
2.3.3 Amdahl’s law . 31

3 Design 33
3.1 Overall approach . 33
3.2 Standard simplex method . 34

3.2.1 PPE version . 34
3.2.2 SPE version . 34

3.3 Revised simplex method . 35
3.3.1 Performing the matrix inversion in parallel 35
3.3.2 Our adaptation of ASYNPLEX 36

3.3.2.1 Sparse vector and matrix representations 36

4 Implementation and testing 41
4.1 Implementation problems . 41

4.1.1 Straightforward simplex implementation 41
4.1.2 Numerical stability . 42
4.1.3 (TODO: Missing citations) 43

4.2 Simplex algorithm . 43
4.3 Test plan . 43

4.3.1 Unit testing . 43
4.3.2 Large data sets . 44
4.3.3 Memory leaks . 44
4.3.4 Comparison to other implementations 44

5 Evaluation 47
5.1 Performance measurements . 47

5.1.1 Testing environments . 47
5.1.2 What to measure (TODO: reword — “research questions?”) 47
5.1.3 Measurement methods . 48

5.2 Results . 48
5.2.1 Standard simplex method 48
5.2.2 Revised simplex method . 48

5.3 Other aspects . 49
5.3.1 Code size . 49

5.4 Thoughts on unimplemented features / ideas for future work . . 49
5.4.1 Dense interior point . 49
5.4.2 Sparse interior point . 49
5.4.3 Mixed precision . 50

ix

5.4.4 Representation of sparse matrices 50
5.4.5 Vectorisation . 51
5.4.6 Autotuning . 51

5.5 Discussion . 51

6 Conclusion 53
6.1 Experiences . 53
6.2 Future work . 53

Bibliography 55

A Code 61
A.1 Sequential standard simplex method for x86 61
A.2 Parallel standard simplex method for Cell 74
A.3 ASYNPLEX, C# prototype . 74
A.4 ASYNPLEX for x86, based on Vanderbei 74
A.5 ASYNPLEX for Cell, based on Vanderbei 74
A.6 Utilities . 74

B Test sets 85
B.1 Sample netlib test set . 85
B.2 Test sets provided by Miriam AS 87

C Schedule 91

List of Figures

xi

List of Tables

4.1 Some results of our exact standard simplex implementation 43

xii

List of Symbols
and Abbreviations

Abbreviation Description Definition

Cell BE Cell Broadband Engine page 28
ILP Integer linear programming page 4
ILP Instruction-level parallelism page 28
LP Linear programming page 3
LS Local Store page 29
MFC Memory Flow Controller page 29
PPE PowerPC Processor Element page 29
PPU PowerPC Processor Unit page 29
SPE Synergistic Processor Element page 29
SPU Synergistic Processor Unit page 29

xiii

List of Code Listings

../simplex/matrix.h . 61

../simplex/matrix.cpp . 63

../simplex/TableauSimplex.h . 67

../simplex/TableauSimplex.cpp . 68

../simplex/main.cpp . 70

../simplex/mps.py . 75

../simplex/cplex.py . 78

../datasets/afiro.mps . 85

../datasets/dp 0.lp . 87

../datasets/dp 150.lp . 88

xiv

List of Algorithms

1 The standard simplex method using the Dantzig criterion TODO:
verify name . 14

2 The revised simplex method . 19
3 ASYNPLEX — iteration process number i (0 ≤ i < p) 22
4 ASYNPLEX — invert processor . 23
5 ASYNPLEX — column selection manager 23
6 ASYNPLEX — basis change manager 24

xv

Chapter 1
Introduction

(TODO:)

Task description (Natvig/Elster/Mujahed: This is the task description I en-
tered in DAIM. Should probably be changed a bit...) The aim of the project is
to implement a parallel linear solver for large sparse problems on the Cell BE
using the Simplex method. Interior point methods may also be investigated.

(TODO: A paragraph about Miriam)
Therefore, we have adjusted our aims to that of producing a code base from

which further development may take place, and writing a report that is rich in
background material, references and advice that we hope will prove useful to
those that are to continue the project.

Outline

In Chapter 2, we give a presentation of the field of linear programming, and
we describe the standard and revised simplex methods and a parallel revised
simplex method called ASYNPLEX. We also explain the Cell architecture and
programming model.

In Chapter 3, we describe our initial plans, the progress of our work and
the decisions we had to make during the project. We also present our design
of a parallel standard simplex algorithm for Cell, and our adaptations of the
ASYNPLEX algorithm (which we did not get the time to fully implement).

In Chapter 4, (TODO:) This project ended up very differently from what we
had anticipated; in this chapter, we also discuss the challenges we have encoun-
tered.

In Chapter 5, we provide several timing analyses of the parallel standard
simplex algorithm, in order to learn how the parallelisation, number of cores,
and Cell features such as vectorisation, affect the performance. We also discuss

1

2 CHAPTER 1. INTRODUCTION

features we did not get the time to implement, and give several pieces of advice
to the researchers that will build upon our work.

Finally, in Chapter 6, we present our conclusions and summarise our sug-
gestions for future work.

Chapter 2
Background

(TODO: Chapter introduction)

2.1 Linear programming

(If time permits: Section introductions)
This section is primarily based on Vanderbei[37] and Cormen et al.[7].

2.1.1 Problem formulation. Standard and slack forms

The term linear programming (LP) refers to a type of optimisation problems in
which one seeks to maximise or minimise the value of a linear function of a
set of variables1. The values of the variables are constrained by a set of linear
equations and/or inequalities. Linear programming is a fairly general problem
type, and many important problems can be cast as LP problems — for instance,
shortest path problems and maximum flow problems (see [7]). However, the
true virtue of linear programming stems from its ability to model a vast range of
optimisation problems for which specialised algorithms do not exist, including
many situations from economics and industry processes.

The following framed text is an example of a simple linear programming
problem. We will use this example throughout this section to illustrate how the
linear programming algorithms work.

1Hence, LP is not (as the name would seem to suggest) a programming technique. The name
originated in the 1940s, when “program” referred to military supply plans and schedules(TODO:
citation).

3

4 CHAPTER 2. BACKGROUND

— Example —

A company owns a factory that makes two kinds of products based on two
different raw materials. The profit the company makes per unit of product A
is $30, and the profit of product B is $20. Producing one unit of A requires 1
unit of raw material R and 1 unit of raw material S; one unit of B requires 2
units of R and 1 unit of S. The company possesses 40 units of R and 50 units
of S. We make the simplifying assumptions that all prices are constant and
cannot be affected by the company, and that the company is capable of selling
everything it produces. The company’s goal is to maximise the profit, which
can be described as 30x1 + 20x2, where x1 is the number of units of product
A and x2 is the number of units of product B. The following constraints are
in effect:

• x1 + x2 ≤ 40 (the production of A and B cannot consume more units of
raw material R than the company possesses)

• 2x1 + x2 ≤ 50 (similarly for raw material S)

• x1, x2 ≥ 0 (the company cannot produce negative amounts of its prod-
ucts)

Note that in regular LP problems, one cannot restrict the variables to be inte-
gers — in fact, adding this requirement produces a new kind of problem known
as integer linear programming (ILP), which is NP-hard2. It is also, in general, a re-
quirement that all variables are nonnegative. This is often the case in real-world
problems that deal with physical quantities, but problems involving variables
that may be negative as well as positive can still be modeled by rewriting each
original variable as a difference of two nonnegative variables.

The function to be optimised is called the objective function. In the real world
situation that gives rise to an optimisation problem, the function may contain a
constant term, but it can be removed since that will affect all possible solutions
in the same way. The objective function can then be written as ζ = c1x1 + c2x2 +
. . .+cnxn =

∑n
j=1 cjxj , where the cj are constants. The variables in the objective

function are often called decision variables, since our task is not only to find the
optimal value of the objective function, but also which variable values that yield
this function value. Throughout this report, we will consistently use n to refer
to the number of decision variables and m to refer to the number of equations

2NP-hardness is a term from complexity theory, which deals with the relative difficulties of
solving different kinds of problems. The only known algorithms for solving NP-hard problems
require an amount of time that is exponential in the size of the problem, which renders those
algorithms useless for many real life problem sizes. For further reading on complexity theory,
consult Garey and Johnson[11].

2.1. LINEAR PROGRAMMING 5

and/or inequalities. The variables will typically be labelled x1 through xn.

Standard form An LP problem is commonly called a linear program. The equa-
tions and inequalities that (together with the objective function) constitute an
linear program may be represented in different forms. We shall first consider
the standard form, in which only less-than-or-equal-to inequalities with all vari-
ables on the left hand side are allowed3. A problem containing equalities of the
form ai1x1+ . . .+ainxn = bi may be rewritten by splitting each equality into two
inequalities4: ai1x1 + . . .+ ainxn ≤ bi and −ai1x1 − . . .− ainxn ≤ −bi. Also, the
goal must be to maximise the objective function — if the original problem is to
minimize ζ, we let our objective function be −ζ. A linear program in standard
form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.1)

with respect to
n∑

j=1

aijxj ≤ bi, for i = 1, . . . ,m. (2.2)

x1, . . . , xn ≥ 0 (2.3)

Slack form The other common representation is slack form, which only allows
a set of equations (and a nonnegativity constraint for each variable). A slack
form program should be produced by rewriting a standard form program. An
inequality of the form ai1xi + . . . + ainxn ≤ bi is converted to an equation by
adding a slack variable wi. Together with the condition that wi ≥ 0, the equation
ai1x1 + . . . + ainxn + wi = bi is equivalent to the original inequality (whose
difference, or “slack”, between the left and right hand sides is represented by
wi). When the program is constructed in this manner, each slack variable only
appears in excactly one equation, which is an important property that will be
utilised later. A linear program in slack form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.4)

3Note that strictly-less-than and strictly-greater-than inequalities are never allowed in LP
problems, as they could easily cause situations in which it is impossible to achieve optimality
— for instance, there is no optimal value for x with respect to x < 3; given any value for x that is
less than 3, one can always find a number between x and 3.

4The drawback of doing this is that it increases the number of equations. See Hillier[19] for
another approach, called artificial variables — with the drawback that it increases the number of
variables.

6 CHAPTER 2. BACKGROUND

with respect to

wi = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.5)

x1, . . . , xn, w1, . . . , wm ≥ 0 (2.6)

— Example —

In standard form, our example is expressed as

Maximise

ζ = 30x1 + 20x2

with respect to

x1 + x2 ≤ 40

2x1 + x2 ≤ 50

x1, x2 ≥ 0

In slack form, it becomes

Maximise

ζ = 30x1 + 20x2

with respect to

w1 = 40− x1 − x2

w2 = 50− 2x1 − x2

x1, x2, w1, w2 ≥ 0

A proposed solution vector (that is, a specification of a value for each vari-
able) of a linear program in slack form is called:

Feasible if it does not violate any constraints

Infeasible if it violates one or more constraints (however, it is still called a “so-
lution”)

Basic if it consists of setting all variables except the slack variables to zero (so
that wi = bi for all i)

2.1. LINEAR PROGRAMMING 7

Optimal if it is feasible and no other feasible solutions yield a higher value
for the objective function. An optimal solution vector is not necessarily
unique, although the optimal objective function value of course is.

(TODO: Move this paragraph to next section? Natvig says “Ta med etter be-
hov”.) The linear programming theorem (TODO: Is it actually called this? Find
something to cite) states that the optimal solution of a linear program, if it ex-
ists, occurs when at least m variables are set to zero. (TODO: Combinatorics.
Mention cycling here?)

2.1.2 The simplex method

The simplex method5, developed by George Dantzig[8], was the first systematic
approach for solving linear programs. It requires the linear program to be in
slack form. The initial coefficients and constants are written down in a tableau
that will change as the method progresses. The nonnegativity constraints are not
represented anywhere; rather, they are implicitly maintained by the method.
Because the equations will undergo extensive rewriting, it will be convenient
not to distinguish the slack variables from the other variables, so we will relabel
wi to xn+i−1 for i = 1, . . . ,m. Thus, the total number of variables is n + m.
Furthermore, we will use overlines over the coefficients in the tableau to denote
their current value (which will change in each iteration of the simplex method),
and the indices of the coefficients will refer to the coefficients’ position within
the tableau — for instance, −aij is located in row i, column j. We also introduce
a constant term ζ (initially zero) in the objective function, which will help us
keep track of the best function value we have found so far. The topmost row
and leftmost column are not really a part of the tableau; they are simply headers
— the topmost row shows which variables correspond to which columns, and
the leftmost column shows the slack variables for each row. The first actual
tableau row (below the double line) contains the objective function coefficients
cj and is numbered as row 0; the first actual tableau column (to the right of the
double line) contains the bi constants and is numbered as column 0; the rest of
the tableau contains the negatives of the coefficients from the equations: −aij .
Initially, cj = cj , bi = bi, and aij = aij . For instance, with n = 3 and m = 3, the
initial tableau will look like this:

5The reason for not calling it the “simplex algorithm” is that there exist several versions of the
method, and that the general method formulation is somewhat underspecified because it does
not say how to choose the pivot elements.

8 CHAPTER 2. BACKGROUND

x1 x2 x3

ζ 0 c1 c2 c3

x4 b1 −a11 −a12 −a13

x5 b2 −a21 −a22 −a23

x6 b3 −a31 −a32 −a33

Note that this is essentially just a tabular version of the standard form — for
instance, the last row is interpreted as the equation x6 = b3−a31x1−a32x2−a33x3.

— Example —

In tableau form, our example becomes

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Note that w1 and w2 have been renamed to x3 and x4, respectively.

The variables are partitioned into two sets. The variables in the leftmost
column (at the left side of the equations) are referred to as the basic variables,
and the variables inside the tableau are called nonbasic variables. At any stage
of the method, the set of the indices of the basic variables is denoted B, and
the set of nonbasic indices is denoted N . Initially, N = {1, . . . , n}, and B =
{n + 1, . . . , n + m}. The sizes of the basic and nonbasic sets are constant, with
|N | = n and |B| = m. The tableau will generally look like this (if, for instance,
m = n = 3):

· · · xj∈N · · ·
ζ ζ c1 c2 c3
... b1 −a11 −a12 −a13

xi∈B b2 −a21 −a22 −a23

... b3 −a31 −a32 −a33

For now, let us assume that the solution that is obtained by setting all non-
basic variables to zero is feasible (which is the case only if all of the bi are non-
negative); we will remove this restriction later. This trivial solution will provide
a lower bound for the value of the objective function (namely, the constant term,
ζ). We will now select one nonbasic variable xj and consider what happens if
we increase its value (since all nonbasic variables are currently zero, we cannot
decrease any of them). Since our goal is to maximise the objective function, we
should select a variable whose coefficient cj in the objective function is positive.

2.1. LINEAR PROGRAMMING 9

If no such variables exist, we cannot increase the objective function value fur-
ther, and the current solution (the one obtained by setting all nonbasic variables
to zero, so that ζ = ζ) is optimal — we can be certain of this since linear functions
do not have local maxima.

It seems reasonable to select the variable with the greatest coefficient (this is
known as the Dantzig criterion (TODO: verify name); other rules are possible).
Let us say that this variable is located in column e. Note that because we will
soon start swapping variable positions, the indices of the leaving and entering
variables will generally not correspond to their respective row and column num-
bers. For notational convenience, we therefore let xĩ denote the basic variable
that is located in row i, and we let xĵ denote the nonbasic variable in column j.
Then, our variable is labelled xê. How far can we increase this variable? Recall
that each line in the tableau expresses one basic variable as a function of all the
nonbasic variables; hence we can increase xê until one of the basic variables be-
comes zero. Let us look at row i, which is now reduced to xĩ = bi − aiexê since
all nonbasic variables except xê are zero. If aie is positive, the value of xĩ will de-
crease as xê increases, so the largest allowable increase is limited by bi. Thus, by
setting xê = bi

aie
, xĩ becomes zero. However, other equations may impose stricter

conditions. By looking at all rows where aie is positive, we can determine an l

such that bl
ale

is minimal and set xê = bl
ale

. This will cause xl̃ to become zero. If
all aie are nonpositive, we can increase xê indefinitely without any xĩ ever be-
coming negative, and in that case, we have determined the linear program to be
unbounded; the method should report this to the user and terminate.

— Example —

Recall the tableau:

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Since 30 is the greatest objective function coefficient, we select x1 to be
increased. x3 becomes zero if x1 = b1

a11
= 40

1 , and x4 becomes zero if

x1 = b2
a12

= 50
2 . The latter is the most restrictive constraint, so x4 will become

zero when we increase x1.

The next step, called pivoting, is an operation that exchanges a nonbasic vari-
able and a basic variable. The purpose of pivoting is to produce a new situation
in which all nonbasic variables are zero (and no bi is negative), so that we can
repeat the previous steps all over again and find a new variable whose value
we can increase. The nonbasic variable that was selected to be increased, xê, is

10 CHAPTER 2. BACKGROUND

called the entering variable, since it is about to enter the collection of basic vari-
ables. xl̃, which becomes zero when xê is increased appropriately, is called the
leaving variable, since it is to be removed from said collection. Keep in mind that
since xl̃ is a basic variable, it only occurs in one equation, namely

xl̃ = bl −
∑
j∈N

aljxĵ . (2.7)

Note that we have retained all the nonbasic variables, as we want an equation
that is valid at all times, not only when almost all nonbasic variables are zero.
We can eliminate the entering variable from (and introduce the leaving variable
into) the set of nonbasic variables by rewriting (2.7):

xl̃ = bl − alexê −
∑

j∈N−{ê}

aljxĵ (2.8)

xê =
1
ale

bl − xl̃ −
∑

j∈N−{ê}

aljxĵ

 . (2.9)

Now that we have an expression for xê, we can substitute it into all of the other
equations — this will eliminate xê and introduce xl̃ into the rest of the tableau.
For all i ∈ B − {l̃}, we have:

xĩ = bi −
∑
j∈N

aijxĵ (2.10)

= bi − aiexê −
∑

j∈N−{ê}

aijxĵ (2.11)

= bi −
aie

ale

bl − xl̃ −
∑

j∈N−{ê}

aljxĵ

− ∑
j∈N−{ê}

aijxĵ (2.12)

=
(
bi −

aie

ale
bl

)
+
aie

ale
xl̃ −

∑
j∈N−{ê}

(
aij −

aie

ale
alj

)
xĵ . (2.13)

A similar result will be achieved for the expression for the objective function. Al-
though it might look complicated, it amounts to subtracting aie

ale
times the tableau

row l from all other tableau rows i (and adding ce
ale

times row l to the objective
function row), and then setting the tableau entries in column e to aie

ale
(and to

− ce
ale

in the objective function row). Note that because l was selected such that

ale was positive and bl
ale

was minimal, all bi remain nonnegative; and because e
was selected such that ce was positive, ζ cannot decrease (it will either retain its
old value or increase, depending on whether bl was zero).

(2.9) is the new form of the tableau row that originally corresponded to the
basic variable xl̃. The new row, which corresponds to xê, can be easily obtained

2.1. LINEAR PROGRAMMING 11

from the old one by dividing the row by ale and setting the coefficient of what is
now xl̃ to − 1

ale
.

Finally, we remove l̃ from B and add it to N , and remove ê from N and
add it to B, so that the leaving and entering variables swap positions in the new
tableau. This completes the pivot operation — we again have a tableau in which
all nonbasic variables can be set to zero and all bi are nonnegative, and the entire
process may be repeated.

A 3 × 3 tableau will look like this after one pivot with x2 as the entering
variable and x5 as the entering variable: (TODO: Verify!)

x1 x5 x3

ζ 0 + b2c2/a22 c1 − a21c2/a22 −c2/a22 c3 − a23c2/a22

x4 b1 − b2a12/a22 −a11 + a21a12/a22 a12/a22 −a13 + a23a12/a22

x2 b2/a22 −a21/a22 −1/a22 −a23/a22

x6 b3 − b2a32/a22 −a31 + a21a32/a22 a32/a22 −a33 + a23a32/a22

— Example —

After one pivot with x1 as the entering variable and x4 as the leaving variable,
we get the following tableau:

x4 x2

ζ 750 −15 5
x3 15 0.5 −0.5
x1 25 −0.5 −0.5

For the next pivot operation, only x2 can be selected as the entering variable,
which causes x3 to be selected as the leaving variable. After the pivot, the
tableau looks like this:

x4 x3

ζ 900 −10 −10
x2 30 1 −2
x1 10 −1 1

Since all objective function coefficients are now negative, we have reached
an optimal solution with the value ζ = ζ = 900. This solution value
is obtained by setting the nonbasic variables (x3 and x4) to 0, in which
case x1 = 10 and x2 = 30. We can easily verify that these variable val-
ues do not violate any constraints, and by substituting the values into the
original objective function, we can verify that the optimal value is indeed
ζ = 30x1 + 20x2 = 30 · 10 + 20 · 30 = 900.

12 CHAPTER 2. BACKGROUND

2.1.2.1 Degeneracy and cycling

A tableau is degenerate if some of the bi are zero. Degeneracy may cause prob-
lems because a pivot on a degenerate row will not cause the objective function
value to change, and we will not have gotten any closer to a solution. With
severely bad luck, the algorithm may end up cycling through a number of de-
generate states. This, however, rarely happens — according to Vanderbei[37, p.
32], cycling “is so rare that most efficient implementations do not take precau-
tions against it”.

As mentioned in Footnote 5 on page 7, the general formulation of the sim-
plex method is underspecified because it does not tell how to break ties between
potential entering and leaving variables. There exist rules that guarantee that cy-
cling will not happen; one of them, called Bland’s rule[37, Sec. 3.4] is to break ties
by always selecting the variable with the smallest index. There are

(
m+n

m

)
pos-

sible dictionaries — each dictionary is uniquely determined by the set of basic
variables, and the order of the variables is unimportant (if the rows and columns
of a dictionary are permuted, it is still regarded as the same dictionary, since the
same variables will be selected for pivoting). Since each step transforms one dic-
tionary into another, the simplex method is guaranteed to terminate in at most(
m+n

m

)
steps if precautions are taken against cycling. In practice, however, the

method is usually far more efficient, and algorithms that are guaranteed to run
in polynomial time are only superior for very large data sets(TODO: citation).

2.1.2.2 Initially infeasible problems

The method presented so far is capable of solving linear programs whose initial
basic solution (the one obtained by setting all nonbasic variables to 0) is feasible.
This is the case if and only if all of the bi are nonnegative, which we cannot in
general assume them to be. If we have one or more negative bi, we get around
this by introducing an auxiliary problem which is based on the original problem,
is guaranteed to have a basic feasible solution, and whose optimal solution will
provide us with a starting point for solving the original problem. The auxil-
iary problem is created by subtracting a new variable x0 from the left hand side
of each equation of the original problem (which is assumed to be in standard
form), and replacing the objective function with simply ζ = −x0. The purpose
of x0 is that by initially setting it to a sufficiently large value, we can easily sat-
isfy all equations (even those having negative entries in the right hand side6).
Then, we can try to change variable values (through regular pivoting) and see if
it is possible to make x0 equal to zero, in which case we can remove it from our
equations and reinstate the original objective function, thereby having arrived

6Beware that “the right hand side” refers to the bi, which are on the right hand side of the
original equations — but in the tableau, they are on the left side.

2.1. LINEAR PROGRAMMING 13

at a problem that is equivalent to the original one. This is the purpose of our
new objective function — since x0, like all other variables, is required to be non-
negative, the goal of optimising −x0 means that we are trying to make x0 zero.
Fortunately, we do not need a new algorithm for this optimisation process; we
can use the simplex algorithm as it has been described above. We only need to
do one pivot operation before we start that algorithm: since the idea of x0 is to
initially set it to a suitably large value, and since the algorithm requires a non-
negative right hand side, we should make x0 a basic variable by performing one
pivot operation with the row containing the most negative bi. This will make
the entire right hand side nonnegative. Solving the auxiliary problem is called
Phase I, and solving the resulting problem (with the original objective function)
is called Phase II. Thus, the full simplex method is a two-phase method (but of
course, if the right hand side of the original problem is nonnegative, we can skip
Phase I).

Another Phase I method, the one used by Vanderbei, is to first replace nega-
tive terms in the objective function by an arbitrary positive number (e.g. 1) and
then run the dual simplex method (TODO: Need something on duality). This
essentially transposes the entire tableau and treats the original right-hand side
(which contains negative numbers, since we needed to run Phase I) as the new
objective function (where negative numbers are tolerated), and the original ob-
jective function (which, after our modification, is strictly positive) as the new
right-hand side. The dual method will terminate when the original right hand
side only consists of nonnegative numbers, in which case we can reinstate the
actual coefficients of the original objective function and proceed with Phase II.

One-phase methods also exist, such as the parametric self-sual simplex method,
as described in [37, Sec. 7.3].

(If time permits: example)

2.1.2.3 Formal algorithm statement

In Algorithm 1 on the next page we present the pseudocode for an individual
phase of the standard simplex method (with the first approach described in Sec-
tion 2.1.2.2, the same code can be used for both Phase I and Phase II. The tableau
is called T and is zero-indexed; keep in mind that row 0 is the objective function
and column 0 contains the constants from the right hand sides of the inequali-
ties. The current value of the objective function is always in row 0, column 0.
We use row major indexing, so T [2, 3] is row 2, column 3. (Natvig’s comment:
Should ideally be recognisable in the real code; maybe reference the real code
here (or the other way around?))

(TODO: Verify)

14 CHAPTER 2. BACKGROUND

loa 1: The standard simplex method using the Dantzig criterion TODO: verify
name

1: procedure STANDARDSIMPLEXPHASE(m, n, a[1..m, 1..n], b[1..m], c[1..n])
2: T [0, 0]← 0
3: T [i, j]← −a[i, j] for i = 1 . . .m, j = 1 . . . n
4: T [i, 0]← b[i] for i = 1 . . .m
5: T [0, j]← c[j] for j = 1 . . . n
6: N ← {1, . . . , n}
7: B ← {n+ 1, . . . , n+m}
8: loop
9: Pick a column number e ≥ 1 such that T [0, e] is positive and maximal

10: if no e is found then
11: return T [0, 0] as the optimal solution
12: end if
13: Pick a row number l ≥ 1 such that T [l, e] < 0 and −T [l,0]

T [l,e] is minimal
14: if no l is found then
15: return “The problem is infeasible” (if this is Phase I) or “The prob-

lem is unbounded” (if this is Phase II)
16: end if
17: p← −T [l, e]
18: for i← 0,m do
19: if i 6= l then
20: f ← T [i,e]

p
21: Add f times row l of T to row i of T
22: T [i, e]← −f
23: end if
24: end for
25: Divide row l of T by p
26: T [l, e]← −1

p
27: end loop
28: end procedure

2.1.2.4 Complexity and numerical instability

The complexity classes P and NP should be familiar to anyone that has taken
an algorithms course: NP is the class of decision problems (problems that are in
the form of a yes/no question) where, if the answer is “yes” and we are given a
“certificate” that demonstrates the solution, we can validate the solution in time
that is polynomial in the size of the input. P is the subset of NP that consists
of those decision problems where we can also find the solution in polynomial
time. The question of whether P = NP remains one of the most important open
questions in the field of computer science, and is one of the seven Clay Mille-

2.1. LINEAR PROGRAMMING 15

nium Prize problems7. Most researchers believe that P ⊂ NP, and that the most
difficult problems in NP, the so-called NP-complete (NPC) problems, cannot be
solved in polynomial time. Cormen et al.[7] give a good introduction to com-
plexity theory.

When dealing with parallel programming, another complexity class is also
useful: NC, also known as Nick’s Class. This is the class of all problems that can
be solved in O(lgk1 n) steps (so-called polylogarithmic time) using a polynomial
(O(nk2)) number of processors. Here, k1 and k2 are constants. NC is a subset of
P , since any parallel algorithm requiring f(n) steps using p(n) processors can be
simulated in p(n)f(n) steps on a sequential computer. Thus, any NC-algorithm
will require O(nk2 lgk1 n) steps on a sequential machine, and this is polynomial
in n. However, there are problems in P which have not yet been proven to be in
NC, and the most difficult problems among these are called P-complete (PC) —
this is quite analoguous to the NP/P/NPC situation.

In some sense, NC captures the notion of what it means for a problem to be
“parallelisable”, while the P-complete problems can be said to be “hard to par-
allelise”. However, it is not an all-encompassing concept — a problem may be in
NC without being efficiently solvable in practice due to a prohibitive processor
requirement of the algorithm (for instance O(n10) processors) or large constants
hidden by the O-notation, and a parallel algorithms for P-complete problems
may still be useful because they might be faster than their sequential counter-
parts (just not “much faster”).

Where does LP fit into this picture? The trivial upper bound of O(
(
m+n

m

)
)

given in Section 2.1.2.1 for the number of iterations in the simplex method is
absolutely horrible:

(
m+n

m

)
≥
(

m+n
m

)m =
(
1 + n

m

)m, which, if m = n, becomes
2m. Unfortunately, Klee and Minty[25] proved that it is possible to construct
arbitrary-size data sets that make the method hit that bound when a certain piv-
oting rule is used (and no one has succeeded in finding a pivoting rule that can
guarantee polynomial time). In spite of this, the method is often surprisingly
efficient in practice(TODO: citation). In 1979, Khachiyan[24] discovered a differ-
ent kind of algorithm that is guaranteed to run in polynomial time, and thus he
proved LP to be in P.8 However, LP is also P-complete, as proved by Dobkin et
al.[9]. Still, for the reasons mentioned above, this should not discourage us from
seeking parallel versions of LP algorithms.

Greenlaw et al.[14] give a thorough presentation of NC and other aspects
of parallel complexity, and a more compact survey of the field can be found in
Natvig(TODO: citation).

7http://www.claymath.org/millennium/
8Strictly speaking, LP is a computation problem (one in which we seek a numerical answer)

rather than a decision problem and thus falls outside of the NP/P/NC discussion. However, like
many other computation problems, LP easily can be reformulated as a decision problem that can
be solved by the same algorithms; see [14, Problem A.4.3] for more references.

http://www.claymath.org/millennium/

16 CHAPTER 2. BACKGROUND

2.1.2.5 Duality

(TODO:)

2.1.2.6 Warmstarting

If one has solved an LP problem and then wishes to solve a very similar problem
(one that has been obtained by slightly altering the various coefficients of the
original problem), it would seem reasonable to believe that the optimal solution
to the original problem would be a great starting point in the search for the
optimal solution to the new problem. This turns out to be the case, and the
idea is known as warmstarting. It normally leads to a great reduction in the time
required to solve the new problem, and it is also very easy to implement —
the simplex method need not be changed at all; the program must simply be
capable of taking a suggested starting solution as input. Note that one might
have to run both phases, in case the original solution is not feasible for the new
problem. Interested readers may consult Vanderbei[37, Chapter 7] for a more
thorough introduction to the subject (which he refers to as sensitivity analysis).

Miriam employs Monte Carlo methods9 that produce a number of random
variations of the current state of the oil pipeline network in order to predict what
will happen if anything changes. (TODO: more information) This is an impor-
tant reason that they want to focus on the simplex method rather than interior
point methods(Section 2.1.5) — warmstarting is possible for the latter class of
methods, but it is much harder to implement. Various approaches to warmstart-
ing interior point methods are described by e.g. Gondzio and Grothey[13] (this
is actually a more general approach for quadratic programming), Yildirim and
Wright[42], and Benson and Shanno[5].

2.1.3 The revised simplex method

The revised simplex method (TODO: citation) is essentially just a linear algebra
reformulation of the mathematical operations of the standard simplex method.
Rather than

The exposition in this section is based on [37] and [17]. Note that all vectors
are column vectors unless stated otherwise.

While this may sound even more time consuming, it turns out that a few
tricks will remove the need to perform inversions all of the time. Since most
real life problems are sparse, the matrix computations can take that into account
and save a lot of time compared to the standard simplex method (in which each
iteration requires O(mn) arithmetic operations for the pivot operation).

9TODO: describe Monte Carlo methods

2.1. LINEAR PROGRAMMING 17

For these reasons, the revised simplex method is almost always preferred
over the standard simplex method in practical implementations (see, for in-
stance, our list of available solvers in Section 2.1.7).

We begin with expressing the slack form constraint tableau in matrix nota-
tion. An LP problem in slack form (with renaming of the slack variables) looks
like the following:

Maximise

ζ =
n∑

j=1

cjxj (2.14)

with respect to

xn+i = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.15)

x1, . . . , xn+m ≥ 0 (2.16)

If we let

A =

a11 a12 · · · a1n 1
a11 a12 · · · a1n 1

...
...

. . .
...

. . .
am1 am2 · · · amn 1

 (2.17)

b = [b1 · · · bm]> (2.18)

c = [c1 · · · cn 0 · · · 0]> (m zeroes at the end) (2.19)

x = [x1 · · · xn xn+1 · · · xn+m]> (2.20)

we can express the problem in a very compact manner:

Maximise

ζ = cx (2.21)

with respect to

Ax = b (2.22)

x ≥ 0 (2.23)

In order to be able to handle the pivot operations, we will need to split each
of our matrices and vectors into two in order to reflect which entries correspond
to basic variables and which ones do not. As before, we let N be the collection

18 CHAPTER 2. BACKGROUND

of nonbasic variable indices (initially {1, . . . , n}), and B the collection of basic
variable indices (initially {n + 1, . . . , n + m}). All the basic variables are put
in the vector xB, and the nonbasic variables are put in xN — the order of the
variables within these vectors do not matter, as long as the entries of the other
matrices are arranged correspondingly. We split A into two matrices: an m × n
matrix N, containing all columns from A that correspond to nonbasic variables
(initially, this will be all the columns containing the aij entries), and B, which
is initially an m × m identity matrix. Similarly, we split c into one vector cN
for the objective function coefficients belonging to nonbasic variables (initially,
cN = [c1 · · · cn]>) and one vector cB for the coefficients belonging to basic
variables (initially anm element zero vector). After each pivot operation, entries
of these matrices and vectors will swap positions according to how the collections
of basic and nonbasic variables have changed, but the values themselves will
never change during the course of the algorithm. This means that numerical
stability may be significantly improved. Note that the “right hand side” vector
b remains a single vector that will never change. Using these “split” matrices
and vectors, we can express the problem as

Maximise

ζ = c>NxN + c>BxB (2.24)

with respect to

NxN + BxB = b (2.25)

x ≥ 0 (2.26)

During execution of the (standard) simplex method, it is always the case that
each basic variable occurs in exactly one equation, and hence each basic variable
can be written as a function of the nonbasic variables. Therefore, B must be
invertible, so we can multiply (2.25) by B−1 and rearrange it to get

xB = B−1b−B−1NxN . (2.27)

Combining this with (2.24), we get

ζ = c>NxN + c>BxB (2.28)

= c>NxN + c>B (B−1b−B−1NxN) (2.29)

= c>BB
−1b + (c>N − c>BB

−1N)xN . (2.30)

This is very interesting, because it provides explicit formulas for the simplex
tableau at any time given the current basic/nonbasic variable configuration.
From (2.27) (which can be rewritten as B−1NxN + xB = B−1b), we see that

2.1. LINEAR PROGRAMMING 19

the current body of the standard simplex tableau (known as [aij](TODO: this
must match the preceding subsection)) can be expressed as B−1N, and the right
hand side of the tableau (known as [bi] — this is also the current values of the
basic variables) is B−1b. Similarly, we see from (2.30) that c>BB

−1b corresponds
to the current value of the objective function (obtained by setting xN = 0), and
the current objective function coefficients (also called the reduced costs) from the
tableau (known as [cj]) are c>N − c>BB

−1N. Armed with this knowledge, we can
formulate the revised simplex method, as shown in Algorithm 2.

(TODO: Show how we rearrive at the same expression for the tableau after
pivoting)

(TODO: Phase I and II)

loa 2: The revised simplex method

1: procedure REVISEDSIMPLEX(m, n, N, cN , b)
2: Let cB be an m element zero vector
3: Let B be an m×m identity matrix
4: Let B−1 be an m×m identity matrix
5: N ← {1, . . . , n}
6: B ← {n+ 1, . . . , n+m}
7: loop
8: ĉ>N ← c>N − c>BB

−1N . Compute the reduced costs
9: Search ĉN for a negative number; let e be its index (the corresponding

nonbasic variable is then xê)
10: if no negative number found in ĉN then
11: return c>BB

−1b, B−1b . Optimal value and basic variable values
12: end if
13: Let Ne be the eth column of N (the one corresponding to xê)
14: â← B−1Ne . Compute the tableau coefficients of xê

15: b̂← B−1b . Compute the basic variable values
16: Let l be a value of i that minimises t = b̂i

âi
(only perform this calcula-

tion for those i ∈ B where âi is positive)
17: if no value is found for l then
18: return “The problem is unbounded”
19: end if
20: Exchange the eth column of N with the lth column of B
21: B ← (B − {l̃}) ∪ {ê}
22: N ← (N − {ê}) ∪ {l̃}
23: Recalculate B−1 from B
24: end loop
25: end procedure

This method, however, would seem problematic in that it seems to require B
to be inverted in every single iteration. However, it turns out that since only one
column of B changes between iterations, the new B−1 can be calculated from

20 CHAPTER 2. BACKGROUND

the old one by changing one column (this change can be performed by multi-
plying by a certain sparse matrix)(TODO: a little bit on eta files). This approach
is described in greater detail in Section 8.3 of [37].

2.1.4 ASYNPLEX

[17]
As we will describe in Section 4.1,
Since this algorithm is not a result of our own research, we will describe it

briefly here. We did need to make some small changes to the algorithm, and we
have described those in (TODO: reference).

There are essentially two ways to achieve parallelism:

Task parallelism can be achieved when two or more different operations can
be performed in parallel.

Data parallelism can be achieved when the same operation is applied to several
pieces of data (TODO: reformulate).

The extent to which the different parts of the computation are independent will
greatly affect the possibilities for speedup. Computations that can be split into
parts that are entirely independent are called embarrassingly parallel (see Section
2.3.3 for more information on this), and such computations will benefit greatly
from parallelisation (unless the computation is so simple that the time spent
distributing the data to the different processors exceeds the time saved on the
computation). (TODO: Amdahl’s law here?) Unfortunately, many important
problems are not embarrassingly parallel because one computation may depend
on an intermediate result from another computation (if, on the other hand, it de-
pends on the final result, it cannot be said to be parallelisable). (TODO: Comm.
to comp. ratio)

ASYNPLEX is an asynchronous algorithm for message-passing systems. The
authors also describe a shared-memory version of the algorithm. (TODO: Can
we do both on cell?)

Matrix inversion

In ASYNPLEX, one process, called the invert processor, is dedicated to perform-
ing matrix inversions. Whenever one of the other processes has decided that a
certain

Section 3.3.1

Candidate persistence

The key observation upon which ASYNPLEX is based is a phenonomenom called
candidate persistence. A attractive candidate is a nonbasic variable whose objective

2.1. LINEAR PROGRAMMING 21

function coefficient is negative, so that it is possible to select it as the entering
variable. According to Hall et al., (TODO: whom do they cite?), a variable that is
attractive in one iteration (but remains nonbasic because some other variable is
eventually selected as the entering variable) will often remain attractive in sub-
sequent iterations. Furthermore, it can be observed that the pivot operation itself
is usually very cheap (assuming that the implementation swaps matrix columns
implicitly by using permutation lists to keep track of the current location of each
column, while the columns themselves remain in one place) — the majority of
the work in each iteration is associated with determining the entering and leav-
ing variables and updating the solution vector. This leads to the idea of having
several

one or more iteration processes
In addition, ASYNPLEX employs a basis change manager process, which is

responsible for ensuring that no
and a column selection manager process, which keeps track of which variables

are currently regarded as attractive.
The pseudocode uses some overly compact names (that probably stem from

some old naming convention; Maros[29] uses them too) for each step of the al-
gorithm; they are as follows:

FTRAN

BTRAN

UPRHS Update the right-hand sides

UPDATE BASIS

CHUZR Choose row (leaving variable)

CHUZC Choose column (entering variable)

We now present the pseudocode for ASYNPLEX as it is given by Hall et al.
in [17] (with a few notational adaptations). It is assumed that there is a separate,
sequential piece of code that handles input reading and sets up the different
processes. In Section 3.3.2, we describe how we have adapted the algorithm.

A short explanation of Hall’s notation may be useful. Each process has a
number of points where it sends or receives data to or from the other processes.
Each such communication endpoint is given a short identifying tag, both on the
sending and receiving end, and each send or receive operation indicates where
it wishes to send to or receive from.

2.1.5 Interior point methods

(TODO: methods/algorithms) It is possible to interpret the simplex method in a
geometric fashion: with n decision variables, the space of all feasible or infeasi-

22 CHAPTER 2. BACKGROUND

loa 3: ASYNPLEX — iteration process number i (0 ≤ i < p)

1: procedure RUNITERATIONPROCESS(i, p,N,b, c)
2: ki ← 0
3: BTRAN
4: PRICE
5: FTRAN — let q be the ith most attractive candidate column, or -1 if that

does not exist
6: repeat
7: if received← V2 an LU factorisation of the inverse then . I1
8: Install new inverse
9: end if

10: while basis changes received← I7 are not yet applied do . I2
11: Apply basis change; ki← ki+ 1
12: end while
13: Permute column aq

14: FTRAN
15: while basis changes received← I7 are not yet applied do . I3
16: Apply basis change
17: FTRAN STEP; ki ← ki + 1
18: end while
19: if q = −1orĉq > 0 then
20: Send→ C4 a message that the candidate is unattractive . I4
21: else
22: Send→ R1 an offer to perform CHUZR . I5
23: Wait← (R2 or R3) for a reply to offer . I6
24: if Offer accepted then
25: CHUZR
26: Send → (I2/I3/I10 on all other iteration processes) the basis

change and pivotal column . I7
27: Send→ (V1 and C1) basis change . I8
28: UPDATE BASIS; ki ← ki + 1
29: BTRAN
30: Permute π
31: PRICE
32: FTRAN — choose a set of the most attractive candidates
33: Send→ C2 the most attractive candidates . I9
34: else
35: Wait← I7 for next basis change . I10
36: goto line 15
37: end if
38: end if
39: Wait← (C3 or C5) for a new candidate column, q . I11
40: until The algorithm terminates
41: end procedure

2.1. LINEAR PROGRAMMING 23

loa 4: ASYNPLEX — invert processor

1: procedure RUNINVERTPROCESSOR(p,m,N)
2: Let B be an m×m identity matrix
3: kv ← 0
4: repeat
5: while received← I8 a notification that xl has left the basis and xe has

entered do . V1
6: Swap the corresponding columns between B and N
7: kv ← kv + 1
8: end while
9: INVERT

10: Send→ I1 on all p iteration processes the new LU factorisation of the
inverse for basis kv . V2

11: until the algorithm terminates
12: end procedure

loa 5: ASYNPLEX — column selection manager

1: procedure RUNCOLUMNSELECTIONMANAGER(m,n)
2: kc ← 0
3: Mark all nonbasic variables as unselected
4: repeat
5: if received← I8 basis change then . C1
6: Mark the variable which has left the basis as unselected
7: else if received ← I9:i a set of candidates corresponding to basis ki

then . C2
8: if ki > kc then
9: Filter out the candidates already selected and those already

rejected after the FTRAN at a basis ≥ ki

10: kc ← ki

11: end if
12: Send→ I11:i the most attractive candidate to enter the basis and

mark the candidate as selected . C3
13: else if received ← I4:i a message that its current candidate is now

unattractive then . C4
14: Send→ I11:i the most attractive candidate to enter the basis and

mark the candidate as selected . C5
15: end if
16: until the algorithm terminates
17: end procedure

24 CHAPTER 2. BACKGROUND

loa 6: ASYNPLEX — basis change manager

1: procedure RUNBASISCHANGEMANAGER

2: kb ← 1
3: repeat
4: if received← I5:i an offer to perform CHUZR for basis ki then . R1
5: if ki = kb then
6: Send→ I6:i an acceptance of the offer . R2
7: kb ← kb + 1
8: else
9: Send→ I6:i a refusal of the offer . R3

10: end if
11: end if
12: until the algorithm terminates
13: end procedure

ble solutions (TODO: is “solutions” a good term here?) form an n-dimensional
space. Each constraint can be modelled as a plane in this space — an equality
constraint requires that feasible solutions lie on the plane, and an inequality con-
straint requires that feasible solutions lie to one of the sides of the plane. The a
geometrical shape known as a simplex — hence the name of the method. Each
intermediate solution produced by the simplex method represents a point that
is a vertex (an intersection between (TODO: n or more) planes). There exists
another class of algorithms called interior point methods, whose intermediate so-
lutions always lie in the interior of the simplex. , and interior point methods
have

A distinct advantage of interior point methods over the simplex method is
that they have polynomial worst-case bounds on their time consumption. The
first polynomial interior point method was invented by Khachiyan[24] in 1979,
and one of the most well-known methods is due to Karmarkar[22]. (Natvig/El-
ster/Mujahed: You or Mujahed mentioned that (dense) Cholesky factorisation
had been implemented on Cell; can you send me the reference?)

In order to limit the scope of this project, interior point methods will not be
taken into consideration, but we felt that no discussion of linear programming
would be complete without mentioning this subject.

2.1.6 Use of LP to solve advanced flow problems

A flow network is a graph where a flow of some substance (expressed in e.g. litres
per second) is associated with each edge. In addition, each edge may have up-
per and lower bounds (known as capacities) on the flow value, and possibly a
cost that will be incurred per unit of flow that is sent through the edge. The
goal may, for instance, be to send as much flow as possible from a designated

2.1. LINEAR PROGRAMMING 25

source (producer) node to a designated sink (consumer) node, or to send a cer-
tain flow as cheaply as possible. Other variations are also possible. If there are
no lower bounds and no costs, there exist efficient algorithms for the maximum
flow problem, such as the Edmonds-Karp algorithm[7]. In more complex situ-
ations, no specialised algorithms exist, but LP comes to the rescue. Cormen et
al.[7] give a good overview of how to express a flow problem as an LP prob-
lem, which we summarise here (but only for the simple case of a maximum flow
problem). There are two variables for each edge, expressing the amount of flow
in each direction through that edge. The flow from node u (directly) to node v is
denoted by fuv, and it may not increase above the edge capacity cuv (which may
be different in each direction). The following constraints apply:

• The flow in one direction is the negative of the flow in the opposite direc-
tion: fuv = −fvu, for all u, v.

• The flow through an edge may not exceed the capacity for that edge in that
direction: fuv ≤ cuv, for all u, v.

• Except for the source s and the sink t, all flow entering a node must also
exit the node. Due to the “negative flow” convention, this is equivalent to
requiring that the flow out of a node is zero:

∑
v fuv = 0 for all u except s

and t.

The objective is to maximise the flow out of the source (which, by the rules
above, must equal the flow into the sink), which is

∑
v fsv.

(TODO: Consult Miriam on this)

2.1.7 State of the art: sequential LP solvers

ILOG CPLEX

CPLEX, developed by the company ILOG, is the industry standard LP solver(Natvig/Elster/Mujahed:
Who/what can I cite here?). Being proprietary closed-source software, we can-
not examine its inner workings (but they are probably too complex for this
project). While our department does not have a CPLEX license, we can still to
some extent compare the answers from our solvers to those that CPLEX gives(TODO:
as long as the solver is good enough, I guess the answers will always be correct
— or?) — sites such as (TODO: citation) provide CPLEX’ answers to the netlib
problem sets, and Miriam has a license that they can use to find the answers to
their own data sets. (TODO: Something on why Miriam doesn’t just use CPLEX
rather than bothering with PS3?)

GLPK

Gnu Linear Programming Kit

26 CHAPTER 2. BACKGROUND

Unfortunately, the code base is extremely large, comprising more than (TODO:
) lines of C code distributed across nearly 100 files. While only a handful of these
files contain functionality that is directly related to the simplex method, reverse
engineering it still would be a daunting task — especially given that their coding
conventions apparently calls for very short variable names.

GLPK is released by its authors under version 3 of the GNU General Public
License.

Xpress

http://www.dashoptimization.com/home//products/products_optimizer.

html

OOPS

http://www.maths.ed.ac.uk/˜gondzio/parallel/solver.html

CLP

COIN-OR Linear Program Solver (http://www.coin-or.org/Clp/).

Numerical Recipes

(2nd and 3rd ed.)

SoPlex (Wunderling)

An implementation developed as a part of Roland Wunderling’s Ph.D. thesis[39],
and available at http://soplex.zib.de/.

retroLP

As opposed to virtually all other LP solvers, retroLP[40] implements the original
simplex method, not the revised method. The former is advantageous for dense
problems, which occur in some special applications such as “wavelet decompo-
sition, digital filter design, text categorization, image processing and relaxations
of scheduling problems.”[41] As compared to GLPK, the code is fairly short and
readable — but it still consists of (TODO:) lines.

retroLP is released by its authors under version 2 of the GNU General Public
License.

Vanderbei’s code

Vanderbei has published a freely available implementation of the revised sim-
plex algorithm as presented in his book[37], at http://www.princeton.edu/

http://www.dashoptimization.com/home//products/products_optimizer.html
http://www.dashoptimization.com/home//products/products_optimizer.html
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://www.coin-or.org/Clp/
http://soplex.zib.de/
http://www.princeton.edu/~rvdb/LPbook/
http://www.princeton.edu/~rvdb/LPbook/

2.1. LINEAR PROGRAMMING 27

˜rvdb/LPbook/. While it comprises more than 9000 lines, the core parts are
fairly short and well separated from the rest of the code (much of which deals
with different input formats).

The code has no licence information attached to it. Anyone who wishes to
commercially utilise those parts of our code that are derived from Vanderbei’s
code are strongly advised to contact Vanderbei.

2.1.8 State of the art: parallel LP solvers

ASYNPLEX (Hall, McKinnon)

[17]

Parallelisation of CPLEX’ dual simplex method (Bixby, Martin)

[6]

Parallelisation of the revised simplex method using CUDA (Spampinato)

Compute Unified Device Architecture (CUDA) is a framework from the graph-
ics processing unit (GPU) manufacturer nVidia. Daniele Spampinato, a stu-
dent at our department, implemented the revised simplex method by using the
CUBLAS linear algebra library to offload the linear algebra computations onto
the GPU[36]. He reported overall speedups of 2.0–2.4 relative to a sequential
implementation using ATLAS, but only for dense data sets. The only operation
that (by itself) yielded the vast speedups that are theoretically possible when
using GPUs (which have hundreds of cores) was the basis inversion[36, Figure
5.6 on p. 45]. Furthermore, he experienced major problems with numerical sta-
bility. Note that his implementation parallelised each linear algebra operation
individually; it was not a parallel version of the simplex method itself.

XPRESS (Andersen, Andersen)

[3]

SMoPlex, DoPlex (Wunderling)

These are, respectively, shared memory and distributed memory implementa-
tions of the revised simplex method, also from Wunderling’s thesis[39]. Re-
grettably, these implementations are not available online, and since the thesis is
written in German, we have not been able to study it — but it may prove use-
ful to someone proficient in German.(Natvig/Elster/Mujahed: Does this sound
sarcastic? It’s not the intention...) According to slides from a presentation by
Hall(TODO: link), the implementation is “parallel (except for INVERT) for only
two processors”, and gives “good results only for problems when n� m”.

http://www.princeton.edu/~rvdb/LPbook/
http://www.princeton.edu/~rvdb/LPbook/

28 CHAPTER 2. BACKGROUND

Parallelisation of interior point algorithms (Karypis, Gupta, Kumar)

Those interested in [23]

retroLP

(TODO: See above.)

Distributed simplex algorithm (Ho, Sundarraj)

[20]

2.2 Cell Broadband Engine

The Cell Broadband Engine (Cell BE) is a single chip multiprocessor architecture
jointly developed by IBM, Sony and Toshiba. The initial design goals was to cre-
ate an architecture that would be suitable for the demands of future gaming and
multimedia applications (meaning not only high computational power, but also
high responsiveness to user interaction and network communications), with a
performance of 100 times that of Sony PlayStation 2[21]. Several obstacles to
such goals exist; in particular the infamous brick walls[4]:

Memory wall While processor speeds have grown substantially over the past
few decades, the growth in memory access times has been much more
modest. Because of this, the relative cost of memory accesses is now pro-
hibitively large, and for efficient scientifice computation, it is necessary to
to use caches and try to keep data cached for as long as possible once it has
been loaded from memory.(TODO:)

Power wall Heat dissipation becomes a greater and greater obstacle as frequency
increases (TODO: and size is reduced). (TODO:)

ILP wall Instruction-level parallelism techniques such as pipelines and specula-
tive execution face diminishing returns as most programs have a limited
amount of exploitable parallelism, and the hardware and power cost of
implementing such techniques is growing.(TODO:)

The Cell BE architecture tries to solve these problems in the following ways:

• Having two different kinds of cores: one optimised for control logic and
operating systems, and one optimised for computational throughput.

• Giving the programmer explicit control over data movement in the mem-
ory hierarchy, rather than having hardware-controlled caches.

• (TODO: more?)

2.2. CELL BROADBAND ENGINE 29

2.2.1 Architecture

Overview

The Cell BE consists of one PowerPC Processor Element (PPE) and eight Synergistic
Processing Elements (SPE)

PPE

PowerPC Processor Unit (PPU) Separate register files for fixed-point, floating-
point, and vector. 32 SIMD registers.

SPE

Unified register file with 128 128-bit registers
Synergistic Processor Unit (SPU)

Memory bus and DMA controller

Base addresses (both in local storage and in system memory (TODO: correct?))
for all DMA transfers must be aligned on a 16-byte (quadword) border(TODO:
term?), and the data to be transferred must be a multiple of 16 bytes. Perfor-
mance is improved if aligned, whole cache lines (128 bytes(TODO: verify)) are
transferred at a time.

Local Store (LS) Memory Flow Controller (MFC)
Another method that is available for communication between the cores is

mailboxes signals

2.2.2 Programming methods

The vector data type

Compiler intrinsics

Compiler directives

__attribute__((aligned(16))), spu_sel, __builtin_expect, _align_hint, malloc_align, restrict

loop unrolling, function inlining (watch for code size!)

Branch prediction and avoidance Given the deep pipeline of the SPEs(TODO:
verify), branch mispredictions are very expensive. A couple of compiler direc-
tives are available to let the programmer help the compiler and the SPE:

1. __builtin_expect(expression, expected) will evaluate and return
expression while informing the compiler that the programmer expects
the result to be expected. This is typically placed in the condition of an
if/else.

30 CHAPTER 2. BACKGROUND

2. If the condition of an if/else is not easily predictable, but the if/else
bodies are very simple, one might be better off by computing both bod-
ies and using a special selection instruction to determine which result will
be kept. spu_sel(a, b, condition) will return either a or b depend-
ing on the truth value of condition. This translates to (TODO: a single)
instruction which does not involve branches.

Overlays

(TODO:)

2.2.3 Tools and libraries

(Natvig’s comment: Good: which libs are used in the project? Better: Which libs
are relevant for the project?)

BlockLib

[1]

Cell Superscalar

(CellSs) [31]

RapidMind

http://www.rapidmind.net/

OpenMP for Cell

[38]

MPI for Cell

(TODO: Add citations: Kumar: A Buffered-Mode MPI Implementation for the
Cell BE Processor; Krishna: A Synchronous Mode MPI Implementation on the
Cell BE Architecture; JulCe)

The Cell Messaging Layer (CML): http://www.ccs3.lanl.gov/˜pakin/
software/cellmessaging/

(TODO: move)CML does have some disadvantages. First, it only supports
messaging between the SPEs, not between an SPE and the PPE. Second, CML
(like MPI) employs the Single Program Multiple Data (SPMD) model, which
means that all processors must run the same program. This means that even
if different SPEs are to perform different tasks, they must each contain the code
both for its own functionalify and the code for the functionaligy of all other SPEs.

http://www.rapidmind.net/
http://www.ccs3.lanl.gov/~pakin/software/cellmessaging/
http://www.ccs3.lanl.gov/~pakin/software/cellmessaging/

2.3. MISCELLANEOUS TOPICS 31

Still, we chose to run both the column selection manager and the basis change
manager on the SPEs, because their code is fairly short, their operations are fast
and simple, and it is vital that they are able to respond quickly to messages from
the iteration processes. For the same reasons, we merged them into one SPE
thread so that the other seven SPEs would be available for iteration processes.

(TODO: Locate a BLAS library)

2.3 Miscellaneous topics

2.3.1 pthreads

(TODO:)

2.3.2 Representation of sparse matrices

(TODO:)

2.3.3 Amdahl’s law

The following section is taken from our fall project report[10].
In 1967, Gene Amdahl argued[2] that parallel processing was not a good way

to improve performance, based on the following observation: If we have a com-
putation that consists of a sequence of serial steps that take a total time of ts,
and a certain percentage f of these steps can be performed in parallel using p

processors10, then the total time for the sequential part of the calculation will be
fts, and if we can distribute the remaining workload equally over the p proces-
sors, the parallel part will take the time (1 − f)ts/p. Since the sequential part
must presumably be completed before the parallel computations can begin (or
the other way around), these times must be added together for a total time of
tp = fts + (1− f)ts/p, and we arrive at Amdahl’s law11 for the speedup S(p):

S(p) =
ts
tp

=
ts

fts + (1− f)ts/p
=

1
f + (1− f)/p

=
p

1 + f(p− 1)
(2.31)

The most significant aspect of this formula is that it highlights the importance of
f as a severely limiting factor for the potential speedup of parallelising. Amdahl
used this to claim that parallel programming was not a good idea. However,
since parallelisation is currently regarded as the primary way of improving per-
formance in high performance computing[4], the modern interpretation is that

10These are quite optimistic calculations, since we assume that the calculation can be paral-
lelised without incurring communication penalties or extra computation steps, and that the par-
allel processors are as fast as the sequential one.

11Amdahl did not actually state this formula in his article, but it has been derived later (in
many different forms) from his article.

32 CHAPTER 2. BACKGROUND

speedups can come arbitrarily close to p if only we can make f small enough,
and thus, one should focus on reducing f when parallelising a calculation. On
the other hand, since f in most situations cannot (even approximately) become
equal to zero12, Amdahl’s law provides an upper bound on performance gain
for a specific problem given the best nonzero f we can achieve: As p tends to
infinity, the speedup converges to 1/f . Again, it should be noted that these
bounds are optimistic, as they are based on very simplifying assumptions.

12Calculations in which f ≈ 0 and where the assumptions about independence between the
parallel parts hold are called embarrassingly parallel.

Chapter 3
Design

(TODO: Chapter introduction)

3.1 Overall approach

The author and his advisor agreed that we should follow a gradual, step by step
approach in which we begin with solving simpler problems and (TODO:) We
decided upon the following overall plan:

1. Implement the standard simplex method on a sequential machine.

2. Parallelise the standard simplex method on Cell (if the Cell turns out to
be very hard to program, we could first parallelise it on a regular mul-
ticore machine using e.g. pthreads or OpenMP (see http://openmp.

org/wp/) to make sure our parallelisation approach is correct).

3. Implement the revised simplex method on a sequential machine.

4. Parallelise the revised simplex method on Cell. This is expected to be
harder than (TODO:) most likely by implementing an existing algorithm.
For each implementation, several refinements could be investigated:(TODO:
wording)

a) Investigating various ways of handling numerical instability that may
occur when using single precision arithmetic.

b) Experimenting with how different representations of sparse matrices
and vectors affect performance.

c) Figuring out how to improve performance by utilising the Cell/BE’s
vector operations.

d) Using autotuning to find good values for e.g. data transfer block
sizes.

33

http://openmp.org/wp/
http://openmp.org/wp/

34 CHAPTER 3. DESIGN

5. Investigate interior point methods and implement them if time permits.

3.2 Standard simplex method

In order to become familiar with programming the Cell BE, we initially imple-
mented a few versions of the standard simplex method (which is best suited for
dense problems). (Natvig’s comment: This can be justified when we have a task
description and “angrepsmåte”) As mentioned in Section 4.1, it turned out that
it is extremely hard to make the standard simplex method work reliably on even
medium-sized data sets

Our Cell implementation is a fairly straightforward parallelisation of the
standard simplex method (that is, it is only a parallel formulation of the same
algorithm), so it gives the same results as our sequential implementation. Given
that the sequential implementation normally yields a wrong answer for prob-
lems of nontrivial size, it is not particularily useful for computations, but Miriam
(who has invested in a Cell (TODO: Move this information to the introduction))
was still interested in a demonstration of how much impact the data transfers
have on performance. Therefore, we provide here a description of our paral-
lelisation strategy, and in Section 5.2.1 we provide detailed timings of some test
runs.

3.2.1 PPE version

(TODO: Far from finished) As described in Section 2.2.1, the PPE supports SIMD
instructions (also referred to as vector instructions) capable of operating on four
single precision floating point values simultaneously. Since the simplex method
primarily consists of row operations on the tableau, it is an excellent target for
such vectorisation — the only problem is the low arithmetic intensity, which
may reduce performance because a lot of data needs to be loaded into the reg-
isters, and only a very simple and fast operation is being performed on each el-
ement before it is thrown out again.(TODO: How much does this matter, given
the fast LS? However, if the data is too large to fit in the LS, things will probably
slow down a lot.)

(TODO: Something on why we chose C++?)

3.2.2 SPE version

Our approach is fairly obvious1:

1After having written the application, we found that Yarmish[40] uses a very similar ap-
proach, albeit for cluster computers with MPI.

3.3. REVISED SIMPLEX METHOD 35

1. The PPE, which initially holds the entire tableau, distributes the tableau
rows evenly among the SPEs (TODO: SPE or SPU?), giving each SPE a
batch of consecutive rows.

2. The first SPE analyses the objective function to determine the leaving vari-
able and sends the column number to the PPE, which distributes this num-
ber to the other SPEs. If no leaving variable was found, the optimal solu-
tion has been found, and the SPEs are asked to send their basic variable
values to the PPE and terminate. (TODO: which pivot rule?)

3. Each SPE determines the strictest bound (that is imposed by its subset of
the rows) on the value of the leaving variable and sends the bound (TODO:
and the corresponding row number) to the PPE.

4. The PPE determines which SPE that “wins” and requests this SPE to trans-
fer the pivot row to main memory; afterwards, all the other SPEs are re-
quested to receive this row(TODO: wording). If no SPEs found a finite
bound, the problem is unbounded, and the SPEs are asked to terminate.

5. Each SPE performs row operations on its part of the tableau, using the
pivot row, and notify the PPE upon completion. Go to step 2.

3.3 Revised simplex method

(TODO:)

3.3.1 Performing the matrix inversion in parallel

The revised simplex method as described in (TODO: reference) must occasion-
ally spend some time reinverting the basis matrix. A simple yet attractive idea is
to offload the matrix inversion onto a separate processor, which may then spend
all of its time performing inversions. Then, the main processor can spend all
of its time on the remaining steps of the method (while occasionally being pro-
vided with a reinverted basis matrix from the inversion processor), and one gets
the added benefit of the matrix being reinverted more often (which should be
good for numerical stability). (TODO: can the inversion itself be parallelised?)
Unfortunately, as reported by Ho and Sundarraj[20, Table 2], the inversion con-
sumes less than 20% of the total time of the revised simplex method, and as such,
speedups are limited as per Amdahl’s law (see Section 2.3.3). Furthermore, this
approach does not scale to more than two processors. Therefore, we have cho-
sen not to pursue this direction. Note, however, that ASYNPLEX incorporates
the same idea of having a separate inversion processor.

36 CHAPTER 3. DESIGN

3.3.2 Our adaptation of ASYNPLEX

As discussed in (TODO: reference), we realised that we had too little experi-
ence with numerical computation in general and the simplex method in par-
ticular, and therefore we decided to find an existing sequential implementation
of the simplex method and rewrite it as per the ASYNPLEX algorithm. Find-
ing a suitable implementation was not easy, because one apparantly needs to
make a trade-off between small code size and ease of understanding on one
hand and numerical stability on the other hand. As noted in (TODO: reference),
all the major, well-known implementations have exceedingly large code bases.
(TODO: Have we discussed rationales for our choice anywhere?) After unsuc-
cessful attempts at understanding GLPK and (TODO:), we chose Vanderbei’s
implementation.

Basing ourselves on an existing sequential implementation also has the ad-
vantage of allowing a direct comparison between the sequential and parallel
versions of the same code, allowing us to better (TODO: spell “gaugue”) the
speedup that is offered by ASYNPLEX itself (Hall et al. measured their perfor-
mance against an entirely different sequential implementation), and the further
speedup that is obtained on Cell. (TODO: actually perform such comparisons)

The disadvantage, of course, is that retrofitting an sequential implementa-
tion may require a vast effort in case parts of the code does not lend itself well
to parallelisation (this easily happens when the code relies on global variables
or internal, static variables, because such variables will need to be duplicated so
that each thread has its own instance of it.) For this reason, we chose to switch
to C++(TODO:).

3.3.2.1 Sparse vector and matrix representations

(TODO: This sentence goes either here or in unimplemented features) Vander-
bei’s implementation uses the Compressed Column Storage format, also known
as the Harwell-Boeing Sparse Matrix Storage Format[35] for sparse matrices and
a similar scheme for sparse vectors. A sparsem×n-matrix containing k nonzero
values is represented as two numbers telling the number of rows and columns,
and three arrays:

values contains all k nonzero values, column by column (first all nonzero values
from the first column, from top to bottom, then from the second column,
and so on).

rowIndices contains k integers, one for each element of the values array, telling
which row that element is located in.

columnPositions always contains n + 1 elements — one for each column, and
one additional element. Each entry contains an index into the two other

3.3. REVISED SIMPLEX METHOD 37

arrays, which tells where the values of the corresponding column start.
The last element contains k, which in effect tells us the last valid index into
the two other arrays (namely k − 1). Thus, the indices of the elements of
column i are rowIndices[i] through rowIndices[i+ 1]− 1.

For instance, the matrix 9 0 0
0 2 7
4 3 0

would be represented as follows:

Value 9 4 2 3 7 —
Row index 0 2 1 2 1 —

Column positions 0 2 4 5
Note that we use zero-based indices. A sparse (column) vector is represented

as two arrays containing the nonzeroes and the row indices, and two single
variables telling the number of rows and the number of nonzeroes.

Unfortunately, Vanderbei did not have a structure or class that contained the
arrays and variables for each sparse matrix or vector. For instance, the matrix
A would be represented with the arrays a (values), ia (row indices), ka (col-
umn positions) and the variable (TODO:) (number of nonzeroes) — a naming
scheme that we found to be very impractical (all variables must be passed as pa-
rameters to functions that are to manipulate sparse vectors and matrices), and
which (TODO: oppos. facilitate) our process of understanding his code. There-
fore, we introduced structures that combined these related arrays and variables,
and we refactored the code to use these strucures throughout. Our structure for
sparse matrices looks like this:(TODO: remove typedefs)

struct SparseMatrix {

int rows;

int cols;

int numNonzeroes;

int * rowIndices;

int * colPos;

TYPE * values;

};

Note that TYPE is a preprocessor symbol which facilitates experimentation with
different precisions (TODO: describe TYPE somewhere) — it should be defined
as either float or double.

Due to the vast amounts of vector manipulation (and also in order to track
down some bugs we believed were related to reading/writing outside of the
array bounds, but turned out to be caused by wrong memory management),
we made a more elaborate sparse vector structure, which uses the vector class

38 CHAPTER 3. DESIGN

from the C++ Standard Template Library. The at() function performs boundary
access checking on each access. (TODO: a define to enable/disable usage of at(),
and update this code) The compiler will most likely inline the simple accessor
functions and operators, so that the usage of classes with and vector will not
incur any performance penalty (if the boundary checking is turned off). The
structure looks like this:

class SafeSparseVector {

private:
int rows;

std::vector<int> rowIndices;

std::vector<TYPE> values;

public:
int numNonzeroes() const { return values.size(); }

int numRows() const { return rows; }

void setRows(int rows) { this->rows = rows; }

void resize(int size) {

rowIndices.resize(size);

values.resize(size);

}

void clear() {

rowIndices.clear();

values.clear();

}

void append(TYPE value, int rowIndex) {

values.push_back(value);

rowIndices.push_back(rowIndex);

}

TYPE & value(int i) { return values.at(i); }

TYPE value(int i) const { return values.at(i); }

int & rowIndex(int i) { return rowIndices.at(i); }

int rowIndex(int i) const { return rowIndices.at(i); }

TYPE maxValue() const;
};

Beware that in order to save time, Vanderbei preallocates the arrays for any
sparse vector with r rows to have size r, but only the first k entries are used at
any time (where k is the number of nonzeroes). Whenever the contents (and the
number of nonzeroes) of the vector changes, one can simply fill the arrays with
as many entries as necessary, since each individual vector has a constant size
throughout the program and the number of nonzeroes obviously will never ex-
ceed the full vector size. Also, Vanderbei did not explicitly store the sizes of the
vectors and matrices, as they could always be deduced from context (normally
as having m or n rows). We feel that this practice obscures the relationship be-
tween a loop header and its body — if v is a sparse matrix with n columns and
we want to write a loop that manipulates v, we prefer e.g. for (int j = 0;

3.3. REVISED SIMPLEX METHOD 39

j < v.cols; ++j) to for (int j = 0; j < n; ++j). Therefore, we have
included the size information into our structures and have tried to used them
instead of m and n (this also makes the linear algebra functions slightly more
general, and it would facilitate unit testing). Note that such preallocation is not
done for matrices, since this would require too much space and the main part of
the algorithm rarely (TODO: or never?) changes the matrices.

Chapter 4
Implementation and testing

(TODO: Chapter introduction)

4.1 Implementation problems

4.1.1 Straightforward simplex implementation

Our initial plan was to begin with something we thought to be fairly straight-
forward and then gradually proceed towards harder problems, along the lines
described in Section 3.1. Steps 1 and 2 initially seemed to have been as sim-
ple as we had assumed them to be (step 1 was based on the descriptions and
pseudocode from [7] and [37]), and the Cell parallelisation went well. These
implementations are listed in Appendix A.1. Unfortunately, (TODO:)

Our beliefs were reinforced by the fact that well-known works such as [7]
and [37] make no mention of the standard simplex method being particularily
unstable (they only say that other methods are being used in practice because
they are more efficient). Agreeing with the words of Donald Knuth, “premature
optimisation is the root of all evil”[26], we decided that (TODO:) Also, [32]
provided an implementation of the standard simplex method — but when we
actually tried it, it turned out to run into the same kinds of stability problems
as our code (TODO: Make a section detailing experiments on this). In the third
edition[33], it has been replaced by an implementation of the revised simplex
method.

We succeeded in finding an implementation of the standard simplex method
that seemed to work well, called retroLP[41]. However, the code base was quite
large, and (TODO:)

We eventually resigned and contacted a group of mathematicians with which
Lasse is acquainted, describing our problems and asking them for help on how
to make the standard simplex method work stably[18]. Their response (TODO:

41

42 CHAPTER 4. IMPLEMENTATION AND TESTING

)
Most of the books we have consulted on the subject of linear programming

simply give the standard theoretical presentation and completely neglects to
mention the practical implementation difficulties — the author of this report
would very much have liked a book that is detailing what one needs to do in
order to make the simplex method stable. The closest we have come to this is
the splendid book by Maros[29]. (TODO:)

MPS parser The netlib data sets are stored in a file format called MPS (Math-
ematical Programming System). The format hails from the punch card age; as
such, it is fairly arcane (it employs fixed format), but all the simpler to parse.
This was fortunate, since we could not find any available parsers, so we had to
write our own (. (TODO: Put the source in the appendix) Our parser does not
handle all aspects of the format, but(TODO:) Maros[29, Chapter 6] gives a fairly
compact presentation of the format.

4.1.2 Numerical stability

(TODO: something on float vs. double?) Already at the beginning of the project,
concerns were raised about the suitability of the Cell/B.E. for this kind of com-
putations, since its double precision arithmetic is very slow compared to its sin-
gle precision arithmetic.

In order to demonstrate that the stability problems are not caused by er-
rors in our implementation, we have made our code support usage of the GNU
multiple precision arithmetic library (GMP — see http://gmplib.org/), which
among other features has a data type for representing arbitrary-size rational
numbers exactly. Since the simplex methods only apply the four basic arith-
metic operations throughout their operation, all numbers in the tableau will
remain rational1. Compile the code by running the buildgmp.sh script; this
will link to GMP (which must first have been downloaded, compiled and in-
stalled on the system) and tell our code to use the mpq_class data type for all
arithmetic operations and to output results in fraction form. When using GMP,
the code obviously slows down by a significant factor and the memory con-
sumption increases (which is why this approach is useless in practice unless it is
absolutely essential to obtain exact results). Table 4.1.2 on the next page shows
the results for some of the small-to-medium netlib sets. Note that our solver
performs maximisation, while the netlib sets are supposed to be minimised
(but for some reason, the MPS format does not specify whether to maximise or
minimise) — therefore, our MPS parser negates the objective function, so that
the answers will have correct absolute value but wrong sign. According to the

1Assuming, of course, that they were initially rational — but all data formats for representat-
ing of LP problems are based on floating point numbers, which are inherently rational.

http://gmplib.org/

4.2. SIMPLEX ALGORITHM 43

README file, The “official” netlib results have been obtained using the MINOS
solver, version 5.3. All digits of the netlib results agree with our exact results.
(TODO: used rev 66:abf2df...)

Data set Netlib result Our result Iterations Time
AFIRO −4.6475314286 · 102 406659

875 16 0.044 s

BRANDY 1.5185098965 · 103

−16065877392598163704545292298
35255763845946280057831648209
5777480900411096633986368891

1058002811160721713504750150
8720411569323127506371426417
345909327662918125000000000

605 18.334 s

LOTFI −2.5264706062 · 101 631617651547
25000000000 537 40.362 s

SCFXM2 3.6660261565 · 104

−487467141911986101107830583924465
3390630042031652016001773580110200
0732423011933261045459132101058706
9407177301915047835480055104995559

132968811760304712675433640078488
877195894209916975474747392970467
484815850625849844147283072046261
38144465522586000000000000000000

1299 2363.2 s

STOCFOR1 −4.1131976219 · 104

7368963026860358678147
0598121420626868798940
69612494322055836783

17915412056905368048
97461796875000000000
00000000000000000000

135 3.381 s

Table 4.1: Some results of our exact standard simplex implementation

4.1.3 (TODO: Missing citations)

(Natvig/Elster/Mujahed: This section is quite randomly placed; it is simply a
list of articles I think I am going to cite, but where I haven’t yet written the
context in which they are to be cited.) [16] [12] [15] [27]

4.2 Simplex algorithm

4.3 Test plan

4.3.1 Unit testing

While one might argue that testing an LP solver by running it against a collec-
tion of large data sets provides sufficient evidence that the implementation is
correct, one will gain even more confidence in the implementation by creating
unit tests. Any decent programmer knows how to structure a program by break-
ing it down into functions, each performing a limited, well-defined part of the

44 CHAPTER 4. IMPLEMENTATION AND TESTING

overall task. Unit testing, on the other hand, is often neglected, even though
it is highly beneficial during development. There is a lot of literature on the
subject(TODO: citation), but the basic idea is simple: write code that tests other
code. This is fairly straightforward to do as long as the code is partitioned into
functions in a reasonable manner. Code should be written to test each nontrivial
function for a number of different parameter combinations.

Another important aspect is that unit testing gives regression testing for free.
If one discovers a bug, one should immediately add a test that demonstrates the
bug before one fixes the code. That way, one can easily demonstrate that the bug
has been fixed, and since this test is now a part of the test suite (all of which
should be run after each change to any code) it will immediately discover the
bug if it resurfaces — after all, in large applications bugs in one part of the code
can often be triggered .

While some of these considerations are most relevant for software compa-
nies, (TODO:)

(TODO: Actually write some unit tests...)

4.3.2 Large data sets

(TODO: Something on the netlib LP problem set) (TODO: Set selection by H.
Y. Benson and D. F. Shanno?)

4.3.3 Memory leaks

valgrind with MemCheck (http://valgrind.org) is an invaluble tool for
detecting memory leaks (forgetting to release memory segments that are no
longer in use, such that the program will continuously consume more and more
memory) and illegal use of the memory allocation system (such as calling free()
on the same pointer twice, which may easily cause corruption of the memory al-
locator’s internal data structures). We have used this tool on several occasions
during this project, and we believe that we have removed all memory leaks
caused by our own code. The only leaks that remain are caused by Vanderbei’s
own code, but each leak occurs only once (not inside loops) and the data that is
being allocated is needed throughout the entire program (and is automatically
freed when the program terminates), so that we chose not to spend time on re-
moving them. A valgrind report on one run of our (TODO: x86) solver can be
found in Appendix (TODO:).

4.3.4 Comparison to other implementations

Miriam currently uses the ILOG CPLEX solver, and it would therefore be rea-
sonable to compare the time consumption of our algorithm to those of CPLEX.
(TODO: Convert some netlib test sets to cplex format and get Chris to run them)

http://valgrind.org

4.3. TEST PLAN 45

GLPK seems to be the most well-known open source solver, so we might also
want to compare our results against it. Of course, since our implementation is
based on Vanderbei’s code, we will want to measure speedups relative to his
implementation. Hall[17] provides relative speedups of ASYNPLEX runs on a
few netlib sets, with which we can compare our speedups.

Chapter 5
Evaluation

Due to all the challenges we have faced, we have not (TODO: Chapter introduc-
tion) Still, a number of interesting questions can be posed, and their answers
might serve as a guidance to those that will continue the project.

5.1 Performance measurements

5.1.1 Testing environments

The x86 experiments were run on a machine containing an Intel Core2 Quad
Q9550 with four cores at 2.83 GHz, with 4 GB of system memory. The compil-
ers are gcc version 4.2.4 and (TODO:) The system is running Ubuntu (TODO:
version) with Linux kernel version (TODO:). (TODO: The program was always
run with nice -n -20 to force the operating system to give maximal priority
to the program’s threads.)

The Cell experiments (TODO:)
(TODO: Describe system specifications and how timing was performed)

5.1.2 What to measure (TODO: reword — “research questions?”)

• How the numerical stability and the accuracy of the answer is affected by
using single precision in place of double precision

• Speedup of the Cell/B.E. parallel standard simplex implementation rela-
tive to the x86 implementation

• How the speedup of the Cell/B.E. parallel standard simplex implementa-
tion depends on the number of SPEs used (relative to a version using only
the PPE)

• How well a vectorised Cell/B.E. parallel standard simplex implementa-
tion the performs relative to a non-vectorised version

47

48 CHAPTER 5. EVALUATION

• Speedup of the Cell/B.E. ASYNPLEX implementation relative to the x86
implementation

• Time spent waiting for data to be moved to the local store (both for the
standard simplex method and for ASYNPLEX)

We will use data sets ranging from the smallest ones to the largest that our solver
can handle, in order to test the scalability of our implementations.

5.1.3 Measurement methods

Since the time utility, which reports three values for the time spent by the pro-
cess: ’̌real’ (wall time), ’̌user’ (time spent in the process’ own code), and ’̌sys’
(time spent in system calls on behalf of the process). For multithreaded pro-
grams, We therefore give the times are the ’̌real’

All x86 programs have been compiled with the ’̌-O3’ switch (maximal op-
timisation level) and are run using ’̌nice -n -20’ in order to ensure a favorable
scheduling priority.

For the smallest sets, the resolution of ’̌time’ is not adequate; neither is that
of the standard C function ’̌clock()’.

On Cell, we use the

5.2 Results

5.2.1 Standard simplex method

As discussed in (TODO: reference), the standard simplex method is highly sus-
ceptible to numerical instability, and our implementation is no exception to this.
It is essentially useless in practice because for most sets of realistic size, it pro-
duces answers that are off by orders of magnitude. Still, we might be able
to learn something about the computation to communication ratio of the al-
gorithm, and how much time vector operations are capable of saving. Also,
Miriam stated that they are interested in such measurements.

5.2.2 Revised simplex method

(Natvig/Elster/Mujahed: I think I will perform timing measurements both on
my C/pthreads implementation and on my Cell implementation.)

5.3. OTHER ASPECTS 49

5.3 Other aspects

5.3.1 Code size

(TODO: Not entirely sure about this) Vanderbei’s Phase I/II scheme causes the
code size to be larger than necessary, because much code must be duplicated in
order to work with both A and A>.

It is necessary to The debug flags, in particular -g3, dramatically increase
code size. Optimisation flags, in particular -O3, reduce code size greatly (strangely,
-Os does not seem to have any effect). As often happens in optimisation, there
are tradeoffs that must be considered — for instance, while loop unrolling gives
a good speedup of tight loops, it increases code size, which one cannot always
afford on Cell. Thus, neither manual unrolling nor -funroll-loops should
be done if (like us) one has a large program.

When optimising for size, one would normally want to consider using -fno-inline
in order to disable function inlining (replacing calls to short functions by the ac-
tual function code). However, this flag actually increased the size of the object
files. We suspect that this is due to heavy use of std::vector and its [] oper-
ator — the operator code itself can probably be translated into one instruction
(load using memory address and offset), while a function call would require
several instructions for parameter passing, stack management, etc.

The option that by far had the greatest impact on the final code size was
-s, which tells the linker not to include symbol information (a debug (TODO:
and linking) aid) in the object files. (TODO: This reduced the spu program to
one-third of its original size.)

5.4 Thoughts on unimplemented features / ideas for
future work

(TODO: Stuff we didn’t get the time to do...)

5.4.1 Dense interior point

(TODO: Already done, according to Mujahed (or was it only the Cholesky fac-
torisation step? - acquire reference)

5.4.2 Sparse interior point

The most time consuming step of many interior point algorithms is a Cholesky
factorisation.(TODO: citation) Monien and Schulze[30] discuss approaches to
parallelising this operation for sparse matrices, and one of those methods, called
the multifrontal method, is elaborated by Schulze[34].

50 CHAPTER 5. EVALUATION

Andersen and Andersen[3] present a parallel shared memory version of the
interior point algorithm that is (or was at the time) underlying the Xpress solver
(see Section 2.1.7). Yet another parallel interior point algorithm is presented by
Karypis et al.[23].

(TODO: Opportunities for implementing this on cell?)

5.4.3 Mixed precision

It may be possible to overcome the limited precision that is offered by the Cel-
l/BE without rewriting the computation to use double precision (which will in-
cur a massive slowdown). Some linear algebra problems can be solved by using
a technique called iterative refinement

By performing the We have not ventured to investigate such an approach
ourselves, but one may Kurzak and Dongarra[28] describe a successful imple-
mentation of a Cell/BE program for solving equations of the form Ax = b,
which meets the LINPACK benchmark’s requirements for the precision of the
solution.

Similar techniques may be investigated for
(TODO: Kurzak: “Great effort has been invested throughout the years in

optimizing code performance for cache-based systems, in most cases leading
to the programmers reverse engineering the memory hierarchy. By requiring
explicit data motion, the memory design of the Cell takes the guesswork out of
the equation and delivers predictable performance.”)

5.4.4 Representation of sparse matrices

Sparse matrices and vectors can be represented in numerous ways; Shahnaz et
al.[35] give a good review of different storage schemes. Several operations in a
linear solver will depend on the choice of such a representation. If one takes care
to place the code for each such operation in a separate function, only a modest
amount of work will be required to create implementations of several storage
schemes (with the added benefit that these implementations can be tested sep-
arately, and as long as they work, the entire solver will still work). Then, one
can measure how performance is impacted by the choice of storage scheme. The
first alternative representation to try might be the jagged diagonal storage, which,
according to [35], is “specially tailored for sparse matrix-vector multiplications”,
and its variation transposed jagged diagonal storage, which is “suitable for parallel
and distributed processing”.

It should be noted that some formats are intended for general matrices, while
others make assumptions about the distribution of nonzeroes — the latter cate-
gory may be risky to use internally in the solver, since one cannot tell in advance
what kind of patterns might emerge in the intermediate matrices produced in

5.5. DISCUSSION 51

the course of the algorithm. (TODO: are we sure about this?) Vanderbei’s im-
plementation uses the Compressed Column Storage format, also known as the
Harwell-Boeing Sparse Matrix Storage Format[35].

5.4.5 Vectorisation

As mentioned in Section 2.2.2, utilising vector operations is essential in order
to obtain the high computational throughput that is promised by the Cell/BE.
While vectorisation of dense matrix-vector operations is fairly trivial ((TODO:
viz.) our parallel standard simplex solver), putting vectors to good use in sparse
operations is much harder. For instance, vectorisation of a simple addition of
(mathematical) vectors will require the opportunity to add four adjacent num-
bers to four other adjacent numbers simultaneously, but with sparse representa-
tions, adjacent numbers in one vector may not correspond to adjacent numbers
(or any numbers at all) in the other vector.

One approach may be to, for each nonzero number, store all four numbers
that are located in the same vector (even if the other three are zeroes) — if the
element at index i is nonzero, we would store all elements from bn4 c · 4 through
bn4 c · 4 + 3. This would permit operations on four adjacent numbers — but
only if there is a matching vector in the other vector. Thus, the gains from this
approach may be rather limited. Furthermore, it would come at the cost of an
increase in the storage requirements, which may be detrimental since it would
increase the traffic on the Cell/BE bus. When using the compressed column
storage format as described in Section 3.3.2.1, the required space would increase
from 2k + 1 elements to 5k + 1 elements (it is sufficient to store the row index
of each vector, so only the value array would quadruple its size) in the worst
case of a vector having k nonzeroes with none of them spaced closer than four
elements apart. For an m × n-matrix containing k nonzeroes it would increase
from 2k + n+ 3 elements to 5k + n+ 3 elements.

5.4.6 Autotuning

5.5 Discussion

Chapter 6
Conclusion

The purpose of this project was to explore how linear programming algorithms,
primarily variations of the simplex method, might be parallelised and imple-
mented on the Cell Broadband Engine, a multicore processor with an innova-
tive architecture. To the surprise of both the author and his advisor, the various
simplex method turned out to be exceedingly difficult to implement sequen-
tially, even on a regular computer and without parallelisation — a fact which
we later learned is well-known within the mathematical optimisation commu-
nity. (TODO:)

Thus, the project was turned into an exercise in reading and refactoring other
people’s code (a useful skill to have, but it does not exactly qualify as research)

6.1 Experiences

Building an industrial-strength LP solver is a vast amount of work and must
only be undertaken with someone who has extensive knowledge of both pro-
gramming and numerics.

6.2 Future work

53

Bibliography

[1] M. ÅLIND, M. V. ERIKSSON, AND C. W. KESSLER, BlockLib: A Skeleton Library for
Cell Broadband Engine, in IWMSE ’08: Proceedings of the 1st international workshop
on Multicore software engineering, New York, NY, USA, 2008, ACM, pp. 7–14.
[cited at p. 30]

[2] G. AMDAHL, Validity of the Single Processor Approach to Achieving Large-Scale Com-
puting Capabilities, in Proceedings of the AFIPS spring joint computer conference,
1967, pp. 483–485. [cited at p. 31]

[3] E. D. ANDERSEN AND K. D. ANDERSEN, A parallel interior-point algorithm for linear
programming on a shared memory machine, Tech. Rep. 1998008, Université catholique
de Louvain, Center for Operations Research and Econometrics (CORE), January
1998. [cited at p. 27, 50]

[4] K. ASANOVÍC, R. BODIK, B. CATANZARO, J. GEBIS, P. HUSBANDS, K. KEUTZER,
D. PATTERSON, W. PLISHKER, J. SHALF, S. WILLIAMS, AND K. YELICK, The Land-
scape of Parallel Computing Research: A View from Berkeley, Tech. Rep. UCB/EECS-
2006-183, Electrical Engineering and Computer Sciences — University of Califor-
nia at Berkeley, December 2006. [cited at p. 28, 31]

[5] H. Y. BENSON AND D. F. SHANNO, An exact primal-dual penalty method approach
to warmstarting interior-point methods for linear programming, Computational Opti-
mization and Applications, 38 (2007), pp. 371–399. [cited at p. 16]

[6] R. E. BIXBY AND A. MARTIN, Parallelizing the Dual Simplex Method, INFORMS Jour-
nal on Computing, 12 (2000), pp. 45–56. [cited at p. 27]

[7] T. H. CORMEN, C. R. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to
Algorithms, McGraw-Hill Science/Engineering/Math, 2nd ed., 2003. [cited at p. 3, 15,

25, 41]

[8] G. DANTZIG, Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, 1963. [cited at p. 7]

[9] D. P. DOBKIN, R. J. LIPTON, AND S. P. REISS, Linear programming is log-space hard
for P, Information Processing Letters — TODO: Correct number/volume, 2 (1979),
pp. 96–97. [cited at p. 15]

55

56 BIBLIOGRAPHY

[10] A. ELDHUSET, Edge detection on GPUs using CUDA. Fall project report, Norwegian
University of Science and Technology, January 2009. [cited at p. 31]

[11] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, 1979. [cited at p. 4]

[12] P. E. GILL, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT, A practical anti-
cycling procedure for linearly constrained optimization, Mathematical Programming,
45 (1989), pp. 437–474. [cited at p. 43]

[13] J. GONDZIO AND A. GROTHEY, A New Unblocking Technique to Warmstart Inte-
rior Point Methods based on Sensitivity Analysis, SIAM Journal on Optimization, 19
(2008), pp. 1184–1210. [cited at p. 16]

[14] R. GREENLAW, H. J. HOOVER, AND W. L. RUZZO, Limits to parallel computation:
P-completeness theory, Oxford University Press, Inc., New York, NY, USA, 1995.
[cited at p. 15]

[15] J. A. J. HALL, Towards a practical parallelisation of the simplex method, Optimization
Online, (2005). [cited at p. 43]

[16] J. A. J. HALL AND K. I. M. MCKINNON, PARSMI, a Parallel Revised Simplex Al-
gorithm Incorporating Minor Iterations and Devex Pricing, in PARA ’96: Proceedings
of the Third International Workshop on Applied Parallel Computing, Industrial
Computation and Optimization, Springer-Verlag, 1996, pp. 359–368. [cited at p. 43]

[17] J. A. J. HALL AND K. I. M. MCKINNON, ASYNPLEX, an asynchronous parallel
revised simplex algorithm, Annals of Operations Research, 81 (1998), pp. 27–50.
[cited at p. 16, 20, 21, 27, 45]

[18] HENRIK ANDERSSON (POSTDOC, UNIVERSITY OF BERGEN), (Private e-mail corre-
spondence), April 2009. [cited at p. 41]

[19] F. S. HILLIER AND G. J. LIEBERMAN, Introduction to Operations Research, McGraw-
Hill Science/Engineering/Math, July 2004. [cited at p. 5]

[20] J. K. HO AND R. P. SUNDARRAJ, On the efficacy of distributed simplex algorithms
for linear programming, Computational Optimization and Applications, 3 (1994),
pp. 349–363. [cited at p. 28, 35]

[21] J. A. KAHLE, M. N. DAY, H. P. HOFSTEE, C. R. JOHNS, T. R. MAEURER, AND

D. SHIPPY, Introduction to the cell multiprocessor, IBM J. Res. Dev., 49 (2005), pp. 589–
604. [cited at p. 28]

[22] N. KARMARKAR, A new polynomial-time algorithm for linear programming, in STOC
’84: Proceedings of the sixteenth annual ACM symposium on Theory of comput-
ing, New York, NY, USA, 1984, ACM, pp. 302–311. [cited at p. 24]

[23] G. KARYPIS, A. GUPTA, AND V. KUMAR, A parallel formulation of interior point algo-
rithms, in Supercomputing ’94: Proceedings of the 1994 ACM/IEEE conference on
Supercomputing, New York, NY, USA, 1994, ACM, pp. 204–213. [cited at p. 28, 50]

57

[24] L. G. KHACHIYAN, A Polynomial Algorithm in Linear Programming, Doklady
Akademiia Nauk SSSR, 224 (1979), pp. 1093–1096. (English translation in Soviet
Mathematics Reports 20:1 (1979), pp. 191–194). [cited at p. 15, 24]

[25] V. KLEE AND G. J. MINTY, How good is the simplex algorithm?, in Inequalities,
O. Shisha, ed., vol. III, Academic Press, New York, 1972, pp. 159–175. [cited at p. 15]

[26] D. E. KNUTH, Structured Programming with go to Statements, ACM Computing Sur-
veys, 6 (1974), pp. 261–301. [cited at p. 41]

[27] A. KOBERSTEIN, The Dual Simplex Method — Techniques for a fast and stable imple-
mentation, PhD thesis, University of Paderborn, 2005. [cited at p. 43]

[28] J. KURZAK AND J. DONGARRA, Implementation of mixed precision in solving systems
of linear equations on the Cell processor: Research Articles, Concurrency and Compu-
tation: Practice & Experience, 19 (2007), pp. 1371–1385. [cited at p. 50]

[29] I. MAROS, Computational Techniques of the Simplex Method, Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2002. [cited at p. 21, 42]

[30] B. MONIEN AND J. SCHULZE, Parallel Sparse Cholesky Factorization. [cited at p. 49]

[31] J. P. PEREZ, P. BELLENS, R. M. BADIA, AND J. LABARTA, CellSs: making it easier to
program the cell broadband engine processor, IBM Journal of Research and Develop-
ment, 51 (2007). [cited at p. 30]

[32] W. PRESS, S. TEUKOLSKY, W. VETTERLING, AND B. FLANNERY, Numerical Recipes
in C, Cambridge University Press, 2nd ed., 1992. [cited at p. 41]

[33] W. H. PRESS, S. A. TEUKOLSKY, W. T. VETTERLING, AND B. P. FLANNERY, Nu-
merical Recipes: The Art of Scientific Computing, Cambridge University Press, 3rd ed.,
August 2007. [cited at p. 41]

[34] J. SCHULZE, Parallel Sparse Cholesky Factorization. [cited at p. 49]

[35] R. SHAHNAZ, A. USMAN, AND I. CHUGHTAI, Review of Storage Techniques for Sparse
Matrices, in 9th International Multitopic Conference, IEEE INMIC 2005, December
2005, pp. 1–7. [cited at p. 36, 50, 51]

[36] D. G. SPAMPINATO, Linear Optimization with CUDA. Fall project report, Norwegian
University of Science and Technology, January 2009. [cited at p. 27]

[37] R. J. VANDERBEI, Linear Programming: Foundations and Extensions, Springer,
2nd ed., 2001. [cited at p. 3, 12, 13, 16, 20, 26, 41]

[38] H. WEI AND J. YU, Loading OpenMP to Cell: An Effective Compiler Framework for
Heterogeneous Multi-core Chip, in IWOMP ’07: Proceedings of the 3rd international
workshop on OpenMP, Berlin, Heidelberg, 2008, Springer-Verlag, pp. 129–133.
[cited at p. 30]

[39] R. WUNDERLING, Paralleler und objektorientierter Simplex-Algorithmus, PhD the-
sis, Technische Universtät Berlin, Fachbereich Mathematik (G. Ziegler) and ZIB
(M. Grötschel), December 1996. [cited at p. 26, 27]

58 BIBLIOGRAPHY

[40] G. YARMISH, A Distributed Implementation of the Simplex Method, PhD thesis, Poly-
technic University, March 2001. [cited at p. 26, 34]

[41] G. YARMISH AND R. V. SLYKE, retroLP, An Implementation of the Standard Sim-
plex Method, Tech. Rep. TR-CIS-2001-05, Polytechnic University, August 2001.
[cited at p. 26, 41]

[42] E. A. YILDIRIM AND S. J. WRIGHT, Warm-Start Strategies in Interior-Point Meth-
ods for Linear Programming, SIAM Journal on Optimization, 12 (2002), pp. 782–810.
[cited at p. 16]

Appendices

59

Appendix A
Code

A.1 Sequential standard simplex method for x86

(TODO: Defines) (TODO: Input format)

matrix.h

#ifndef MATRIX_H

#define MATRIX_H

#include <iostream>

#include <vector>

#include <cmath>

#ifdef USE_GMP

#include <gmpxx.h>

#endif

class Matrix;

class Matrix {

friend class RowIndexDescriptor;

friend std::ostream & operator << (std::ostream &, const
Matrix &);

public:
Matrix(int, int);
Matrix(int rows, int cols, TYPE * data);

Matrix(int, int, bool);
Matrix(const Matrix &);

const Matrix & operator = (const Matrix &);

˜Matrix();

int getRows() const { return rows; }

61

62 APPENDIX A. CODE

int getCols() const { return cols; }

TYPE operator () (int r, int c) const;
TYPE & operator () (int r, int c);

Matrix operator + (const Matrix &) const;
Matrix operator - (const Matrix &) const;
Matrix operator * (const Matrix &) const;
Matrix operator * (TYPE) const;
Matrix transpose() const;
Matrix invert() const;
void multiplyRow(int row, TYPE factor);

void addRows(int sourceRow, int destinationRow, TYPE factor);

void swapRows(int firstRow, int secondRow);

void print(const std::vector<int> & basic, const std::vector<

int> & nonbasic);

private:
int rows;

int cols;

TYPE * data;

};

std::ostream & operator << (std::ostream &, const Matrix &);

inline void incr(TYPE & a, const TYPE & b) {

#ifdef ZEROING_RULE_EPSILON

a += b;

if (abs(a) <= EPSILON) {

a = 0;

}

#else
#ifdef ZEROING_RULE_RATIO

TYPE result = a + b;

if (result == 0 || (abs(a / result) >= RATIO && abs(b /

result) >= RATIO)) {

a = 0;

}

else {

a = result;

}

#else
a += b;

#endif
#endif
}

#endif

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 63

matrix.cpp

#include "matrix.h"

#include <cmath>

using namespace std;

Matrix::Matrix(int rows, int cols) {

// if (rows <= 0 || cols <= 0)

// throw std::exception();

this->rows = rows;

this->cols = cols;

this->data = new TYPE[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this->data[i] = 0;

}

Matrix::Matrix(int rows, int cols, TYPE * data) {

// if (rows <= 0 || cols <= 0)

// throw std::exception();

this->rows = rows;

this->cols = cols;

this->data = new TYPE[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this->data[i] = data[i];

}

Matrix::Matrix(int rows, int cols, bool identity) {

// if (rows <= 0 || cols <= 0)

// throw std::exception();

this->rows = rows;

this->cols = cols;

this->data = new TYPE[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this->data[i] = 0;

if (identity && rows == cols) {

for (int i = 0; i < rows; ++i) {

(*this)(i, i) = 1;

}

}

}

Matrix::Matrix(const Matrix & source) {

this->rows = source.rows;

this->cols = source.cols;

this->data = new TYPE[source.rows * source.cols];

for (int i = 0; i < source.rows * source.cols; ++i)

64 APPENDIX A. CODE

this->data[i] = source.data[i];

}

const Matrix & Matrix::operator = (const Matrix & source) {

this->rows = source.rows;

this->cols = source.cols;

delete this->data;
this->data = new TYPE[source.rows * source.cols];

for (int i = 0; i < source.rows * source.cols; ++i)

this->data[i] = source.data[i];

return *this;
}

Matrix::˜Matrix() {

delete [] data;

}

TYPE Matrix::operator () (int r, int c) const {

if (r < 0 || c < 0 || r >= rows || c >= cols)

throw "Index out of range";

return data[r * cols + c];

}

TYPE & Matrix::operator () (int r, int c) {

if (r < 0 || c < 0 || r >= rows || c >= cols)

throw "Index out of range";

return data[r * cols + c];

}

ostream & operator << (ostream & out, const Matrix & matrix) {

out << "=== " << matrix.rows << " x " << matrix.cols << " ===

" << endl;

for (int r = 0; r < matrix.rows; ++r) {

out << matrix.data[r * matrix.cols];

for (int c = 1; c < matrix.cols; ++c)

out << ’ ’ << matrix.data[r * matrix.cols + c];

out << endl;

}

out << "======" << endl;

return out;

}

void Matrix::print(const vector<int> & basic, const vector<int>
& nonbasic) {

cout << "=== " << rows << " x " << cols << " ===" << endl;

for (int r = 0; r < rows; ++r) {

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 65

if (r == 0)

cout << "z = ";

else
cout << "x" << basic[r - 1] << " = ";

cout << data[r * cols];

for (int c = 1; c < cols; ++c)

if (data[r * cols + c] != 0)

cout << " " << data[r * cols + c] << "x" << nonbasic[c

- 1];

cout << endl;

}

cout << "======" << endl;

}

Matrix Matrix::operator + (const Matrix & other) const {

if (rows != other.rows && cols != other.cols)

throw "Matrix sizes are not equal";

Matrix result(rows, cols);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

result(r, c) = (*this)(r, c) + other(r, c);

}

}

return result;

}

Matrix Matrix::operator - (const Matrix & other) const {

if (rows != other.rows && cols != other.cols)

throw "Matrix sizes are not equal";

Matrix result(rows, cols);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

result(r, c) = (*this)(r, c) - other(r, c);

}

}

return result;

}

Matrix Matrix::operator * (const Matrix & other) const {

if (cols != other.rows)

throw "Matrices are not compatible";

Matrix result(rows, other.cols);

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < other.cols; ++j) {

TYPE sum = 0;

for (int k = 0; k < cols; ++k) {

sum += (*this)(i, k) * other(k, j);

66 APPENDIX A. CODE

}

if (abs(sum) < 0.00001f)

sum = 0.0f;

result(i, j) = sum;

}

}

return result;

}

Matrix Matrix::operator * (TYPE factor) const {

Matrix result(rows, cols);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

result(r, c) = (*this)(r, c) * factor;

}

}

return result;

}

Matrix Matrix::transpose() const {

Matrix result(cols, rows);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

result(c, r) = (*this)(r, c);

}

}

return result;

}

void Matrix::multiplyRow(int row, TYPE factor) {

if (factor == 1) return;
for (int j = 0; j < cols; ++j) {

(*this)(row, j) *= factor;

}

}

void Matrix::addRows(int sourceRow, int destinationRow, TYPE

factor) {

if (factor == 0) return;
for (int j = 0; j < cols; ++j) {

incr((*this)(destinationRow, j), (*this)(sourceRow, j) *
factor);

}

}

void Matrix::swapRows(int firstRow, int secondRow) {

if (firstRow == secondRow) return;

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 67

for (int j = 0; j < cols; ++j) {

TYPE tmp = (*this)(firstRow, j);

(*this)(firstRow, j) = (*this)(secondRow, j);

(*this)(secondRow, j) = tmp;

}

}

Matrix Matrix::invert() const {

if (rows != cols) throw "Non-square matrices cannot be

inverted";

Matrix self(*this);
Matrix inverse(rows, cols, true);
for (int rc = 0; rc < cols; ++rc) {

// Locate row with nonzero in this column

int searchRow = rc;

while (searchRow < rows && self(searchRow, rc) == 0)

++searchRow;

if (searchRow == rows)

throw "Matrix is singular";

// Swap with current row; now the current row has nonzero

in this column

self.swapRows(rc, searchRow);

inverse.swapRows(rc, searchRow);

TYPE factor = 1 / self(rc, rc);

self.multiplyRow(rc, factor);

inverse.multiplyRow(rc, factor);

for (int r = 0; r < rows; ++r) {

if (r == rc) continue;
TYPE factor = -self(r, rc);

self.addRows(rc, r, factor);

inverse.addRows(rc, r, factor);

}

}

return inverse;

}

TableauSimplex.h

#ifndef TALBEAUSIMPLEX_H

#define TALBEAUSIMPLEX_H

#include "matrix.h"

#include <string>

#include <vector>

enum SimplexResult {

68 APPENDIX A. CODE

SUBOPTIMAL,

OPTIMAL,

UNBOUNDED,

CYCLING

};

class TableauSimplex {

public:
static SimplexResult solve(Matrix & tableau, std::vector<int>

& basic, std::vector<int> & nonbasic);

static void pivot(Matrix & tableau, std::vector<int> & basic,

std::vector<int> & nonbasic, int leaving, int entering);

static std::string resultToString(SimplexResult result);

};

#endif

TableauSimplex.cpp

#include "TableauSimplex.h"

#include <cmath>

#include <vector>

#include <climits>

using namespace std;

#define INFINITY 1.0e32f

void TableauSimplex::pivot(Matrix & tableau, std::vector<int> &

basic, std::vector<int> & nonbasic, int leaving, int
entering) {

cout << "Pivoting: " << leaving << " leaves, " << entering <<

" enters" << endl;

float xFactor = tableau(leaving, entering);

int leavingLabel = basic[leaving - 1];

basic[leaving - 1] = nonbasic[entering - 1];

nonbasic[entering - 1] = leavingLabel;

/* cout << "Basic: ";

for (unsigned int i = 0; i < basic.size(); ++i)

cout << " " << basic[i];

cout << endl << "Nonbasic:";

for (unsigned int i = 0; i < nonbasic.size(); ++i)

cout << " " << nonbasic[i];

cout << endl;*/

// Cancel out occurrences of the entering variable

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 69

for (int i = 0; i < tableau.getRows(); ++i) {

if (i == leaving) continue;
float factor = -tableau(i, entering) / xFactor;

float savedColVal = tableau(i, entering);

tableau.addRows(leaving, i, factor);

tableau(i, entering) = savedColVal / xFactor;

}

tableau.multiplyRow(leaving, -1 / xFactor);

tableau(leaving, entering) = 1 / xFactor;

}

SimplexResult TableauSimplex::solve(Matrix & tableau, vector<

int> & basic, vector<int> & nonbasic) {

int n = tableau.getCols() - 1, m = tableau.getRows() - 1;

Matrix x(n, 1);

for (int i = 1; i < n; ++i)

cout << tableau(0, i) << ’ ’;

cout << endl;

// Find entering variable by searching the objective function

(row 0) for a positive coefficient (disregard the

constant in column 0)

int entering = -1;

for (int j = 1; j <= n; ++j) {

//if (tableau(0, j) > 0 && (entering == -1 || tableau(0,

entering) < tableau(0, j)))// || (tableau(0, entering)

== tableau(0, j) &&*/ nonbasic[j - 1] < nonbasic[

entering - 1]))

if (tableau(0, j) > 0 && (entering == -1 || tableau(0, j) >

tableau(0, entering) || tableau(0, j) == tableau(0,

entering) && nonbasic[j - 1] < nonbasic[entering - 1]))

{

cout << "Choosing " << j << " over " << entering << " to

enter; reduced cost is " << tableau(0, j) << endl;

entering = j;

}

}

if (entering == -1)

return OPTIMAL;

cout << "Entering variable: " << nonbasic[entering - 1] << "

(column " << entering << ")" << endl;

// Find leaving variable by searching the column of the

entering variable and determine the strictest bound

70 APPENDIX A. CODE

int leaving = -1;

float largestRatio;

for (int i = 1; i <= m; ++i) {

float ratio;

if (tableau(i, 0) == 0) {

if (tableau(i, entering) == 0)

ratio = 0;

else if (tableau(i, entering) < 0)

ratio = INFINITY;

else
ratio = -INFINITY;

}

else
ratio = -tableau(i, entering) / tableau(i, 0);

if (ratio <= 0) continue;
if (leaving == -1 || ratio > largestRatio || (ratio ==

largestRatio && basic[i - 1] < basic[leaving - 1])) {

cout << "Choosing " << i << " over " << leaving << " to

leave; ratio is " << ratio << endl;

largestRatio = ratio;

leaving = i;

}

}

if (leaving == -1)

return UNBOUNDED;

cout << "Leaving variable: " << basic[leaving - 1] << " (row

" << leaving << "); ratio is " << largestRatio << endl;

pivot(tableau, basic, nonbasic, leaving, entering);

return SUBOPTIMAL;

}

main.cpp

#include "matrix.h"

#include "TableauSimplex.h"

#include <cmath>

#include <iostream>

#include <vector>

#include <cstdlib>

#include <fstream>

#include <cstring>

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 71

#include "gmpInterop.h"

using namespace std;

int main(int argc, char * argv[]) {

int rows, cols;

bool initiallyFeasible = true;
bool print = argc >= 3 && strcmp(argv[2], "print") == 0;

ifstream infile(argv[1]);

infile >> rows >> cols;

Matrix A(rows, cols + 1);

for (int r = 0; r < rows; ++r) {

for (int c = 1; c < cols; ++c) {

readNumber(infile, A(r, c));

if (r > 0) A(r, c) = -A(r, c); // Put the if back when

doing maximisation

}

readNumber(infile, A(r, 0));

cout << A(r, 0) << endl;

if (r > 0 && A(r, 0) < 0)

initiallyFeasible = false;
A(r, cols) = 1;

}

vector<int> basic, nonbasic;

// Nonbasic variables are labeled 1 .. n

for (int i = 1; i < cols; ++i)

nonbasic.push_back(i);

nonbasic.push_back(0); // Phase I variable

// Basic variables are labeled n+1 .. n+m

for (int i = cols; i < cols + rows - 1; ++i)

basic.push_back(i);

char cc;

int itcount = 0;

// Remember that our A is -A in the article!

Matrix obj(1, cols); // Saves the original objective function

if (!initiallyFeasible) {

cout << "Entering Phase I" << endl;

for (int c = 0; c < cols; ++c) {

obj(0, c) = A(0, c);

A(0, c) = 0;

}

A(0, cols) = -1; // The goal is to maximize -x0

72 APPENDIX A. CODE

int leaving = 1;

for (int i = 2; i < rows; ++i) {

if (A(i, 0) < A(leaving, 0))

leaving = i;

}

TableauSimplex::pivot(A, basic, nonbasic, leaving, cols);

if (print) A.print(basic, nonbasic);

while (TableauSimplex::solve(A, basic, nonbasic) ==

SUBOPTIMAL) {

++itcount;

if (print) A.print(basic, nonbasic);

cout << itcount << ": " << A(0, 0) << endl;

// cin >> cc;

/* for (int r = 0; r < A.getRows(); ++r)

for (int c = 0; c < A.getCols(); ++c)

if (abs(A(r, c)) < 0.00001)

A(r, c) = 0;*/

}

cout << TableauSimplex::solve(A, basic, nonbasic) << ’ ’ <<

itcount << endl;

cout << "Phase I completed" << endl;

if (print) A.print(basic, nonbasic);

/* for (int r = 0; r < A.getRows(); ++r)

for (int c = 0; c < A.getCols(); ++c)

if (abs(A(r, c)) < 0.00001)

A(r, c) = 0;*/

if (A(0, 0) != 0) {

cout << "Status: infeasible" << endl;

return 0;

}

if (print) A.print(basic, nonbasic);

}

// Locate x0 and

int x0 = -1;

for (int i = 0; i < cols; ++i) {

if (nonbasic[i] == 0) {

x0 = i + 1;

nonbasic.erase(nonbasic.begin() + i);

break;
}

}

Matrix * newTableau;

if (x0 == -1) {

for (int j = 0; j < rows - 1; ++j) {

if (basic[j] == 0) {

A.1. SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 73

x0 = j + 1;

basic.erase(basic.begin() + j);

break;
}

}

cout << "x0 is not nonbasic, and has value " << A(x0, 0) <<

endl;

if (A(x0, 0) != 0)

return 0;

newTableau = new Matrix(rows - 1, cols + 1);

for (int i = /*1*/0; i < rows - 1; ++i) {

for (int j = 0; j < cols + 1; ++j) {

(*newTableau)(i, j) = A(i < x0 ? i : i + 1, j);

}

}

}

else {

newTableau = new Matrix(rows, cols);

for (int i = /*1*/0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

(*newTableau)(i, j) = A(i, j < x0 ? j : j + 1);

}

}

}

if (!initiallyFeasible) {

if (print) newTableau->print(basic, nonbasic);

(*newTableau)(0, 0) = obj(0, 0);//TODO:?

for (int j = 1; j < cols; ++j)

if (nonbasic[j - 1] < cols)

(*newTableau)(0, j) = obj(0, nonbasic[j - 1]);

for (int i = 1; i < rows; ++i) {

if (basic[i - 1] < cols) {

//cout << i << ’ ’ << obj(0, basic[i - 1]) << endl;

(*newTableau).addRows(i, 0, obj(0, basic[i - 1]));

}

}

// for (int j = 0; j < newTableau.getCols(); ++j)

// newTableau(0, j) = -newTableau(0, j);//TODO:??

//TODO: retain vars from obj

}

if (print) newTableau->print(basic, nonbasic);

cout << "Entering phase II" << endl;

itcount = 0;

SimplexResult result;

74 APPENDIX A. CODE

while ((result = TableauSimplex::solve(*newTableau, basic,

nonbasic)) == SUBOPTIMAL) {

++itcount;

if (print) newTableau->print(basic, nonbasic);

cout << "iteration " << itcount << ": obj. value is " << (*
newTableau)(0, 0) << endl;

// cin >> cc;

}

cout << "Status: " << TableauSimplex::resultToString(result)

<< endl;

if (result == OPTIMAL) {

for (int i = 1; i < newTableau->getRows(); ++i) {

if (basic[i - 1] <= newTableau->getCols() && (*newTableau

)(i, 0) != 0) {

cout << "x" << basic[i - 1] << ": ";

printNumber((*newTableau)(i, 0));

cout << endl;

}

}

cout << "Objective function value: ";

printNumberFull((*newTableau)(0, 0));

cout << endl;

}

return 0;

}

A.2 Parallel standard simplex method for Cell

A.3 ASYNPLEX, C# prototype

A.4 ASYNPLEX for x86, based on Vanderbei

(TODO: Describe each file: purpose, and if we have changed it)

A.5 ASYNPLEX for Cell, based on Vanderbei

(TODO: Describe each file: purpose, and if we have changed it)

A.6 Utilities

We could not find any available parsers for the MPS or CPLEX file formats, so
we had to write our own. Other people may find them useful, so we include
them here. Common languages of choice for writing small text manipulation

A.6. UTILITIES 75

programs are Python and Perl; we selected the former since we are more familiar
with it.

Important note: These parsers are not fully compliant with the MPS and CPLEX
file format specifications. They seem to work with the data sets we have used,
but have not been thoroughly tested beyond that.

mps.py — MPS file format parser

This parser was written Vanderbei’s

from sys import stdin

class Row:

label = None

type = None

values = None

index = None

def __init__(self, label, type, index):

self.label = label

self.type = type

self.index = index

self.values = {}

def __str__(self):

return self.label + " (" + self.type + "): " + str(self.

values)

lines = []

for line in stdin:

lines.append(line)

rows = {}

columnLabels = []

columnIndices = {}

i = 0

while i < len(lines):

line = lines[i]

i += 1

if line[0] == ’ ’:

pass
else:

header = line.strip()

if header == "ROWS":

rowIndex = 0

while lines[i][0] == ’ ’:

items = lines[i].split()

row = Row(items[1].strip(), items[0].strip(), rowIndex)

if row.type == "N":

76 APPENDIX A. CODE

objectiveIndex = rowIndex

rows[row.label] = row

rowIndex += 1

i += 1

#print row.index, ":", row.label

tableau = [None] * len(rows)

elif header == "COLUMNS":

columnIndex = -1

while lines[i][0] == ’ ’:

items = lines[i].split()

lim = 2 if len(items) == 5 else 1

columnLabel = items[0].strip()

if not columnIndices.has_key(columnLabel):

columnIndex += 1

columnLabels.append(columnLabel)

columnIndices[columnLabel] = columnIndex

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rows[rowLabel].values[columnLabel] = value

#print rows[rowLabel].index, ",", columnIndices[

columnLabel], "=", value

i += 1

for j in xrange(len(tableau)):

tableau[j] = [0] * (len(columnLabels) + 1)

for row in rows.values():

#print "row", row.index, ":", len(row.values)

for colLabel in row.values:

tableau[row.index][columnIndices[colLabel]] = row.

values[colLabel]

elif header == "RHS":

while lines[i][0] == ’ ’:

items = lines[i].split()

lim = 2 if len(items) == 5 else 1

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rowIndex = rows[rowLabel].index

tableau[rowIndex][-1] = value

#print "RHS of", rowIndex, "=", value

i += 1

#print sum([len(r.values) for r in rows.values()])

#for row in tableau:

tmp = row[-1]

row[-1] = row[0]

row[0] = tmp

A.6. UTILITIES 77

print [x for x in row if x != 0]

for row in rows.values():

tab = tableau[row.index]

if row.type == "G":

#print row.index, "is G; multiplying with -1"

for i in xrange(len(tab)):

tab[i] = -tab[i]

elif row.type == "E":

#print row.index, "is E; creating new row at index ", len(

tableau)

tableau.append([-x for x in tab])

#print "objective function is at row", objectiveIndex, ";

swapping"

tmp = tableau[objectiveIndex]

tableau[objectiveIndex] = tableau[0]

tableau[0] = tmp

ti = 0

while ti < len(tableau):

nonzero = 0

for x in tableau[ti]:

if x != 0:

nonzero = 1

break
if not nonzero:

tableau.pop(ti)

ti -= 1

ti += 1

#print tableau

#for ti in xrange(len(tableau)):

tab = tableau[ti]

newTab = []

for t in tab[:-1]:

newTab.append(t)

newTab.append(-t)

newTab.append(tab[-1])

tableau[ti] = newTab

#tableau[0] = [-x for x in tableau[0]] #for minimisation?

print len(tableau), len(tableau[0])

for tab in tableau:

for cell in tab:

print cell,

print
sys.exit(0)

print "max: ",

78 APPENDIX A. CODE

printedAny = 0

for ci in xrange(len(tableau[0]) - 1):

if tableau[0][ci] != 0:

if printedAny:

print " + ",

printedAny = 1

print str(tableau[0][ci]) + " x" + str(ci + 1),

print ";"

for tab in tableau[1:]:

printedAny = 0

for ai in xrange(len(tab) - 1):

if tab[ai] != 0:

if printedAny:

print " + ",

printedAny = 1

print str(tab[ai]) + " x" + str(ai + 1),

print " <= " + str(tab[-1]) + ";"

for xi in xrange(len(tableau[0]) - 1):

print "x" + str(xi + 1) + " >= 0;"

cplex.py — ILOG CPLEX file format parser

This parser was written in order to convert some sample data sets can output
either Note that while the CPLEX format allows constraints to be split over mul-
tiple lines, this parser not handle that, so files containing split constraints must
be modified by joining such constraints into one line.

#!/usr/bin/python

#TODO: "Free" variables may be < 0!

from sys import stdin, stderr, argv

class Equation:

comparator = ""

constant = 0

values = {}

name = ""

def __init__(self, comparator, constant, name):

self.comparator = comparator

self.constant = constant

self.values = {}

self.name = name

class Bound:

variable = ""

A.6. UTILITIES 79

lower = 0

upper = None

free = False

fixed = False

def __init__(self, variable):#, lower, upper):

self.variable = variable

self.lower = lower

self.upper = upper

def truncate(name):

if len(name) <= 8:

return name

else:
return "v" + str(hash(name) % 10000000)

def expand(string, length):

if len(string) > length:

raise ValueError("string too long")

return string + " " * (length - len(string))

class LP:

pos = 0

lines = []

variables = {}

equations = []

variableList = []

bounds = []

direction = "max"

def __init__(self):

lines = []

variables = {}

equations = []

variableList = []

def printMatrix(self):

eqnCount = 0

for eq in self.equations:

if eq.comparator == "=":

eqnCount += 2

80 APPENDIX A. CODE

else:
eqnCount += 1

print eqnCount, len(self.variables) + 1

for eq in self.equations:

line = [0] * (len(self.variables) + 1)

line[-1] = eq.constant

for value in eq.values:

line[self.variables[value]] = eq.values[value]

negated = [-x for x in line]

if eq.comparator == "<=" or eq.comparator == "=" or eq.

comparator == "obj":

for x in line:

print x,

print
if eq.comparator == ">=" or eq.comparator == "=":

for x in negated:

print x,

print
for i in xrange(len(self.variableList)):

stderr.write(str(i + 1) + ": " + self.variableList[i] + "

\n")

#WARNING: Truncates names to 10 characters!

def printMPS(self):

print "NAME UNKNOWN"

#print "OBJSENSE"

#print " " + self.direction.upper()

print "ROWS"

for eq in self.equations:

if eq.comparator == "=":

print " E ",

elif eq.comparator[0] == "<":

print " L ",

elif eq.comparator[0] == ">":

print " G ",

elif eq.comparator == "obj":

print " N ",

else:
raise NameError("Illegal comparator: " + eq.comparator)

print expand(truncate(eq.name), 8)

print "COLUMNS"

for var in self.variableList:

for eq in self.equations:

if eq.values.has_key(var):

line = expand(" " + truncate(var), 14) + truncate(

eq.name)

print expand(line, 24) + str(eq.values[var])

A.6. UTILITIES 81

print "RHS"

for eq in self.equations:

if eq.constant != 0:

print expand(" B " + truncate(eq.name), 24)

+ str(eq.constant)

print "BOUNDS"

for bound in self.bounds:

if bound.free:

print " FR BOUND " + truncate(bound.variable)

elif bound.fixed:

print expand(" FX BOUND " + truncate(bound.variable

), 24) + str(bound.upper)

else:
if bound.lower != 0:

print expand(" LO BOUND " + truncate(bound.

variable), 24) + str(bound.lower)

if bound.upper != None:

print expand(" UP BOUND " + truncate(bound.

variable), 24) + str(bound.upper)

print "ENDATA"

def printForWebSolver(self):

print "max: ",

for eq in self.equations:

printedAny = 0

for varName in eq.values:

if printedAny:

print "+",

printedAny = 1

print eq.values[varName], varName,

if eq.comparator != "obj":

print eq.comparator, eq.constant,

print ";"

for v in self.variableList:

print v, " >= 0;"

def parseObjective(self):

tokens = self.lines[self.pos]

self.pos += 1

self.parseEquation(tokens, 1)

def parseEquation(self, tokens, isObjective):

if tokens[1] != ’+’ and tokens[1] != ’-’:

tokens.insert(1, ’+’)

if isObjective:

eq = Equation("obj", 0, "OBJ")

else:

82 APPENDIX A. CODE

eq = Equation(tokens[-2], float(tokens[-1]), tokens

[0][:-1])

self.equations.append(eq)

i = 1

limit = len(tokens) - 1 if isObjective else len(tokens) - 3

while i < limit:

if tokens[i] == ’-’:

sign = -1

elif tokens[i] == ’+’:

sign = 1

else:
print "Illegal sign on line", self.pos, ":", tokens

if isObjective and self.direction == "max":

sign *= -1

try:
value = float(tokens[i + 1])

i += 2

except ValueError:

value = 1

i += 1

name = tokens[i]

self.addVariable(name)

eq.values[name] = sign * value

i += 1

def parseEquations(self):

while 1:

tokens = self.lines[self.pos]

if tokens[0][-1] != ’:’: break
self.pos += 1

self.parseEquation(tokens, 0)

def addVariable(self, name):

if not self.variables.has_key(name):

self.variables[name] = len(self.variables)

self.variableList.append(name)

def parseBounds(self):

while 1:

tokens = self.lines[self.pos]

if len(tokens) == 1: break
self.pos += 1

if len(tokens) == 2 and tokens[1] == "Free":

bound = Bound(tokens[0])

bound.free = True

self.bounds.append(bound)

elif len(tokens) == 3:

A.6. UTILITIES 83

#TODO: can the eq be turned around?

#eq = Equation(tokens[1], float(tokens[2]))

#eq.values[tokens[0]] = 1

#self.equations.append(eq)

#self.addVariable(tokens[0])

bound = Bound(tokens[0])

if tokens[1][0] == "<":

bound.upper = float(tokens[2])

elif tokens[1][0] == ">":

bound.lower = float(tokens[2])

elif tokens[1][0] == "=":

bound.fixed = True

bound.upper = float(tokens[2])

else:
raise NameError("Illegal bound type")

self.bounds.append(bound)

elif len(tokens) == 5:

#eq = Equation(">=", float(tokens[0]))

#eq.values[tokens[2]] = 1

#self.equations.append(eq)

#eq = Equation("<=", float(tokens[4]))

#eq.values[tokens[2]] = 1

#self.equations.append(eq)

#self.addVariable(tokens[2])

bound = Bound(tokens[2])

bound.lower = float(tokens[0])

bound.upper = float(tokens[4])

self.bounds.append(bound)

else:
print "Unrecognised bounds line:", self.pos, ":",

tokens

def parse(self):

for line in stdin:

tokens = line.split()

if len(tokens) == 0 or tokens[0] == ’\\’: continue
self.lines.append(tokens)

self.pos = 0

while self.pos < len(self.lines):

if self.lines[self.pos][0] == "Maximize":

self.direction = "max"

self.pos += 1

self.parseObjective()

elif self.lines[self.pos][0] == "Minimize":

self.direction = "min"

self.pos += 1

84 APPENDIX A. CODE

self.parseObjective()

elif self.lines[self.pos][0] == "Subject":

self.pos += 1

self.parseEquations()

elif self.lines[self.pos][0] == "Bounds":

self.pos += 1

self.parseBounds()

else:
self.pos += 1

lp = LP()

lp.parse()

if len(argv) >= 2 and argv[1] == "web":

lp.printForWebSolver()

else:
#lp.printMatrix()

lp.printMPS()

Appendix B
Test sets

B.1 Sample netlib test set

This is the afiro set, in MPS format(TODO: citation). It contains (TODO: rows,
columns and nonzeroes).

NAME AFIRO

ROWS

E R09

E R10

L X05

L X21

E R12

E R13

L X17

L X18

L X19

L X20

E R19

E R20

L X27

L X44

E R22

E R23

L X40

L X41

L X42

L X43

L X45

L X46

L X47

L X48

L X49

85

86 APPENDIX B. TEST SETS

L X50

L X51

N COST

COLUMNS

X01 X48 .301 R09 -1.

X01 R10 -1.06 X05 1.

X02 X21 -1. R09 1.

X02 COST -.4

X03 X46 -1. R09 1.

X04 X50 1. R10 1.

X06 X49 .301 R12 -1.

X06 R13 -1.06 X17 1.

X07 X49 .313 R12 -1.

X07 R13 -1.06 X18 1.

X08 X49 .313 R12 -1.

X08 R13 -.96 X19 1.

X09 X49 .326 R12 -1.

X09 R13 -.86 X20 1.

X10 X45 2.364 X17 -1.

X11 X45 2.386 X18 -1.

X12 X45 2.408 X19 -1.

X13 X45 2.429 X20 -1.

X14 X21 1.4 R12 1.

X14 COST -.32

X15 X47 -1. R12 1.

X16 X51 1. R13 1.

X22 X46 .109 R19 -1.

X22 R20 -.43 X27 1.

X23 X44 -1. R19 1.

X23 COST -.6

X24 X48 -1. R19 1.

X25 X45 -1. R19 1.

X26 X50 1. R20 1.

X28 X47 .109 R22 -.43

X28 R23 1. X40 1.

X29 X47 .108 R22 -.43

X29 R23 1. X41 1.

X30 X47 .108 R22 -.39

X30 R23 1. X42 1.

X31 X47 .107 R22 -.37

X31 R23 1. X43 1.

X32 X45 2.191 X40 -1.

X33 X45 2.219 X41 -1.

X34 X45 2.249 X42 -1.

X35 X45 2.279 X43 -1.

X36 X44 1.4 R23 -1.

X36 COST -.48

B.2. TEST SETS PROVIDED BY MIRIAM AS 87

X37 X49 -1. R23 1.

X38 X51 1. R22 1.

X39 R23 1. COST 10.

RHS

B X50 310. X51 300.

B X05 80. X17 80.

B X27 500. R23 44.

B X40 500.

ENDATA

B.2 Test sets provided by Miriam AS

These sets are in the ILOG CPLEX format.

dp 0.lp

\Problem name: CPLEX solver

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0

CapE52: v52_49 - RgCapE52 = 0

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0

OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 - RgCapS60 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 - RgCapS61 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 - RgCapS62 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 -

x546_49 = 0

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

88 APPENDIX B. TEST SETS

Dem53_49: d53_49 <= 150

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0

SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 200

0 <= v51_49 <= 200

0 <= v52_49 <= 200

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 299.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 120

0 <= RgCapS60 <= 200

0 <= RgCapS61 <= 120

0 <= RgCapS62 <= 120

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

0 <= RgCapD54 <= 200

End

dp 150.lp

\Problem name: CPLEX solver

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0

CapE52: v52_49 - RgCapE52 = 0

B.2. TEST SETS PROVIDED BY MIRIAM AS 89

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0

OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 -

x546_49 = 0

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

Dem53_49: d53_49 <= 150

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0

SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 100

0 <= v51_49 <= 100

0 <= v52_49 <= 100

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 0.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 1

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

90 APPENDIX B. TEST SETS

0 <= RgCapD54 <= 200

End

Appendix C
Schedule

This appendix will obviously be deleted before submission.

Week 20 Study Vanderbei code and obtain a good understanding of how what
tricks are required to make revised simplex work in practice; write rough
outline of bacground chapter on revised simplex

Either: If the C++ code is too cumbersome to work with:

Week 21 Implement revised simplex (sequentially) in C#, based on Van-
derbei

Week 22 Implement ASYNPLEX in C#, based on the above code

Or: If the C++ code is okay to work with:

Week 21 Rewrite Vanderbei’s code to become more readable and struc-
tured in a way that is more suitable for ASYNPLEX

Week 22 Implement ASYNPLEX in C++, based on the above code

Week 23 Rewrite ASYNPLEX implementation from thread-based C++ or C#
code to Cell

Week 24 Run experiments on timing, precision and communication/computa-
tion ratio

Week 25 Frenetic report writing

Week 26 — “ —

Week 27 — “ —; Natvig goes on vacation; I’ll try to submit by Friday, July 3

Week 28 Scouting camp (can be dropped if absolutely necessary)

Week 29 Final deadline: Sunday, July 19

91

	Contents
	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	List of Code Listings
	List of Algorithms
	1 Introduction
	2 Background
	2.1 Linear programming
	2.1.1 Problem formulation. Standard and slack forms
	2.1.2 The simplex method
	2.1.2.1 Degeneracy and cycling
	2.1.2.2 Initially infeasible problems
	2.1.2.3 Formal algorithm statement
	2.1.2.4 Complexity and numerical instability
	2.1.2.5 Duality
	2.1.2.6 Warmstarting

	2.1.3 The revised simplex method
	2.1.4 ASYNPLEX
	2.1.5 Interior point methods
	2.1.6 Use of LP to solve advanced flow problems
	2.1.7 State of the art: sequential LP solvers
	2.1.8 State of the art: parallel LP solvers

	2.2 Cell Broadband Engine
	2.2.1 Architecture
	2.2.2 Programming methods
	2.2.3 Tools and libraries

	2.3 Miscellaneous topics
	2.3.1 pthreads
	2.3.2 Representation of sparse matrices
	2.3.3 Amdahl's law

	3 Design
	3.1 Overall approach
	3.2 Standard simplex method
	3.2.1 PPE version
	3.2.2 SPE version

	3.3 Revised simplex method
	3.3.1 Performing the matrix inversion in parallel
	3.3.2 Our adaptation of ASYNPLEX
	3.3.2.1 Sparse vector and matrix representations

	4 Implementation and testing
	4.1 Implementation problems
	4.1.1 Straightforward simplex implementation
	4.1.2 Numerical stability
	4.1.3 (TODO: Missing citations)

	4.2 Simplex algorithm
	4.3 Test plan
	4.3.1 Unit testing
	4.3.2 Large data sets
	4.3.3 Memory leaks
	4.3.4 Comparison to other implementations

	5 Evaluation
	5.1 Performance measurements
	5.1.1 Testing environments
	5.1.2 What to measure (TODO: reword --- ``research questions?'')
	5.1.3 Measurement methods

	5.2 Results
	5.2.1 Standard simplex method
	5.2.2 Revised simplex method

	5.3 Other aspects
	5.3.1 Code size

	5.4 Thoughts on unimplemented features / ideas for future work
	5.4.1 Dense interior point
	5.4.2 Sparse interior point
	5.4.3 Mixed precision
	5.4.4 Representation of sparse matrices
	5.4.5 Vectorisation
	5.4.6 Autotuning

	5.5 Discussion

	6 Conclusion
	6.1 Experiences
	6.2 Future work

	Bibliography
	A Code
	A.1 Sequential standard simplex method for x86
	A.2 Parallel standard simplex method for Cell
	A.3 ASYNPLEX, C# prototype
	A.4 ASYNPLEX for x86, based on Vanderbei
	A.5 ASYNPLEX for Cell, based on Vanderbei
	A.6 Utilities

	B Test sets
	B.1 Sample netlib test set
	B.2 Test sets provided by Miriam AS

	C Schedule

