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Chapter 1
Introduction

(TODO: )
(TODO: A paragraph about Miriam)
Therefore, we have adjusted our aims to that of producing a code base from

which further development may take place, and writing a report that is rich in
background material, references and advice that we hope will prove useful to
those that are to continue the project.

Outline

(TODO: Make sure this actually fits the final chapter contents!)
In Chapter 2, we give a presentation of the field of linear programming, and

we describe the standard and revised simplex methods and a parallel revised
simplex method called ASYNPLEX. We also explain the Cell architecture and
programming model.

In Chapter 3, we describe our initial plans, the progress of our work and
the decisions we had to make during the project. We also present our design
of a parallel standard simplex algorithm for Cell, and our adaptations of the
ASYNPLEX algorithm (which we did not get the time to fully implement).

In Chapter 4, (TODO: ) This project ended up very differently from what we
had anticipated; in this chapter, we also discuss the challenges we have encoun-
tered.

In Chapter 5, we provide several timing analyses of the parallel standard
simplex algorithm, in order to learn how the parallelisation, number of cores,
and Cell features such as vectorisation, affect the performance. We also discuss
features we did not get the time to implement, and give several pieces of advice
to the researchers that will build upon our work.

Finally, in Chapter 6, we present our conclusions and summarise our sug-
gestions for future work.

1





Chapter 2
Background

This chapter will give the reader the necessary theoretical background for the
main subjects of this thesis: linear programming and the Cell Broadband Engine.
We also give some notes on the pthreads API, how to represent sparse vectors,
and a formula for the maximal speedup that can be obtained when parallelising
a program.

2.1 Linear programming

The term linear programming (LP) refers to a type of optimisation problems in
which one seeks to maximise or minimise the value of a linear function of a
set of variables1. The values of the variables are constrained by a set of linear
equations and/or inequalities. Linear programming is a fairly general problem
type, and many important problems can be cast as LP problems — for instance,
shortest path problems and maximum flow problems (see [7]). However, the
true virtue of linear programming stems from its ability to model a vast range of
optimisation problems for which specialised algorithms do not exist, including
many situations from economics and industry processes.

This entire section is primarily based on Vanderbei[37] and Cormen et al.[7].

2.1.1 (RP) Problem formulation. Standard and slack forms

The following framed text is an example of a simple linear programming prob-
lem. We will use this example throughout this section to illustrate how the linear
programming algorithms work.

1Hence, LP is not (as the name would seem to suggest) a programming technique. The name
originated in the 1940s, when “program” referred to military supply plans and schedules(TODO:
citation).

3



4 CHAPTER 2. BACKGROUND

— Example —

A company owns a factory that makes two kinds of products based on two
different raw materials. The profit the company makes per unit of product A
is $30, and the profit of product B is $20. Producing one unit of A requires 1
unit of raw material R and 1 unit of raw material S; one unit of B requires 2
units of R and 1 unit of S. The company possesses 40 units of R and 50 units
of S. We make the simplifying assumptions that all prices are constant and
cannot be affected by the company, and that the company is capable of selling
everything it produces. The company’s goal is to maximise the profit, which
can be described as 30x1 + 20x2, where x1 is the number of units of product
A and x2 is the number of units of product B. The following constraints are
in effect:

• x1 + x2 ≤ 40 (the production of A and B cannot consume more units of
raw material R than the company possesses)

• 2x1 + x2 ≤ 50 (similarly for raw material S)

• x1, x2 ≥ 0 (the company cannot produce negative amounts of its prod-
ucts)

Note that in regular LP problems, one cannot restrict the variables to be inte-
gers — in fact, adding this requirement produces a new kind of problem known
as integer linear programming (ILP), which is NP-hard2. It is also, in general, a re-
quirement that all variables are nonnegative. This is often the case in real-world
problems that deal with physical quantities, but problems involving variables
that may be negative as well as positive can still be modeled by rewriting each
original variable as a difference of two nonnegative variables.

The function to be optimised is called the objective function. In the real world
situation that gives rise to an optimisation problem, the function may contain a
constant term, but it can be removed since that will affect all possible solutions
in the same way. The objective function can then be written as ζ = c1x1 + c2x2 +
. . .+cnxn =

∑n
j=1 cjxj , where the cj are constants. The variables in the objective

function are often called decision variables, since our task is not only to find the
optimal value of the objective function, but also which variable values that yield
this function value. Throughout this report, we will consistently use n to refer
to the number of decision variables and m to refer to the number of equations

2NP-hardness is a term from complexity theory, which deals with the relative difficulties of
solving different kinds of problems. The only known algorithms for solving NP-hard problems
require an amount of time that is exponential in the size of the problem, which renders those
algorithms useless for many real life problem sizes. For further reading on complexity theory,
consult Garey and Johnson[11].
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and/or inequalities. The variables will typically be labelled x1 through xn.

Standard form An LP problem is commonly called a linear program. The equa-
tions and inequalities that (together with the objective function) constitute an
linear program may be represented in different forms. We shall first consider
the standard form, in which only less-than-or-equal-to inequalities with all vari-
ables on the left hand side are allowed3. A problem containing equalities of the
form ai1x1 + . . . + ainxn = bi may be rewritten by splitting each equality into
two inequalities4: ai1x1 + . . .+ ainxn ≤ bi and −ai1x1 − . . .− ainxn ≤ −bi. Also,
the goal must be to maximise the objective function — if the original problem is
to minimize some function f , we let our objective function be ζ = −f . A linear
program in standard form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.1)

with respect to
n∑

j=1

aijxj ≤ bi, for i = 1, . . . ,m. (2.2)

x1, . . . , xn ≥ 0 (2.3)

Slack form The other common representation is slack form, which only allows
a set of equations (and a nonnegativity constraint for each variable). A slack
form program should be produced by rewriting a standard form program. An
inequality of the form ai1xi + . . . + ainxn ≤ bi is converted to an equation by
adding a slack variable wi. Together with the condition that wi ≥ 0, the equation
ai1x1 + . . . + ainxn + wi = bi is equivalent to the original inequality (whose
difference, or “slack”, between the left and right hand sides is represented by
wi). When the program is constructed in this manner, each slack variable only
appears in excactly one equation, which is an important property that will be
utilised later. A linear program in slack form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.4)

3Note that strictly-less-than and strictly-greater-than inequalities are never allowed in LP
problems, as they could easily cause situations in which it is impossible to achieve optimality
— for instance, there is no optimal value for x with respect to x < 3; given any value for x that is
less than 3, one can always find a number between x and 3.

4The drawback of doing this is that it increases the number of equations. See Hillier[19] for
another approach, called artificial variables — with the drawback that it increases the number of
variables.
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with respect to

wi = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.5)

x1, . . . , xn, w1, . . . , wm ≥ 0 (2.6)

— Example —

In standard form, our example is expressed as

Maximise

ζ = 30x1 + 20x2

with respect to

x1 + x2 ≤ 40

2x1 + x2 ≤ 50

x1, x2 ≥ 0

In slack form, it becomes

Maximise

ζ = 30x1 + 20x2

with respect to

w1 = 40− x1 − x2

w2 = 50− 2x1 − x2

x1, x2, w1, w2 ≥ 0

A proposed solution vector (that is, a specification of a value for each vari-
able) of a linear program is called:

Feasible if it does not violate any constraints;

Infeasible if it violates one or more constraints (however, it is still called a “so-
lution”);

Basic if it consists of setting all variables except the slack variables to zero (so
that wi = bi for all i);
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Optimal if it is feasible and no other feasible solutions yield a higher value
for the objective function. An optimal solution vector is not necessarily
unique, although the optimal objective function value obviously is.

2.1.2 (RP) The standard simplex method

The standard simplex method, or simply the simplex method5, developed by George
Dantzig[8], was the first systematic approach for solving linear programs. It
requires the linear program to be in slack form. The initial coefficients and con-
stants are written down in a tableau that will change as the method progresses.
The nonnegativity constraints are not represented anywhere; rather, they are
implicitly maintained by the method. Because the equations will undergo ex-
tensive rewriting, it will be convenient not to distinguish the slack variables
from the other variables, so we will relabel wi to xn+i for i = 1, . . . ,m. Thus,
the total number of variables is n+m. Furthermore, we will use overlines over
the coefficients in the tableau to denote their current value (which will change in
each iteration of the simplex method), and the indices of the coefficients will re-
fer to the coefficients’ position within the tableau — for instance, −aij is located
in row i, column j. We also introduce a constant term ζ (initially zero) in the
objective function, which will help us keep track of the best function value we
have found so far. The topmost row and leftmost column are not really a part of
the tableau; they are simply headers — the topmost row shows which variables
correspond to which columns, and the leftmost column shows the slack vari-
ables for each row. The first actual tableau row (below the double line) contains
the objective function coefficients [cj ] and is numbered as row 0; the first actual
tableau column (to the right of the double line) contains the [bi] constants and
is numbered as column 0; the rest of the tableau contains the negatives of the
coefficients from the equations: [−aij ]. Initially, cj = cj , bi = bi, and aij = aij .
For instance, with n = 3 and m = 3, the initial tableau will look like this:

x1 x2 x3

ζ 0 c1 c2 c3

x4 b1 −a11 −a12 −a13

x5 b2 −a21 −a22 −a23

x6 b3 −a31 −a32 −a33

Note that this is essentially just a tabular version of the standard form — for
instance, the last row is interpreted as the equation x6 = b3−a31x1−a32x2−a33x3.

5The reason for not calling it the “simplex algorithm” is that there exist several versions of the
method, and that the general method formulation is somewhat underspecified because it does
not say how to choose the pivot elements.
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— Example —

In tableau form, our example becomes

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Note that w1 and w2 have been renamed to x3 and x4, respectively.

The variables are partitioned into two sets. The variables in the leftmost
column (at the left side of the equations) are referred to as the basic variables,
and the variables inside the tableau are called nonbasic variables. At any stage
of the method, the set of the indices of the basic variables is denoted B, and
the set of nonbasic indices is denoted N . Initially, N = {1, . . . , n}, and B =
{n + 1, . . . , n + m}. The sizes of the basic and nonbasic sets are constant, with
|N | = n and |B| = m. The tableau will generally look like this (if, for instance,
m = n = 3):

· · · xj∈N · · ·
ζ ζ c1 c2 c3
... b1 −a11 −a12 −a13

xi∈B b2 −a21 −a22 −a23

... b3 −a31 −a32 −a33

For now, let us assume that the solution that is obtained by setting all non-
basic variables to zero is feasible (which is the case only if all of the bi are non-
negative); we will remove this restriction later. This trivial solution will provide
a lower bound for the value of the objective function (namely, the constant term,
ζ). We will now select one nonbasic variable xj and consider what happens if
we increase its value (since all nonbasic variables are currently zero, we cannot
decrease any of them). Since our goal is to maximise the objective function, we
should select a variable whose coefficient cj in the objective function is positive.
If no such variables exist, we cannot increase the objective function value fur-
ther, and the current solution (the one obtained by setting all nonbasic variables
to zero, so that ζ = ζ) is optimal — we can be certain of this since linear functions
do not have local maxima.

It seems reasonable to select the variable with the greatest coefficient (this is
known as the Dantzig criterion (TODO: verify name); other rules are possible).
Let us say that this variable is located in column e. Note that because we will
soon start swapping variable positions, the indices of the leaving and entering
variables will generally not correspond to their respective row and column num-



2.1. LINEAR PROGRAMMING 9

bers. For notational convenience, we therefore let xĩ denote the basic variable
that is located in row i, and we let xĵ denote the nonbasic variable in column j.
Then, our variable is labelled xê. How far can we increase this variable? Recall
that each line in the tableau expresses one basic variable as a function of all the
nonbasic variables; hence we can increase xê until one of the basic variables be-
comes zero. Let us look at row i, which is now reduced to xĩ = bi − aiexê since
all nonbasic variables except xê are zero. If aie is positive, the value of xĩ will de-
crease as xê increases, so the largest allowable increase is limited by bi. Thus, by
setting xê = bi

aie
, xĩ becomes zero. However, other equations may impose stricter

conditions. By looking at all rows where aie is positive, we can determine an l

such that bl
ale

is minimal and set xê = bl
ale

. This will cause xl̃ to become zero. If
all aie are nonpositive, we can increase xê indefinitely without any xĩ ever be-
coming negative, and in that case, we have determined the linear program to be
unbounded; the method should report this to the user and terminate.

— Example —

Recall the tableau:

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Since 30 is the greatest objective function coefficient, we select x1 to be
increased. x3 becomes zero if x1 = b1

a11
= 40

1 , and x4 becomes zero if

x1 = b2
a12

= 50
2 . The latter is the most restrictive constraint, so x4 will become

zero when we increase x1.

The next step, called pivoting, is an operation that exchanges a nonbasic vari-
able and a basic variable. The purpose of pivoting is to produce a new situation
in which all nonbasic variables are zero (and no bi is negative), so that we can
repeat the previous steps all over again and find a new variable whose value
we can increase. The nonbasic variable that was selected to be increased, xê, is
called the entering variable, since it is about to enter the collection of basic vari-
ables. xl̃, which becomes zero when xê is increased appropriately, is called the
leaving variable, since it is to be removed from said collection. Keep in mind that
since xl̃ is a basic variable, it only occurs in one equation, namely

xl̃ = bl −
∑
j∈N

aljxĵ . (2.7)

Note that we have retained all the nonbasic variables, as we want an equation
that is valid at all times, not only when almost all nonbasic variables are zero.
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We can eliminate the entering variable from (and introduce the leaving variable
into) the set of nonbasic variables by rewriting (2.7):

xl̃ = bl − alexê −
∑

j∈N−{ê}

aljxĵ (2.8)

xê =
1
ale

bl − xl̃ −
∑

j∈N−{ê}

aljxĵ

 . (2.9)

Now that we have an expression for xê, we can substitute it into all of the other
equations — this will eliminate xê and introduce xl̃ into the rest of the tableau.
For all i ∈ B − {l̃}, we have:

xĩ = bi −
∑
j∈N

aijxĵ (2.10)

= bi − aiexê −
∑

j∈N−{ê}

aijxĵ (2.11)

= bi −
aie

ale

bl − xl̃ −
∑

j∈N−{ê}

aljxĵ

− ∑
j∈N−{ê}

aijxĵ (2.12)

=
(
bi −

aie

ale
bl

)
+
aie

ale
xl̃ −

∑
j∈N−{ê}

(
aij −

aie

ale
alj

)
xĵ . (2.13)

A similar result will be achieved for the expression for the objective function.
Although it might look complicated, it amounts to subtracting6 aie

ale
times the

tableau row l from all other tableau rows i (and adding ce
ale

times row l to the
objective function row), and then setting the tableau entries in column e to aie

ale

(and to − ce
ale

in the objective function row). Note that because l was selected

such that ale was positive and bl
ale

was minimal, all bi remain nonnegative; and
because e was selected such that ce was positive, ζ cannot decrease (it will either
retain its old value or increase, depending on whether bl was zero).

(2.9) is the new form of the tableau row that originally corresponded to the
basic variable xl̃. The new row, which corresponds to xê, can be easily obtained
from the old one by dividing the row by ale and setting the coefficient of what is
now xl̃ to − 1

ale
.

Finally, we remove l̃ from B and add it to N , and remove ê from N and
add it to B, so that the leaving and entering variables swap positions in the new
tableau. This completes the pivot operation — we again have a tableau in which
all nonbasic variables can be set to zero and all bi are nonnegative, and the entire
process may be repeated.

6Keeping track of the signs here becomes somewhat cumbersome. Keep in mind that the
tableau cell at row i, column j contains −aij (if i, j ≥ 1).
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A 3 × 3 tableau will look like this after one pivot with x2 as the entering
variable and x5 as the entering variable: (TODO: Verify!)

x1 x5 x3

ζ 0 + b2c2/a22 c1 − a21c2/a22 −c2/a22 c3 − a23c2/a22

x4 b1 − b2a12/a22 −a11 + a21a12/a22 a12/a22 −a13 + a23a12/a22

x2 b2/a22 −a21/a22 −1/a22 −a23/a22

x6 b3 − b2a32/a22 −a31 + a21a32/a22 a32/a22 −a33 + a23a32/a22

— Example —

After one pivot with x1 as the entering variable and x4 as the leaving variable,
we get the following tableau:

x4 x2

ζ 750 −15 5
x3 15 0.5 −0.5
x1 25 −0.5 −0.5

For the next pivot operation, only x2 can be selected as the entering variable,
which causes x3 to be selected as the leaving variable. After the pivot, the
tableau looks like this:

x4 x3

ζ 900 −10 −10
x2 30 1 −2
x1 10 −1 1

Since all objective function coefficients are now negative, we have reached
an optimal solution with the value ζ = ζ = 900. This solution value
is obtained by setting the nonbasic variables (x3 and x4) to 0, in which
case x1 = 10 and x2 = 30. We can easily verify that these variable val-
ues do not violate any constraints, and by substituting the values into the
original objective function, we can verify that the optimal value is indeed
ζ = 30x1 + 20x2 = 30 · 10 + 20 · 30 = 900.

2.1.2.1 (RP) Degeneracy and cycling

A tableau is degenerate if some of the bi are zero. Degeneracy may cause prob-
lems because a pivot on a degenerate row will not cause the objective function
value to change, and we will not have gotten any closer to a solution. With
severely bad luck, the algorithm may end up cycling through a number of de-
generate states. This, however, rarely happens — according to Vanderbei[37, p.
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32], cycling “is so rare that most efficient implementations do not take precau-
tions against it”.

As mentioned in Footnote 5 on page 7, the general formulation of the sim-
plex method is underspecified because it does not tell how to break ties between
potential entering and leaving variables. There exist rules that guarantee that cy-
cling will not happen; one of them, called Bland’s rule[37, Sec. 3.4] is to break ties
by always selecting the variable with the smallest index. There are

(
m+n

m

)
pos-

sible dictionaries — each dictionary is uniquely determined by the set of basic
variables, and the order of the variables is unimportant (if the rows and columns
of a dictionary are permuted, it is still regarded as the same dictionary, since the
same variables will be selected for pivoting). Since each step transforms one dic-
tionary into another, the simplex method is guaranteed to terminate in at most(
m+n

m

)
steps if precautions are taken against cycling. In practice, however, the

method is usually far more efficient, and algorithms that are guaranteed to run
in polynomial time are only superior for very large data sets(TODO: citation).

2.1.2.2 (RP) Duality

Duality is an interesting property that is exhibited by linear programs, that gives
rise to several variations of the standard simplex method.

Given a linear programming problem in standard form:

Maximise

ζ =
n∑

j=1

cjxj (2.14)

with respect to

xn+i = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.15)

x1, . . . , xn+m ≥ 0 (2.16)

its dual problem is formed by negating everything and interchanging the roles
of rows and columns: the bi become the objective function coefficients, the cj
become the right hand side, and the positions of the aij are transposed. Also,
the xs are replaced by ys (to avoid confusion with the original problem, since
the variables of the dual problems will attain different values in the course of
the method). We still want to maximise, but we define the solution of the dual
problem to be the negative of the maximal value (this is just a technicality to
avoid expressing the problem as a minimisation).
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−Maximise

ξ = −
m∑

i=1

biyi (2.17)

with respect to

ym+j = −cj +
m∑

i=1

aijyi, for j = 1, . . . , n. (2.18)

y1, . . . , ym+n ≥ 0 (2.19)

This corresponds to negating and transposing the entire tableau. Note that
the original problem is referred to as the primal problem, and that the dual of the
dual problem is the primal problem. There are two highly interesting facts about
the dual problem (see [37] for proofs):

The weak duality theorem states that any feasible solution of the dual problem
will be greater than any feasible solution of the primal problem.

The strong duality theorem states that the optimal solution of the dual prob-
lem equals the optimal solution of the primal problem.

We will not utilise duality extensively, except for the Phase I method dis-
cussed below, so we do not give a thorough presentation of it. The concept is
very interesting, however, and interested readers should consult Vanderbei[37,
Chapter 5], who gives a more in-depth presentation, including an intuitive ra-
tionale for the why the dual problem is formed this way.

Duality can be exploited in many ways, one of which is the following: if
one has a linear program where the right hand side contains negative numbers,
but all objective function coefficients are nonpositive, one can form the dual
program (whose right hand side will then contain only nonnegative numbers)
and solve that one instead. This approach is called the dual simplex method, and
it is usually performed without actually transposing the tableau — it just swaps
the roles of the basic and nonbasic variables.

2.1.2.3 (RP) Initially infeasible problems

The method presented so far is capable of solving linear programs whose initial
basic solution (the one obtained by setting all nonbasic variables to 0) is feasible.
This is the case if and only if all of the bi are nonnegative, which we cannot in
general assume them to be. As mentioned in the preceding section, one can get
around this if all the cj are nonpositive, but this does not generally hold either. If
we have one or more negative bi, we get around this by introducing an auxiliary
problem which is based on the original problem, is guaranteed to have a basic
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feasible solution, and whose optimal solution will provide us with a starting
point for solving the original problem. The auxiliary problem is created by sub-
tracting a new variable x0 from the left hand side of each equation of the original
problem (which is assumed to be in standard form), and replacing the objective
function with simply ζ = −x0. The purpose of x0 is that by initially setting it to
a sufficiently large value, we can easily satisfy all equations (even those having
negative entries in the right hand side7). Then, we can try to change variable
values (through regular pivoting) and see if it is possible to make x0 equal to
zero, in which case we can remove it from our equations and reinstate the orig-
inal objective function, thereby having arrived at a problem that is equivalent
to the original one. This is the purpose of our new objective function — since
x0, like all other variables, is required to be nonnegative, the goal of optimising
−x0 means that we are trying to make x0 zero. Fortunately, we do not need a
new algorithm for this optimisation process; we can use the simplex algorithm
as it has been described above. We only need to do one pivot operation before
we start that algorithm: since the idea of x0 is to initially set it to a suitably
large value, and since the algorithm requires a nonnegative right hand side, we
should make x0 a basic variable by performing one pivot operation with the
row containing the most negative bi. This will make the entire right hand side
nonnegative. Solving the auxiliary problem is called Phase I, and solving the re-
sulting problem (with the original objective function) is called Phase II. Thus, the
full simplex method is a two-phase method (but of course, if the right hand side
of the original problem is nonnegative, we can skip Phase I).

Another Phase I method, the one used by Vanderbei, is to first replace neg-
ative terms in the objective function by an arbitrary positive number (e.g. 1)
and then run the dual simplex method as described above. The dual method
will terminate when the original right hand side only consists of nonnegative
numbers, in which case we can reinstate the actual coefficients of the original
objective function and proceed with Phase II.

One-phase methods also exist, such as the parametric self-sual simplex method,
as described in [37, Sec. 7.3].

(If time permits: example)

2.1.2.4 (RP) Formal algorithm statement

In Algorithm 1 on the next page we present the pseudocode for an individual
phase of the standard simplex method (with the first approach described in Sec-
tion 2.1.2.3, the same code can be used for both Phase I and Phase II. The tableau
is called T and is zero-indexed; keep in mind that row 0 is the objective function
and column 0 contains the constants from the right hand sides of the inequali-

7Beware that “the right hand side” refers to the bi, which are on the right hand side of the
original equations — but in the tableau, they are on the left side.
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ties. The current value of the objective function is always in row 0, column 0.
We use row major indexing, so T [2, 3] is row 2, column 3. (Natvig’s comment:
Should ideally be recognisable in the real code; maybe reference the real code
here (or the other way around?))

(TODO: Verify)

loa 1: One phase of the standard simplex method using the Dantzig criterion
TODO: verify name

1: procedure STANDARDSIMPLEXPHASE(m, n, a[1..m, 1..n], b[1..m], c[1..n])
2: T [0, 0]← 0
3: T [i, j]← −a[i, j] for i = 1 . . .m, j = 1 . . . n
4: T [i, 0]← b[i] for i = 1 . . .m
5: T [0, j]← c[j] for j = 1 . . . n
6: N ← {1, . . . , n}
7: B ← {n+ 1, . . . , n+m}
8: loop
9: Pick a column number e ≥ 1 such that T [0, e] is positive and maximal

10: if no e is found then
11: return T [0, 0] as the optimal solution
12: end if
13: Pick a row number l ≥ 1 such that T [l, e] < 0 and −T [l,0]

T [l,e] is minimal
14: if no l is found then
15: return “The problem is infeasible” (if this is Phase I) or “The prob-

lem is unbounded” (if this is Phase II)
16: end if
17: p← −T [l, e]
18: for i← 0,m do
19: if i 6= l then
20: f ← T [i,e]

p
21: Add f times row l of T to row i of T
22: T [i, e]← −f
23: end if
24: end for
25: Divide row l of T by p
26: T [l, e]← −1

p
27: end loop
28: end procedure

2.1.2.5 (RP) Complexity and numerical instability

The complexity classes P and NP should be familiar to anyone that has taken
an algorithms course: NP is the class of decision problems (problems that are in
the form of a yes/no question) where, if the answer is “yes” and we are given a
“certificate” that demonstrates the solution, we can validate the solution in time
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that is polynomial in the size of the input. P is the subset of NP that consists
of those decision problems where we can also find the solution in polynomial
time. The question of whether P = NP remains one of the most important open
questions in the field of computer science, and is one of the seven Clay Mille-
nium Prize problems8. Most researchers believe that P ⊂ NP, and that the most
difficult problems in NP, the so-called NP-complete (NPC) problems, cannot be
solved in polynomial time. Cormen et al.[7] give a good introduction to com-
plexity theory.

When dealing with parallel programming, another complexity class is also
useful: NC, also known as Nick’s Class. This is the class of all problems that can
be solved in O(lgk1 n) steps (so-called polylogarithmic time) using a polynomial
(O(nk2)) number of processors. Here, k1 and k2 are constants. NC is a subset of
P , since any parallel algorithm requiring f(n) steps using p(n) processors can be
simulated in p(n)f(n) steps on a sequential computer. Thus, any NC-algorithm
will require O(nk2 lgk1 n) steps on a sequential machine, and this is polynomial
in n. However, there are problems in P which have not yet been proven to be in
NC, and the most difficult problems among these are called P-complete (PC) —
this is quite analoguous to the NP/P/NPC situation.

In some sense, NC captures the notion of what it means for a problem to be
“parallelisable”, while the P-complete problems can be said to be “hard to par-
allelise”. However, it is not an all-encompassing concept — a problem may be in
NC without being efficiently solvable in practice due to a prohibitive processor
requirement of the algorithm (for instance O(n10) processors) or large constants
hidden by the O-notation, and a parallel algorithms for P-complete problems
may still be useful because they might be faster than their sequential counter-
parts (just not “much faster”).

Where does LP fit into this picture? The trivial upper bound of O(
(
m+n

m

)
)

given in Section 2.1.2.1 for the number of iterations in the simplex method is
absolutely horrible:

(
m+n

m

)
≥
(

m+n
m

)m =
(
1 + n

m

)m, which, if m = n, becomes
2m. Unfortunately, Klee and Minty[25] proved that it is possible to construct
arbitrary-size data sets that make the method hit that bound when a certain piv-
oting rule is used (and no one has succeeded in finding a pivoting rule that can
guarantee polynomial time). In spite of this, the method is often surprisingly
efficient in practice(TODO: citation). In 1979, Khachiyan[24] discovered a differ-
ent kind of algorithm that is guaranteed to run in polynomial time, and thus he
proved LP to be in P.9 However, LP is also P-complete, as proved by Dobkin et
al.[9]. Still, for the reasons mentioned above, this should not discourage us from

8http://www.claymath.org/millennium/
9Strictly speaking, LP is a computation problem (one in which we seek a numerical answer)

rather than a decision problem and thus falls outside of the NP/P/NC discussion. However, like
many other computation problems, LP easily can be reformulated as a decision problem that can
be solved by the same algorithms; see [14, Problem A.4.3] for more references.

http://www.claymath.org/millennium/
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seeking parallel versions of LP algorithms.
Greenlaw et al.[14] give a thorough presentation of NC and other aspects

of parallel complexity, and a more compact survey of the field can be found in
Natvig(TODO: citation).

2.1.2.6 (RP) Warmstarting

If one has solved an LP problem and then wishes to solve a very similar problem
(one that has been obtained by slightly altering the various coefficients of the
original problem), it would seem reasonable to believe that the optimal solution
to the original problem would be a great starting point in the search for the
optimal solution to the new problem. This turns out to be the case, and the
idea is known as warmstarting. It normally leads to a great reduction in the time
required to solve the new problem, and it is also very easy to implement —
the simplex method need not be changed at all; the program must simply be
capable of taking a suggested starting solution as input. Note that one might
have to run both phases, in case the original solution is not feasible for the new
problem. Interested readers may consult Vanderbei[37, Chapter 7] for a more
thorough introduction to the subject (which he refers to as sensitivity analysis).

Miriam employs Monte Carlo methods10 that produce a number of random
variations of the current state of the oil pipeline network in order to predict what
will happen if anything changes. (TODO: more information) This is an impor-
tant reason that they want to focus on the simplex method rather than interior
point methods (Section 2.1.5) — warmstarting is possible for the latter class of
methods, but it is much harder to implement. Various approaches to warmstart-
ing interior point methods are described by e.g. Gondzio and Grothey[13] (this
is actually a more general approach for quadratic programming), Yildirim and
Wright[42], and Benson and Shanno[5].

2.1.3 (RP) The revised simplex method

The revised simplex method (TODO: citation) is essentially just a linear algebra
reformulation of the mathematical operations of the standard simplex method;
however, it is much more numerically stable, for reasons that will be explained.
We begin with expressing the slack form constraint tableau in matrix notation —
note that all vectors are column vectors unless stated otherwise. An LP problem
in slack form (with renaming of the slack variables) looks like the following:

Maximise

ζ =
n∑

j=1

cjxj (2.20)

10TODO: describe Monte Carlo methods
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with respect to

xn+i = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.21)

x1, . . . , xn+m ≥ 0 (2.22)

If we let

A =


a11 a12 · · · a1n 1
a21 a22 · · · a2n 1

...
...

. . .
...

. . .
am1 am2 · · · amn 1

 (2.23)

b = [ b1 · · · bm ]> (2.24)

c = [ c1 · · · cn 0 · · · 0 ]> (m zeroes at the end) (2.25)

x = [ x1 · · · xn xn+1 · · · xn+m ]> (2.26)

we can express the problem in a very compact manner:

Maximise

ζ = c>x (2.27)

with respect to

Ax = b (2.28)

x ≥ 0 (2.29)

In order to be able to handle the pivot operations, we will need to split each
of our matrices and vectors into two in order to reflect which entries correspond
to basic variables and which ones do not. As before, we let N be the collection
of nonbasic variable indices (initially {1, . . . , n}), and B the collection of basic
variable indices (initially {n + 1, . . . , n + m}). All the basic variables are put
in the vector xB, and the nonbasic variables are put in xN — the order of the
variables within these vectors do not matter, as long as the entries of the other
matrices are arranged correspondingly. We split A into two matrices: an m × n
matrix N, containing all columns from A that correspond to nonbasic variables
(initially, this will be all the columns containing the aij entries), and B, which
is initially an m × m identity matrix. Similarly, we split c into one vector cN
for the objective function coefficients belonging to nonbasic variables (initially,
cN = [ c1 · · · cn ]>) and one vector cB for the coefficients belonging to basic
variables (initially anm element zero vector). After each pivot operation, entries
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of these matrices and vectors will swap positions according to how the collections
of basic and nonbasic variables have changed, but the values themselves will
never change during the course of the algorithm. This means that numerical
stability may be significantly improved, since the matrices and vectors will not
accumulate errors (practical implementations do, however, maintain additional
vectors that will accumulate errors; see below). Note that the right hand side
vector, b, remains a single vector that will never change. Using these “split”
matrices and vectors, we can express the problem as

Maximise

ζ = c>NxN + c>BxB (2.30)

with respect to

NxN + BxB = b (2.31)

x ≥ 0 (2.32)

During execution of the (standard) simplex method, it is always the case that
each basic variable occurs in exactly one equation, and hence each basic variable
can be written as a function of the nonbasic variables. Therefore, B must be
invertible, so we can multiply (2.31) by B−1 and rearrange it to get

xB = B−1b−B−1NxN . (2.33)

Combining this with (2.30), we get

ζ = c>NxN + c>BxB (2.34)

= c>NxN + c>B (B−1b−B−1NxN ) (2.35)

= c>BB
−1b + (c>N − c>BB

−1N)xN . (2.36)

This is very interesting, because we can use it to acquire explicit formulas for the
simplex tableau at any time during the method, given the current basic/nonba-
sic variable configuration: From (2.33) (which can be rewritten as B−1NxN +
xB = B−1b), we see that:

• The negative of the current body of the standard simplex tableau (the co-
efficients that in the previous subsection were known as [−aij ]) can be ex-
pressed as B−1N.

• The “right hand side” (the leftmost column of the tableau, known as [bi] —
these are also the current values of the basic variables) is B−1b.

• Similarly, we see from (2.36) that c>BB
−1b corresponds to the current value

of the objective function (obtained by setting xN = 0), and the current ob-
jective function coefficients (also called the reduced costs) from the tableau
(known as [cj ]) are c>N − c>BB

−1N.
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How can we express a pivot operation? It turns out to be exceedingly simple
— if the entering variable is xê and the leaving variable is xl̃, it is sufficient to
swap column e of N with column l of B. We do not even need to physically move
the columns; we can implicitly move them by using permutation lists (based on
B and N) to keep track of which columns are located where. Strangely, Van-
derbei[37] does not seem to contain a proof that pivots can be performed in this
manner (for the most part, the book is burgeoning with useful proofs). For the
sake of completeness, we provide here a (not entirely rigorous) demonstration
that at least the first pivot will work. B was initially an identity matrix, and N
was [aij ]. We now perform a pivot where xê enters and xl̃ leaves — this will
cause column e from N to be swapped with column l from B. Let us assume
that the former column does not contain any zeroes (if it does, its inverse will
look different); then we have the following (column l of B and B−1 and column
e and row l of N have been (TODO: spell “emphasized”)):

B−1 =



1 a1e

. . .
...
ale
...

. . .
ame 1



−1

=



1 −a1e/ale

. . .
...

1/ale
...

. . .
−ame/ale 1


and

B−1N =



1 −a1e/ale

. . .
...

1/ale
...

. . .
−ame/ale 1





a11 · · · 0 · · · a1n

...
...

...
al1 · · · 1 · · · aln

...
...

...
am1 · · · 0 · · · amn



=



a11 − al1a1e/ale · · · −a1e/ale · · · a1n − alna1e/ale
...

...
...

al1/ale · · · 1/ale · · · aln/ale

...
...

...
am1 − al1ame/ale · · · −ame/ale · · · amn − alname/ale


Compare this to the tableau on page 11 (where m = n = 3 and e = l = 2) —
its main body is the exact negative of this matrix, as expected. Similar deriva-
tions can be carried out for the right hand side and for the objective function
coefficients.

Armed with this knowledge, we can formulate the revised simplex method,
as shown in Algorithm 2 on the facing page. Note that, like the standard simplex
method, it may also require two phases, and it is still necessary to specify a way
of selecting the entering variable.



2.1. LINEAR PROGRAMMING 21

loa 2: One phase of the revised simplex method

1: procedure REVISEDSIMPLEXPHASE(m, n, N, cN , b)
2: Let cB be an m element zero vector
3: Let B be an m×m identity matrix
4: Let B−1 be an m×m identity matrix
5: N ← {1, . . . , n}
6: B ← {n+ 1, . . . , n+m}
7: loop
8: ĉ>N ← c>N − c>BB

−1N . Compute the reduced costs
9: Search ĉN for a negative number; let e be its index (the corresponding

nonbasic variable is then xê)
10: if no negative number found in ĉN then
11: return c>BB

−1b, B−1b . Optimal value and basic variable values
12: end if
13: Let Ne be the eth column of N (the one corresponding to xê)
14: â← B−1Ne . Compute the tableau coefficients of xê

15: b̂← B−1b . Compute the basic variable values
16: Let l be a value of i that minimises t = b̂i

âi
(only perform this calcula-

tion for those i ∈ B where âi is positive)
17: if no value is found for l then
18: return “The problem is unbounded”
19: end if
20: Exchange the eth column of N with the lth column of B
21: B ← (B − {l̃}) ∪ {ê}
22: N ← (N − {ê}) ∪ {l̃}
23: Recalculate B−1 from B
24: end loop
25: end procedure

This method looks problematic in that it seems to require B to be inverted
in every single iteration. However, it turns out that since only one column of
B changes in iteration, each B−1 can be calculated from the previous one by
changing one column; furthermore, this change can be expressed as a multipli-
cation with a sparse matrix formed in a certain way. A chain of such matrices is
called an eta file, and this approach is described in greater detail in [37, Section
8.3]. Of course, the longer the eta file gets, the slower the calculation will be-
come, and inaccuracies may accumulate. Therefore, with regular intervals, B−1

should be recomputed from scratch from the current version of B. This will also
eliminate the inaccuracies (unless B is ill-conditioned, in which case one may
run into problems). Note that it is possible to update b̂ and ĉN in each itera-
tion rather than to recalculate them (this is the approach taken by [37]), but the
update calculations are also time consuming.
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2.1.4 (RP) ASYNPLEX

As we will describe in Section 4.1, even getting With time becoming scarce,
we realised that we most likely would not be able to develop an algorithm of
our own for a parallel revised simplex method, and so we started looking for
existing algorithms. We did not find many, and the most promising one (in
particular because it bears a strong resemblance to the original revised simplex
method) is called ASYNPLEX, and was developed by Hall and McKinnon[17].
It is an asynchronous algorithm11 for message-passing systems, but the authors
also describe a shared-memory version of the algorithm. We will now present
ASYNPLEX, based on [17]. We did need to make some small changes to the
algorithm, and we have described those in (TODO: reference).

Before proceeding, we should mention that on the coarsest level, one can
distinguish between two ways of achieving parallelism:

Task parallelism can be achieved when two or more different operations can
be performed in parallel.

Data parallelism can be achieved when the same operation is applied to several
pieces of data (TODO: reformulate).

The extent to which the different parts of the computation are independent will
greatly affect the possibilities for speedup. Computations that can be split into
parts that are entirely independent are called embarrassingly parallel (see Section
2.3.3 for more information on this), and such computations will benefit greatly
from parallelisation (unless the computation is so simple that the time spent
distributing the data to the different processors exceeds the time saved on the
computation). (TODO: Amdahl’s law here?) Unfortunately, many important
problems are not embarrassingly parallel because one computation may depend
on an intermediate result from another computation (if, on the other hand, it
depends on the final result, it cannot be said to be parallelisable). (TODO: Comm.
to comp. ratio; scaleability)

In ASYNPLEX, there are four different kinds of processes:

• One invert processor;

• One basis change manager;

• One column selection manager;

• One or more iteration processes.

11In a synchronous algorithm, the code contains synchronisation points where two or more
processes or threads must wait for each other to reach the point before proceeding. In asyn-
chronous algorithms, the only kind of waiting that may occur is waiting for incoming messages
from other processes or threads.
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We will interleave their descriptions with the description of the general idea
behind the algorithm.

Matrix inversion

The invert processor is continuously performing inversions of the B matrix. When-
ever one of the iteration processes performs a pivot operation, it sends a mes-
sage to the invert processor telling which variable that entered and which one
that left. Once the invert processor finishes the current inverse calculation, it
distributes the resulting B−1 matrix to the iteration processes. Then, it receives
all incoming basis change messages and begins a new inverse calculation. Most
likely, the iteration processes will find that the inverse is somewhat out of date
when it is received, but they will just delete the appropriate number of entries
from the eta file. This approach sacrifices some numerical stability for the in-
crease in speed that is obtained by dedicating a separate processor to the inver-
sion operation. See Section 3.3.1 for a small discussion of what happens if this
approach is used on its own, without the other elements of ASYNPLEX.

Candidate persistence

The key observation upon which ASYNPLEX is based is a phenonomenom called
candidate persistence. An attractive candidate is a nonbasic variable whose objec-
tive function coefficient is negative, so that it is possible to select it as the en-
tering variable. According to [17], a variable that is attractive in one iteration
(but remains nonbasic because some other variable is eventually selected as the
entering variable) will often remain attractive in subsequent iterations. Further-
more, it can be observed that the pivot operation itself is usually very cheap
(assuming that the implementation swaps matrix columns implicitly by using
permutation lists to keep track of the current location of each column, while the
columns themselves remain in one place) — the majority of the work in each
iteration is associated with determining the entering and leaving variables and
updating the solution vector. This leads to the idea of having several processes
(the iteration processes) speculatively computing the â corresponding to sev-
eral attractive candidates. When an iteration process has completed the calcula-
tion of â, it sends to the basis change manager an offer to compute the leaving
variable and perform the pivot operation. Given any basis, only one iteration
process should be allowed to decide how to pivot away from it (otherwise, the
iteration processes would diverge in different directions), and the basis change
manager handles this. If the offer is accepted, the iteration process will tell all
other processes which variable that left and which one that entered, and the
other iteration processes will update their B and N accordingly. It also com-
putes a new set of attractive candidates. Iteration processes that have had their
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offers rejected will request new variables from the column selection manager,
which keeps track of which variables are currently regarded as attractive.

(TODO: had a todo here, can’t remember...)
The pseudocode uses some overly compact names (that probably stem from

some old naming convention; Maros[29] uses them too) for each step of the al-
gorithm; they are as follows (taken from [17], with some modifications):

BTRAN Compute π> ← cT
BB
−1 (in the process, we will use the eta file entries

in reverse order, hence the name Backwards TRANsformation[29]).

PRICE Compute the reduced costs: ĉ>N ← c>N − π>N.

CHUZC Choose entering variable (Column) by finding a negative entry in ĉN .

FTRAN Compute â ← B−1aq, where aq is the column of N that corresponds
to the entering variable (this time, the eta file will be used forwards, hence
Forwards TRANsformation).

CHUZR Choose leaving variable (Row) by looking at the componentwise ratios
of b̂/â, where b̂← B−1b. Let α be the smallest such ratio.

UPRHS Update the right-hand side by adding αâ to b̂.

UPDATE BASIS Add an entry to the eta file.

We now present the pseudocode for ASYNPLEX as it is given by Hall and
McKinnon[17] (with a few notational adaptations), in Algorithms 3, 4, 5, and 6.
It is assumed that there is a separate, sequential piece of code that handles input
reading and sets up the different processes. In Section 3.3.2, we describe how
we have adapted the algorithm.

A short explanation of Hall’s notation may be useful. Each process has a
number of points where it sends or receives data to or from the other processes.
Each such communication endpoint is given a short identifying tag, both on the
sending and receiving end, and each send or receive operation indicates where
it wishes to send to or receive from (and the process’ own tag for that operation
is indicated with a comment in the right margin — note also that each type of
process has its own letter). Iteration process tags are suffixed with a colon and
the index of the process, since there can be several iteration processes.

2.1.5 (RP) Interior point methods

It is possible to interpret the simplex method in a geometric fashion: with n

decision variables, the space of all vectors of possible decision variable values
form an n-dimensional space. Each constraint can be modelled as a plane in this
space — an equality constraint requires that feasible solutions lie on the plane,
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loa 3: ASYNPLEX — iteration process number i (0 ≤ i < p)

1: procedure RUNITERATIONPROCESS(i, p,N,b, c)
2: ki ← 0
3: BTRAN
4: PRICE
5: FTRAN — let q be the ith most attractive candidate column, or -1 if that

does not exist
6: repeat
7: if received← V2 an LU factorisation of the inverse then . I1
8: Install new inverse
9: end if

10: while basis changes received← I7 are not yet applied do . I2
11: Apply basis change; ki ← ki + 1
12: end while
13: Permute column aq

14: FTRAN
15: while basis changes received← I7 are not yet applied do . I3
16: Apply basis change
17: FTRAN STEP; ki ← ki + 1
18: end while
19: if q = −1 or ĉq > 0 then
20: Send→ C4 a message that the candidate is unattractive . I4
21: else
22: Send→ R1 an offer to perform CHUZR . I5
23: Wait← (R2 or R3) for a reply to offer . I6
24: if Offer accepted then
25: CHUZR
26: Send → (I2/I3/I10 on all other iteration processes) the basis

change and pivotal column . I7
27: Send→ (V1 and C1) basis change . I8
28: UPDATE BASIS; ki ← ki + 1
29: BTRAN
30: Permute π
31: PRICE
32: FTRAN — choose a set of the most attractive candidates
33: Send→ C2 the most attractive candidates . I9
34: else
35: Wait← I7 for next basis change . I10
36: goto line 15
37: end if
38: end if
39: Wait← (C3 or C5) for a new candidate column, q . I11
40: until The algorithm terminates
41: end procedure
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loa 4: ASYNPLEX — invert processor

1: procedure RUNINVERTPROCESSOR(p,m,N)
2: Let B be an m×m identity matrix
3: kv ← 0
4: repeat
5: while received← I8 a notification that xl has left the basis and xe has

entered do . V1
6: Swap the corresponding columns between B and N
7: kv ← kv + 1
8: end while
9: INVERT

10: Send→ I1 on all p iteration processes the new LU factorisation of the
inverse for basis kv . V2

11: until the algorithm terminates
12: end procedure

loa 5: ASYNPLEX — column selection manager

1: procedure RUNCOLUMNSELECTIONMANAGER(m,n)
2: kc ← 0
3: Mark all nonbasic variables as unselected
4: repeat
5: if received← I8 basis change then . C1
6: Mark the variable which has left the basis as unselected
7: else if received ← I9:i a set of candidates corresponding to basis ki

then . C2
8: if ki > kc then
9: Filter out the candidates already selected and those already

rejected after the FTRAN at a basis ≥ ki

10: kc ← ki

11: end if
12: Send→ I11:i the most attractive candidate to enter the basis and

mark the candidate as selected . C3
13: else if received ← I4:i a message that its current candidate is now

unattractive then . C4
14: Send→ I11:i the most attractive candidate to enter the basis and

mark the candidate as selected . C5
15: end if
16: until the algorithm terminates
17: end procedure
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loa 6: ASYNPLEX — basis change manager

1: procedure RUNBASISCHANGEMANAGER

2: kb ← 1
3: repeat
4: if received← I5:i an offer to perform CHUZR for basis ki then . R1
5: if ki = kb then
6: Send→ I6:i an acceptance of the offer . R2
7: kb ← kb + 1
8: else
9: Send→ I6:i a refusal of the offer . R3

10: end if
11: end if
12: until the algorithm terminates
13: end procedure

and an inequality constraint requires that feasible solutions lie on or to one of the
sides of the plane. Together with the planes from the implicit nonnegativity con-
straints, this forms a (TODO: spell “geometrical”) shape known as a simplex —
hence the name of the simplex method. Each intermediate solution produced by
the simplex method represents a point that is a vertex (an intersection between
n or more planes). There exists another class of algorithms called interior point
methods, whose intermediate solutions always lie in the interior of the simplex.
A distinct advantage of most interior point methods over the simplex method is
that they have polynomial worst-case bounds on their time consumption. The
first polynomial interior point method was invented by Khachiyan[24] in 1979,
and one of the most well-known methods is due to Karmarkar[22].

Interior point methods were mentioned in the problem description, but it
was soon discovered that the scope of the project was already large enough
even when only considering the simplex methods. Thus, interior point meth-
ods will not be taken into consideration, but we felt that no discussion of linear
programming would be complete without mentioning this subject.

(Natvig/Elster/Mujahed: You or Mujahed mentioned that (dense) Cholesky
factorisation had been implemented on Cell; can you send me the reference?)

2.1.6 (RP) Use of LP to solve advanced flow problems

(Natvig/Elster/Mujahed: Mujahed questioned the need for this section. It does
look a little “hanging in the air”, but the idea was to demonstrate a simple ver-
sion of the kind of modelling that Miriam does — but perhaps it’s not necessary,
since we don’t do such modelling in the thesis?)

A flow network is a graph where a flow of some substance (expressed in e.g.
litres per second) is associated with each edge. In addition, each edge may have
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upper and lower bounds (known as capacities) on the flow value, and possibly
a cost that will be incurred per unit of flow that is sent through the edge. The
goal may, for instance, be to send as much flow as possible from a designated
source (producer) node to a designated sink (consumer) node, or to send a cer-
tain flow as cheaply as possible. Other variations are also possible. If there are
no lower bounds and no costs, there exist efficient algorithms for the maximum
flow problem, such as the Edmonds-Karp algorithm[7]. In more complex situ-
ations, no specialised algorithms exist, but LP comes to the rescue. Cormen et
al.[7] give a good overview of how to express a flow problem as an LP prob-
lem, which we summarise here (but only for the simple case of a maximum flow
problem). There are two variables for each edge, expressing the amount of flow
in each direction through that edge. The flow from node u (directly) to node v is
denoted by fuv, and it may not increase above the edge capacity cuv (which may
be different in each direction). The following constraints apply:

• The flow in one direction is the negative of the flow in the opposite direc-
tion: fuv = −fvu, for all u, v.

• The flow through an edge may not exceed the capacity for that edge in that
direction: fuv ≤ cuv, for all u, v.

• Except for the source s and the sink t, all flow entering a node must also
exit the node. Due to the “negative flow” convention, this is equivalent to
requiring that the flow out of a node is zero:

∑
v fuv = 0 for all u except s

and t.

The objective is to maximise the flow out of the source (which, by the rules
above, must equal the flow into the sink), which is

∑
v fsv.

(TODO: Consult Miriam on this)

2.1.7 State of the art: sequential LP solvers

ILOG CPLEX

CPLEX, developed by the company ILOG, is the industry standard LP solver(Natvig/Elster/Mujahed:
Who/what can I cite here?). Being proprietary closed-source software, we can-
not examine its inner workings (but they are probably too complex for this
project). While our department does not have a CPLEX license, we can still to
some extent compare the answers from our solvers to those that CPLEX gives(TODO:
as long as the solver is good enough, I guess the answers will always be correct
— or?) — sites such as (TODO: citation) provide CPLEX’ answers to the netlib
problem sets, and Miriam has a license that they can use to find the answers to
their own data sets. (TODO: Something on why Miriam doesn’t just use CPLEX
rather than bothering with PS3?)
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GLPK

Gnu Linear Programming Kit
Unfortunately, the code base is extremely large, comprising more than (TODO:

) lines of C code distributed across nearly 100 files. While only a handful of these
files contain functionality that is directly related to the simplex method, reverse
engineering it still would be a daunting task — especially given that their coding
conventions apparently calls for very short variable names.

GLPK is released by its authors under version 3 of the GNU General Public
License.

Xpress

http://www.dashoptimization.com/home//products/products_optimizer.

html

OOPS

http://www.maths.ed.ac.uk/˜gondzio/parallel/solver.html

CLP

COIN-OR Linear Program Solver (http://www.coin-or.org/Clp/).

Numerical Recipes

(2nd and 3rd ed.)

SoPlex (Wunderling)

An implementation developed as a part of Roland Wunderling’s Ph.D. thesis[39],
and available at http://soplex.zib.de/.

retroLP

As opposed to virtually all other LP solvers, retroLP[40] implements the original
simplex method, not the revised method. The former is advantageous for dense
problems, which occur in some special applications such as “wavelet decompo-
sition, digital filter design, text categorization, image processing and relaxations
of scheduling problems.”[41] As compared to GLPK, the code is fairly short and
readable — but it still consists of (TODO: ) lines.

retroLP is released by its authors under version 2 of the GNU General Public
License.

http://www.dashoptimization.com/home//products/products_optimizer.html
http://www.dashoptimization.com/home//products/products_optimizer.html
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://www.coin-or.org/Clp/
http://soplex.zib.de/
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Vanderbei’s code

Vanderbei has published a freely available implementation of the revised sim-
plex algorithm as presented in his book[37], at http://www.princeton.edu/

˜rvdb/LPbook/. While it comprises more than 9000 lines, the core parts are
fairly short and well separated from the rest of the code (much of which deals
with different input formats).

The code has no licence information attached to it. Anyone who wishes to
commercially utilise those parts of our code that are derived from Vanderbei’s
code are strongly advised to contact Vanderbei.

2.1.8 State of the art: parallel LP solvers

ASYNPLEX (Hall, McKinnon)

[17]

Parallelisation of CPLEX’ dual simplex method (Bixby, Martin)

[6]

Parallelisation of the revised simplex method using CUDA (Spampinato)

Compute Unified Device Architecture (CUDA) is a framework from the graph-
ics processing unit (GPU) manufacturer nVidia. Daniele Spampinato, a stu-
dent at our department, implemented the revised simplex method by using the
CUBLAS linear algebra library to offload the linear algebra computations onto
the GPU[36]. He reported overall speedups of 2.0–2.4 relative to a sequential
implementation using ATLAS, but only for dense data sets. The only operation
that (by itself) yielded the vast speedups that are theoretically possible when
using GPUs (which have hundreds of cores) was the basis inversion[36, Figure
5.6 on p. 45]. Furthermore, he experienced major problems with numerical sta-
bility. Note that his implementation parallelised each linear algebra operation
individually; it was not a parallel version of the simplex method itself.

XPRESS (Andersen, Andersen)

[3]

SMoPlex, DoPlex (Wunderling)

These are, respectively, shared memory and distributed memory implementa-
tions of the revised simplex method, also from Wunderling’s thesis[39]. Re-
grettably, these implementations are not available online, and since the thesis is

http://www.princeton.edu/~rvdb/LPbook/
http://www.princeton.edu/~rvdb/LPbook/
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written in German, we have not been able to study it — but it may prove use-
ful to someone proficient in German.(Natvig/Elster/Mujahed: Does this sound
sarcastic? It’s not the intention...) According to slides from a presentation by
Hall(TODO: link), the implementation is “parallel (except for INVERT) for only
two processors”, and gives “good results only for problems when n� m”.

Parallelisation of interior point algorithms (Karypis, Gupta, Kumar)

Those interested in [23]

retroLP

(TODO: See above.)

Distributed simplex algorithm (Ho, Sundarraj)

[20]

2.2 Cell Broadband Engine

The Cell Broadband Engine (Cell BE) is a single chip multiprocessor architecture
jointly developed by IBM, Sony and Toshiba. The initial design goals was to cre-
ate an architecture that would be suitable for the demands of future gaming and
multimedia applications (meaning not only high computational power, but also
high responsiveness to user interaction and network communications), with a
performance of 100 times that of Sony PlayStation 2[21]. Several obstacles to
such goals exist; in particular the infamous brick walls[4]:

Memory wall While processor speeds have grown substantially over the past
few decades, the growth in memory access times has been much more
modest. Because of this, the relative cost of memory accesses is now pro-
hibitively large, and for efficient scientifice computation, it is necessary to
to use caches and try to keep data cached for as long as possible once it has
been loaded from memory.(TODO: )

Power wall Heat dissipation becomes a greater and greater obstacle as frequency
increases (TODO: and size is reduced). (TODO: )

ILP wall Instruction-level parallelism techniques such as pipelines and specula-
tive execution face diminishing returns as most programs have a limited
amount of exploitable parallelism, and the hardware and power cost of
implementing such techniques is growing.(TODO: )

The Cell BE architecture tries to solve these problems in the following ways:
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• Having two different kinds of cores: one optimised for control logic and
operating systems, and one optimised for computational throughput.

• Giving the programmer explicit control over data movement in the mem-
ory hierarchy, rather than having hardware-controlled caches.

• (TODO: more?)

2.2.1 Architecture

Overview

The Cell BE consists of one PowerPC Processor Element (PPE) and eight Synergistic
Processing Elements (SPE)

PPE

PowerPC Processor Unit (PPU) Separate register files for fixed-point, floating-
point, and vector. 32 SIMD registers.

SPE

Unified register file with 128 128-bit registers
Synergistic Processor Unit (SPU)

Memory bus and DMA controller

Base addresses (both in local storage and in system memory (TODO: correct?))
for all DMA transfers must be aligned on a 16-byte (quadword) border(TODO:
term?), and the data to be transferred must be a multiple of 16 bytes. Perfor-
mance is improved if aligned, whole cache lines (128 bytes(TODO: verify)) are
transferred at a time.

Local Store (LS) Memory Flow Controller (MFC)
Another method that is available for communication between the cores is

mailboxes signals

2.2.2 Programming methods

The vector data type

Compiler intrinsics

Compiler directives

__attribute__((aligned(16))), spu_sel, __builtin_expect, _align_hint, malloc_align, restrict

loop unrolling, function inlining (watch for code size!)
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Branch prediction and avoidance Given the deep pipeline of the SPEs(TODO:
verify), branch mispredictions are very expensive. A couple of compiler direc-
tives are available to let the programmer help the compiler and the SPE:

1. __builtin_expect(expression, expected) will evaluate and return
expression while informing the compiler that the programmer expects
the result to be expected. This is typically placed in the condition of an
if/else.

2. If the condition of an if/else is not easily predictable, but the if/else
bodies are very simple, one might be better off by computing both bod-
ies and using a special selection instruction to determine which result will
be kept. spu_sel(a, b, condition) will return either a or b depend-
ing on the truth value of condition. This translates to (TODO: a single)
instruction which does not involve branches.

Double and triple buffering

Overlays

(TODO: )

2.2.3 Tools and libraries

There exist several libraries for easing the development of scientific applications
on the Cell/B.E. We now provide a quick survey of the libraries that seemed to
be the most relevant to us. Only one of them, the Cell Messaging Layer, was
eventually used; we discuss our choice in (TODO: reference).

Accelerated Library Framework

ALF does not seem to be a good fit for our project, as

BlockLib

[1]

Cell Superscalar

(CellSs) [31]

RapidMind

http://www.rapidmind.net/

http://www.rapidmind.net/
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OpenMP for Cell

[38]

MPI for Cell

(TODO: Add citations: Kumar: A Buffered-Mode MPI Implementation for the
Cell BE Processor; Krishna: A Synchronous Mode MPI Implementation on the
Cell BE Architecture; JulCe)

The Cell Messaging Layer (CML): http://www.ccs3.lanl.gov/˜pakin/
software/cellmessaging/

(TODO: move)CML does have some disadvantages. First, it only supports
messaging between the SPEs, not between an SPE and the PPE. Second, CML
(like MPI) employs the Single Program Multiple Data (SPMD) model, which
means that all processors must run the same program. This means that even
if different SPEs are to perform different tasks, they must each contain the code
both for its own functionalify and the code for the functionaligy of all other SPEs.
Still, we chose to run both the column selection manager and the basis change
manager on the SPEs, because their code is fairly short, their operations are fast
and simple, and it is vital that they are able to respond quickly to messages from
the iteration processes. For the same reasons, we merged them into one SPE
thread so that the other seven SPEs would be available for iteration processes.

(TODO: Locate a BLAS library)

2.3 Miscellaneous topics

2.3.1 pthreads

(TODO: )

2.3.2 (RP) Representation of sparse matrices

There are many ways of representing a sparse matrix efficiently, of which Shah-
naz[35] provides a compact review. The one we ended up using in this project
(see Section 3.3.2.1 for the reason why) is called the Compressed Column Storage
format, also known as the Harwell-Boeing Sparse Matrix Storage Format[35]. A
sparse m×n-matrix containing k nonzero values is represented as two numbers
telling the number of rows and columns, and three arrays:

values contains all k nonzero values, column by column (first all nonzero values
from the first column, from top to bottom, then from the second column,
and so on).

http://www.ccs3.lanl.gov/~pakin/software/cellmessaging/
http://www.ccs3.lanl.gov/~pakin/software/cellmessaging/
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rowIndices contains k integers, one for each element of the values array, telling
which row that element is located in.

columnPositions always contains n + 1 elements — one for each column, and
one additional element. Each entry contains an index into the two other
arrays, which tells where the values of the corresponding column start.
The last element contains k, which in effect tells us the last valid index into
the two other arrays (namely k − 1). Thus, the indices of the elements of
column i are rowIndices[i] through rowIndices[i+ 1]− 1.

For instance, the matrix  9 0 0
0 2 7
4 3 0


would be represented as follows:

Value 9 4 2 3 7 —
Row index 0 2 1 2 1 —

Column positions 0 2 4 5
Note that we use zero-based indices. A sparse (column) vector can be rep-

resented similarly, as two arrays containing the nonzeroes and the row indices,
and two single variables telling the number of rows and the number of nonze-
roes.

2.3.3 (RP) Amdahl’s law

The following section is taken from our fall project report[10].
In 1967, Gene Amdahl argued[2] that parallel processing was not a good way

to improve performance, based on the following observation: If we have a com-
putation that consists of a sequence of serial steps that take a total time of ts,
and a certain percentage f of these steps can be performed in parallel using p

processors12, then the total time for the sequential part of the calculation will be
fts, and if we can distribute the remaining workload equally over the p proces-
sors, the parallel part will take the time (1 − f)ts/p. Since the sequential part
must presumably be completed before the parallel computations can begin (or
the other way around), these times must be added together for a total time of
tp = fts + (1− f)ts/p, and we arrive at Amdahl’s law13 for the speedup S(p):

S(p) =
ts
tp

=
ts

fts + (1− f)ts/p
=

1
f + (1− f)/p

=
p

1 + f(p− 1)
(2.37)

12These are quite optimistic calculations, since we assume that the calculation can be paral-
lelised without incurring communication penalties or extra computation steps, and that the par-
allel processors are as fast as the sequential one.

13Amdahl did not actually state this formula in his article, but it has been derived later (in
many different forms) from his article.
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The most significant aspect of this formula is that it highlights the importance of
f as a severely limiting factor for the potential speedup of parallelising. Amdahl
used this to claim that parallel programming was not a good idea. However,
since parallelisation is currently regarded as the primary way of improving per-
formance in high performance computing[4], the modern interpretation is that
speedups can come arbitrarily close to p if only we can make f small enough,
and thus, one should focus on reducing f when parallelising a calculation. On
the other hand, since f in most situations cannot (even approximately) become
equal to zero14, Amdahl’s law provides an upper bound on performance gain
for a specific problem given the best nonzero f we can achieve: As p tends to
infinity, the speedup converges to 1/f . Again, it should be noted that these
bounds are optimistic, as they are based on very simplifying assumptions.

(TODO: Actually refer to this law somewhere; fix references in chapter in-
tro)

14Calculations in which f ≈ 0 and where the assumptions about independence between the
parallel parts hold are called embarrassingly parallel.



Chapter 3
Design

(TODO: Chapter introduction)

3.1 Overall approach

The author and his advisor agreed that we should follow a gradual, step by step
approach in which we begin with solving simpler problems and (TODO: ) We
decided upon the following overall plan:

1. Implement the standard simplex method on a sequential machine.

2. Parallelise the standard simplex method on Cell (if the Cell turns out to
be very hard to program, we could first parallelise it on a regular mul-
ticore machine using e.g. pthreads or OpenMP (see http://openmp.

org/wp/) to make sure our parallelisation approach is correct).

3. Implement the revised simplex method on a sequential machine.

4. Parallelise the revised simplex method on Cell. This is expected to be
harder than (TODO: ) most likely by implementing an existing algorithm.
For each implementation, several refinements could be investigated:(TODO:
wording)

a) Investigating various ways of handling numerical instability that may
occur when using single precision arithmetic.

b) Experimenting with how different representations of sparse matrices
and vectors affect performance.

c) Figuring out how to improve performance by utilising the Cell/BE’s
vector operations.

d) Using autotuning to find good values for e.g. data transfer block
sizes.

37

http://openmp.org/wp/
http://openmp.org/wp/
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5. Investigate interior point methods and implement them if time permits.

3.2 Standard simplex method

In order to become familiar with programming the Cell BE, we initially imple-
mented a few versions of the standard simplex method (which is best suited for
dense problems). (Natvig’s comment: This can be justified when we have a task
description and “angrepsmåte”) As mentioned in Section 4.1, it turned out that
it is extremely hard to make the standard simplex method work reliably on even
medium-sized data sets

Our Cell implementation is a fairly straightforward parallelisation of the
standard simplex method (that is, it is only a parallel formulation of the same
algorithm), so it gives the same results as our sequential implementation. Given
that the sequential implementation normally yields a wrong answer for prob-
lems of nontrivial size, it is not particularily useful for computations, but Miriam
(who has invested in a Cell (TODO: Move this information to the introduction))
was still interested in a demonstration of how much impact the data transfers
have on performance. Therefore, we provide here a description of our paral-
lelisation strategy, and in Section 5.2.1 we provide detailed timings of some test
runs.

3.2.1 PPE version

(TODO: Far from finished) As described in Section 2.2.1, the PPE supports SIMD
instructions (also referred to as vector instructions) capable of operating on four
single precision floating point values simultaneously. Since the simplex method
primarily consists of row operations on the tableau, it is an excellent target for
such vectorisation — the only problem is the low arithmetic intensity, which
may reduce performance because a lot of data needs to be loaded into the reg-
isters, and only a very simple and fast operation is being performed on each el-
ement before it is thrown out again.(TODO: How much does this matter, given
the fast LS? However, if the data is too large to fit in the LS, things will probably
slow down a lot.)

(TODO: Something on why we chose C++?)

3.2.2 SPE version

Our approach is fairly obvious1:

1After having written the application, we found that Yarmish[40] uses a very similar ap-
proach, albeit for cluster computers with MPI.



3.3. REVISED SIMPLEX METHOD 39

1. The PPE, which initially holds the entire tableau, distributes the tableau
rows evenly among the SPEs (TODO: SPE or SPU?), giving each SPE a
batch of consecutive rows.

2. The first SPE analyses the objective function to determine the leaving vari-
able and sends the column number to the PPE, which distributes this num-
ber to the other SPEs. If no leaving variable was found, the optimal solu-
tion has been found, and the SPEs are asked to send their basic variable
values to the PPE and terminate. (TODO: which pivot rule?)

3. Each SPE determines the strictest bound (that is imposed by its subset of
the rows) on the value of the leaving variable and sends the bound (TODO:
and the corresponding row number) to the PPE.

4. The PPE determines which SPE that “wins” and requests this SPE to trans-
fer the pivot row to main memory; afterwards, all the other SPEs are re-
quested to receive this row(TODO: wording). If no SPEs found a finite
bound, the problem is unbounded, and the SPEs are asked to terminate.

5. Each SPE performs row operations on its part of the tableau, using the
pivot row, and notify the PPE upon completion. Go to step 2.

3.3 Revised simplex method

(TODO: )

3.3.1 Performing the matrix inversion in parallel

The revised simplex method as described in (TODO: reference) must occasion-
ally spend some time reinverting the basis matrix. A simple yet attractive idea is
to offload the matrix inversion onto a separate processor, which may then spend
all of its time performing inversions. Then, the main processor can spend all
of its time on the remaining steps of the method (while occasionally being pro-
vided with a reinverted basis matrix from the inversion processor), and one gets
the added benefit of the matrix being reinverted more often (which should be
good for numerical stability). (TODO: can the inversion itself be parallelised?)
Unfortunately, as reported by Ho and Sundarraj[20, Table 2], the inversion con-
sumes less than 20% of the total time of the revised simplex method, and as such,
speedups are limited as per Amdahl’s law (see Section 2.3.3). Furthermore, this
approach does not scale to more than two processors. Therefore, we have cho-
sen not to pursue this direction. Note, however, that ASYNPLEX incorporates
the same idea of having a separate inversion processor.
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3.3.2 Our adaptation of ASYNPLEX

As discussed in (TODO: reference), we realised that we had too little experi-
ence with numerical computation in general and the simplex method in par-
ticular, and therefore we decided to find an existing sequential implementation
of the simplex method and rewrite it as per the ASYNPLEX algorithm. Find-
ing a suitable implementation was not easy, because one apparantly needs to
make a trade-off between small code size and ease of understanding on one
hand and numerical stability on the other hand. As noted in (TODO: reference),
all the major, well-known implementations have exceedingly large code bases.
(TODO: Have we discussed rationales for our choice anywhere?) After unsuc-
cessful attempts at understanding GLPK and (TODO: ), we chose Vanderbei’s
implementation.

Basing ourselves on an existing sequential implementation also has the ad-
vantage of allowing a direct comparison between the sequential and parallel
versions of the same code, allowing us to better (TODO: spell “gaugue”) the
speedup that is offered by ASYNPLEX itself (Hall et al. measured their perfor-
mance against an entirely different sequential implementation), and the further
speedup that is obtained on Cell. (TODO: actually perform such comparisons)

The disadvantage, of course, is that retrofitting an sequential implementa-
tion may require a vast effort in case parts of the code does not lend itself well
to parallelisation (this easily happens when the code relies on global variables
or internal, static variables, because such variables will need to be duplicated so
that each thread has its own instance of it.) For this reason, we chose to switch
to C++(TODO: ).

3.3.2.1 (RP) Sparse vector and matrix representations

Vanderbei’s implementation uses the Compressed Column Storage format (as
described in Section 2.3.2) for sparse matrices and a similar scheme for sparse
vectors. Unfortunately, he did not have a structure or class that contained the
arrays and variables for each sparse matrix or vector. For instance, the matrix A
would be represented with the arrays a (values), ia (row indices), ka (column
positions) and the variable na (TODO: ) (number of nonzeroes) — a naming
scheme that we found to be very impractical (all variables must be passed as pa-
rameters to functions that are to manipulate sparse vectors and matrices), and
which (TODO: oppos. facilitate) our process of understanding his code. There-
fore, we introduced structures that combined these related arrays and variables,
and we refactored the code to use these strucures throughout. Our structure for
sparse matrices looks like this:(TODO: remove typedefs)

struct SparseMatrix {

int rows;

int cols;
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int numNonzeroes;

int * rowIndices;

int * colPos;

TYPE * values;

};

Note that TYPE is a preprocessor symbol which facilitates experimentation with
different precisions (TODO: describe TYPE somewhere) — it should be defined
as either float or double.

Due to the vast amounts of vector manipulation (and also in order to track
down some bugs we believed were related to reading/writing outside of the
array bounds, but turned out to be caused by wrong memory management),
we made a more elaborate sparse vector structure, which uses the vector class
from the C++ Standard Template Library. The at() function performs boundary
access checking on each access. (TODO: a define to enable/disable usage of at(),
and update this code) The compiler will most likely inline the simple accessor
functions and operators, so that the usage of classes with and vector will not
incur any performance penalty (if the boundary checking is turned off). The
structure looks like this:

class SafeSparseVector {

private:
int rows;

std::vector<int> rowIndices;

std::vector<TYPE> values;

public:
int numNonzeroes() const { return values.size(); }

int numRows() const { return rows; }

void setRows(int rows) { this->rows = rows; }

void resize(int size) {

rowIndices.resize(size);

values.resize(size);

}

void clear() {

rowIndices.clear();

values.clear();

}

void append(TYPE value, int rowIndex) {

values.push_back(value);

rowIndices.push_back(rowIndex);

}

TYPE & value(int i) { return values.at(i); }

TYPE value(int i) const { return values.at(i); }

int & rowIndex(int i) { return rowIndices.at(i); }

int rowIndex(int i) const { return rowIndices.at(i); }

TYPE maxValue() const;
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};

Beware that in order to save time, Vanderbei preallocates the arrays for any
sparse vector with r rows to have size r, but only the first k entries are used at
any time (where k is the number of nonzeroes). Whenever the contents (and the
number of nonzeroes) of the vector changes, one can simply fill the arrays with
as many entries as necessary, since each individual vector has a constant size
throughout the program and the number of nonzeroes obviously will never ex-
ceed the full vector size. Also, Vanderbei did not explicitly store the sizes of the
vectors and matrices, as they could always be deduced from context (normally
as having m or n rows). We feel that this practice obscures the relationship be-
tween a loop header and its body — if v is a sparse matrix with n columns and
we want to write a loop that manipulates v, we prefer e.g. for (int j = 0;

j < v.cols; ++j) to for (int j = 0; j < n; ++j). Therefore, we have
included the size information into our structures and have tried to used them
instead of m and n (this also makes the linear algebra functions slightly more
general, and it would facilitate unit testing). Note that such preallocation is not
done for matrices, since this would require too much space, and because the
main part of the algorithm never changes the matrices directly (it uses permuta-
tion lists to keep track of how columns are swapped).

3.3.2.2 Communication approach

ASYNPLEX is an algorithm for message-passing distributed memory systems,
but its authors describe how to adapt it to shared memory systems. While the
Cell/BE architecture resembles both shared memory and distributed memory
architectures, we chose to go with the message-passing approach
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Implementation and testing

(TODO: Chapter introduction)

4.1 Implementation problems

4.1.1 Straightforward simplex implementation

Our initial plan was to begin with something we thought to be fairly straight-
forward and then gradually proceed towards harder problems, along the lines
described in Section 3.1. Steps 1 and 2 initially seemed to have been as sim-
ple as we had assumed them to be (step 1 was based on the descriptions and
pseudocode from [7] and [37]), and the Cell parallelisation went well. These
implementations are listed in Appendix ??. Unfortunately, (TODO: )

Our beliefs were reinforced by the fact that well-known works such as [7]
and [37] make no mention of the standard simplex method being particularily
unstable (they only say that other methods are being used in practice because
they are more efficient). Agreeing with the words of Donald Knuth, “premature
optimization is the root of all evil”[26], we decided that (TODO: ) Time spent
optimising an incorrect program is most likely going to be wasted time, as the
optimised parts will probably be rewritten (or the whole program is discarded
and another one is developed from scratch) , and

Also, [32] provided an implementation of the standard simplex method —
but when we actually tried it, it turned out to run into the same kinds of stability
problems as our code (TODO: Make a section detailing experiments on this). In
the third edition[33], it has been replaced by an implementation of the revised
simplex method.

We succeeded in finding an implementation of the standard simplex method
that seemed to work well, called retroLP[41]. However, the code base was quite
large, and (TODO: )

43
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We eventually resigned and contacted a group of mathematicians with which
Lasse is acquainted, describing our problems and asking them for help on how
to make the standard simplex method work stably[18]. Their response (TODO:
)

Most of the books we have consulted on the subject of linear programming
simply give the standard theoretical presentation and completely neglects to
mention the practical implementation difficulties — the author of this report
would very much have liked a book that is detailing what one needs to do in
order to make the simplex method stable. The closest we have come to this is
the splendid book by Maros[29]. (TODO: )

MPS parser The netlib data sets are stored in a file format called MPS (Math-
ematical Programming System). The format hails from the punch card age; as
such, it is fairly arcane (it employs fixed format), but all the simpler to parse.
This was fortunate, since we could not find any available parsers, so we had to
write our own (. (TODO: Put the source in the appendix) Our parser does not
handle all aspects of the format, but(TODO: ) Maros[29, Chapter 6] gives a fairly
compact presentation of the format.

4.1.2 Numerical stability

(TODO: something on float vs. double?) Already at the beginning of the project,
concerns were raised about the suitability of the Cell/B.E. for this kind of com-
putations, since its double precision arithmetic is very slow compared to its sin-
gle precision arithmetic.

In order to demonstrate that the stability problems are not caused by er-
rors in our implementation, we have made our code support usage of the GNU
multiple precision arithmetic library (GMP — see http://gmplib.org/), which
among other features has a data type for representing arbitrary-size rational
numbers exactly. Since the simplex methods only apply the four basic arith-
metic operations throughout their operation, all numbers in the tableau will
remain rational1. Compile the code by running the buildgmp.sh script; this
will link to GMP (which must first have been downloaded, compiled and in-
stalled on the system) and tell our code to use the mpq_class data type for all
arithmetic operations and to output results in fraction form. When using GMP,
the code obviously slows down by a significant factor and the memory con-
sumption increases (which is why this approach is useless in practice unless it is
absolutely essential to obtain exact results). Table 4.1.2 on the next page shows
the results for some of the small-to-medium netlib sets. Note that our solver
performs maximisation, while the netlib sets are supposed to be minimised

1Assuming, of course, that they were initially rational — but all data formats for representat-
ing of LP problems are based on floating point numbers, which are inherently rational.

http://gmplib.org/
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(but for some reason, the MPS format does not specify whether to maximise or
minimise) — therefore, our MPS parser negates the objective function, so that
the answers will have correct absolute value but wrong sign. According to the
README file, The “official” netlib results have been obtained using the MINOS
solver, version 5.3. All digits of the netlib results agree with our exact results.
(TODO: used rev 66:abf2df...)

Data set Netlib result Our result Iterations Time
AFIRO −4.6475314286 · 102 406659

875 16 0.044 s

BRANDY 1.5185098965 · 103

−16065877392598163704545292298
35255763845946280057831648209
5777480900411096633986368891

1058002811160721713504750150
8720411569323127506371426417
345909327662918125000000000

605 18.334 s

LOTFI −2.5264706062 · 101 631617651547
25000000000 537 40.362 s

SCFXM2 3.6660261565 · 104

−487467141911986101107830583924465
3390630042031652016001773580110200
0732423011933261045459132101058706
9407177301915047835480055104995559

132968811760304712675433640078488
877195894209916975474747392970467
484815850625849844147283072046261
38144465522586000000000000000000

1299 2363.2 s

STOCFOR1 −4.1131976219 · 104

7368963026860358678147
0598121420626868798940
69612494322055836783

17915412056905368048
97461796875000000000
00000000000000000000

135 3.381 s

Table 4.1: Some results of our exact standard simplex implementation

4.1.3 (TODO: Missing citations)

(Natvig/Elster/Mujahed: This section is quite randomly placed; it is simply a
list of articles I think I am going to cite, but where I haven’t yet written the
context in which they are to be cited.) [16] [12] [15] [27]
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4.2 Standard simplex method

4.3 ASYNPLEX

4.4 Test plan

4.4.1 Unit testing

While one might argue that testing an LP solver by running it against a collec-
tion of large data sets provides sufficient evidence that the implementation is
correct, one will gain even more confidence in the implementation by creating
unit tests. Any decent programmer knows how to structure a program by break-
ing it down into functions, each performing a limited, well-defined part of the
overall task. Unit testing, on the other hand, is often neglected, even though
it is highly beneficial during development. There is a lot of literature on the
subject(TODO: citation), but the basic idea is simple: write code that tests other
code. This is fairly straightforward to do as long as the code is partitioned into
functions in a reasonable manner. Code should be written to test each nontrivial
function for a number of different parameter combinations.

Another important aspect is that unit testing gives regression testing for free.
If one discovers a bug, one should immediately add a test that demonstrates the
bug before one fixes the code. That way, one can easily demonstrate that the bug
has been fixed, and since this test is now a part of the test suite (all of which
should be run after each change to any code) it will immediately discover the
bug if it resurfaces — after all, in large applications bugs in one part of the code
can often be triggered .

While some of these considerations are most relevant for software compa-
nies, (TODO: )

(TODO: Actually write some unit tests...)

4.4.2 Large data sets

(TODO: Something on the netlib LP problem set) (TODO: Set selection by H.
Y. Benson and D. F. Shanno?)

4.4.3 Array bounds checking

mudflap

4.4.4 Memory leaks

valgrind with MemCheck (http://valgrind.org) is an invaluble tool for
detecting memory leaks (forgetting to release memory segments that are no

http://valgrind.org
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longer in use, such that the program will continuously consume more and more
memory) and illegal use of the memory allocation system (such as calling free()
on the same pointer twice, which may easily cause corruption of the memory al-
locator’s internal data structures). We have used this tool on several occasions
during this project, and we believe that we have removed all memory leaks
caused by our own code. The only leaks that remain are caused by Vanderbei’s
own code, but each leak occurs only once (not inside loops) and the data that is
being allocated is needed throughout the entire program (and is automatically
freed when the program terminates), so that we chose not to spend time on re-
moving them. A valgrind report on one run of our (TODO: x86) solver can be
found in Appendix (TODO: ).

4.4.5 Comparison to other implementations

Miriam currently uses the ILOG CPLEX solver, and it would therefore be rea-
sonable to compare the time consumption of our algorithm to those of CPLEX.
(TODO: Convert some netlib test sets to cplex format and get Chris to run them)
GLPK seems to be the most well-known open source solver, so we might also
want to compare our results against it. Of course, since our implementation is
based on Vanderbei’s code, we will want to measure speedups relative to his
implementation. Hall[17] provides relative speedups of ASYNPLEX runs on a
few netlib sets, with which we can compare our speedups.





Chapter 5
Evaluation

Due to all the challenges we have faced, we have not (TODO: Chapter introduc-
tion) Still, a number of interesting questions can be posed, and their answers
might serve as a guidance to those that will continue the project.

5.1 Performance measurements

5.1.1 (RP) Testing environments

The x86 experiments were run on a machine containing an Intel Core2 Quad
Q9550 with four cores at 2.83 GHz, with 4 GB of system memory. The compiler
is gcc version 4.2.4. The system is running Ubuntu version 9.04 “jaunty” with
Linux kernel version 2.6.28-11-generic.

The Cell/B.E. experiments were run using the IBM Full-System Simulator,
version 3.1-8.f9, on a computer running Fedora 9. Being a simulator, the tim-
ing results obtained on it are independent of the physical hardware of the host
computer.

(TODO: What is the simulated frequency?)

5.1.2 What to measure (TODO: reword — “research questions?”)

• How the numerical stability and the accuracy of the answer is affected by
using single precision in place of double precision

• Speedup of the Cell/B.E. parallel standard simplex implementation rela-
tive to the x86 implementation

• How the speedup of the Cell/B.E. parallel standard simplex implementa-
tion depends on the number of SPEs used (relative to a version using only
the PPE)

49
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• How well a vectorised Cell/B.E. parallel standard simplex implementa-
tion the performs relative to a non-vectorised version

• Speedup of the Cell/B.E. ASYNPLEX implementation relative to the x86
implementation

• Time spent waiting for data to be moved to the local store (both for the
standard simplex method and for ASYNPLEX)

We will use data sets ranging from the smallest ones to the largest that our solver
can handle, in order to test the scalability of our implementations.

5.1.3 Measurement methods

Since the time utility, which reports three values for the time spent by the pro-
cess: real (wall time), user (time spent in the process’ own code), and sys

(time spent in system calls on behalf of the process). For multithreaded pro-
grams, We therefore give the times are the real

All x86 and PPE programs were compiled with the -O3 switch (maximal op-
timisation level) and were run using nice -n -20 in order to force the operat-
ing system to ensure a favorable thread scheduling priority for the programs.

For the smallest sets, the resolution of time is not adequate; neither is that
of the standard C function clock().

On Cell, we use the
The Cell/B.E. simulator can gather detailed statistics on each of the SPEs.

Before invoking the program one wishes to analyse, all SPEs must be set to
“pipeline mode”, and after the program has been run and the simulator has
been stopped, the simulator command (TODO: ) can be issued for each SPE.

5.2 Results

5.2.1 Standard simplex method

As discussed in (TODO: reference), the standard simplex method is highly sus-
ceptible to numerical instability, and our implementation is no exception to this.
It is essentially useless in practice because for most sets of realistic size, it pro-
duces answers that are off by orders of magnitude. Still, we might be able
to learn something about the computation to communication ratio of the al-
gorithm, and how much time vector operations are capable of saving. Also,
Miriam stated that they are interested in such measurements.
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5.2.2 Revised simplex method

(Natvig/Elster/Mujahed: I think I will perform timing measurements both on
my C/pthreads implementation and on my Cell implementation.)

5.3 Other aspects

5.3.1 Code size

(TODO: Not entirely sure about this) Vanderbei’s Phase I/II scheme causes the
code size to be larger than necessary, because much code must be duplicated in
order to work with both A and A>.

It is necessary to The debug flags, in particular -g3, dramatically increase
code size. Optimisation flags, in particular -O3, reduce code size greatly (strangely,
-Os does not seem to have any effect). As often happens in optimisation, there
are tradeoffs that must be considered — for instance, while loop unrolling gives
a good speedup of tight loops, it increases code size, which one cannot always
afford on Cell. Thus, neither manual unrolling nor -funroll-loops should
be done if (like us) one has a large program.

When optimising for size, one would normally want to consider using -fno-inline
in order to disable function inlining (replacing calls to short functions by the ac-
tual function code). However, this flag actually increased the size of the object
files. We suspect that this is due to heavy use of std::vector and its [] oper-
ator — the operator code itself can probably be translated into one instruction
(load using memory address and offset), while a function call would require
several instructions for parameter passing, stack management, etc.

The option that by far had the greatest impact on the final code size was
-s, which tells the linker not to include symbol information (a debug (TODO:
and linking) aid) in the object files. (TODO: This reduced the spu program to
one-third of its original size.)

5.4 Reflections on unimplemented features. Ideas for
future work

(TODO: Stuff we didn’t get the time to do...)

5.4.1 Dense interior point

(TODO: Already done, according to Mujahed (or was it only the Cholesky fac-
torisation step? - acquire reference)
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5.4.2 Sparse interior point

The most time consuming step of many interior point algorithms is a Cholesky
factorisation.(TODO: citation) Monien and Schulze[30] discuss approaches to
parallelising this operation for sparse matrices, and one of those methods, called
the multifrontal method, is elaborated by Schulze[34].

Andersen and Andersen[3] present a parallel shared memory version of the
interior point algorithm that is (or was at the time) underlying the Xpress solver
(see Section 2.1.7). Yet another parallel interior point algorithm is presented by
Karypis et al.[23].

(TODO: Opportunities for implementing this on cell?)

5.4.3 Mixed precision

It may be possible to overcome the limited precision that is offered by the Cel-
l/BE without rewriting the computation to use double precision (which will in-
cur a massive slowdown). Some linear algebra problems can be solved by using
a technique called iterative refinement

By performing the We have not ventured to investigate such an approach
ourselves, but one may Kurzak and Dongarra[28] describe a successful imple-
mentation of a Cell/BE program for solving equations of the form Ax = b,
which meets the LINPACK benchmark’s requirements for the precision of the
solution.

Similar techniques may be investigated for

5.4.4 (RP) Representation of sparse matrices

Sparse matrices and vectors can be represented in numerous ways; Shahnaz et
al.[35] give a good review of different storage schemes. Several operations in a
linear solver will depend on the choice of such a representation. If one takes care
to place the code for each such operation in a separate function, only a modest
amount of work will be required to create implementations of several storage
schemes (with the added benefit that these implementations can be tested sep-
arately, and as long as they work, the entire solver will still work). Then, one
can measure how performance is impacted by the choice of storage scheme. The
first alternative representation to try might be the jagged diagonal storage, which,
according to [35], is “specially tailored for sparse matrix-vector multiplications”,
and its variation transposed jagged diagonal storage, which is “suitable for parallel
and distributed processing”.

It should be noted that some formats are intended for general matrices, while
others make assumptions about the distribution of nonzeroes — the latter cate-
gory may be risky to use internally in the solver, since one cannot tell in advance
what kind of patterns might emerge in the intermediate matrices produced in
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the course of the algorithm. (TODO: are we sure about this?) Vanderbei’s im-
plementation uses the Compressed Column Storage format described in Section
2.3.2.

5.4.5 (RP) Vectorisation

As mentioned in Section 2.2.2, utilising vector operations is essential in order
to obtain the high computational throughput that is promised by the Cell/BE.
While vectorisation of dense matrix-vector operations is fairly trivial (as seen
in our parallel standard simplex solver), putting vectors to good use in sparse
operations is much harder. For instance, vectorisation of a simple addition of
(mathematical) vectors will require the opportunity to add four adjacent num-
bers to four other adjacent numbers simultaneously, but with sparse representa-
tions, adjacent numbers in one vector may not correspond to adjacent numbers
(or any numbers at all) in the other vector.

One approach may be to, for each nonzero number, store all four numbers
that are located in the same vector (even if the other three are zeroes) — if the
element at index i is nonzero, we would store all elements from bn4 c · 4 through
bn4 c · 4 + 3. This would permit operations on four adjacent numbers — but
only if there is a matching vector in the other vector. Thus, the gains from this
approach may be rather limited. Furthermore, it would come at the cost of an
increase in the storage requirements, which may be detrimental since it would
increase the traffic on the Cell/BE bus. When using the compressed column
storage format as described in Section 2.3.2, the required space would increase
from 2k + 1 elements to 5k + 1 elements (it is sufficient to store the row index
of each vector, so only the value array would quadruple its size) in the worst
case of a vector having k nonzeroes with none of them spaced closer than four
elements apart. For an m × n-matrix containing k nonzeroes it would increase
from 2k + n+ 3 elements to 5k + n+ 3 elements.

5.4.6 Autotuning

Autotuning A well-known software product that utilises autotuning is ATLAS,
which is a BLAS library which can be automatically optimised for any architec-
ture.

However, the benefits from autotuning may be smaller on Cell/BE than on
regular computers, since the entire point of We feel that Kurzak and Dongarra
expressed this very eloquently: “Great effort has been invested throughout the
years in optimizing code performance for cache-based systems, in most cases
leading to the programmers reverse engineering the memory hierarchy. By re-
quiring explicit data motion, the memory design of the Cell takes the guesswork
out of the equation and delivers predictable performance.”[28] Still,
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5.5 Discussion



Chapter 6
Conclusion

The purpose of this project was to explore how linear programming algorithms,
primarily variations of the simplex method, might be parallelised and imple-
mented on the Cell Broadband Engine, a multicore processor with an innova-
tive architecture. To the surprise of both the author and his advisor, the various
simplex method turned out to be exceedingly difficult to implement sequen-
tially, even on a regular computer and without parallelisation — a fact which
we later learned is well-known within the mathematical optimisation commu-
nity. (TODO: )

Thus, the project was turned into an exercise in reading and refactoring other
people’s code (a useful skill to have, but it does not exactly qualify as research)

The author selected this project (from a collection of many project proposals
provided by his institute) in the belief that the algorithms , and that he would
spend most of his time

6.1 Experiences

Building an industrial-strength LP solver is a vast amount of work and must
only be undertaken with someone who has extensive knowledge of both pro-
gramming and numerics.

6.2 Future work
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[4] K. ASANOVÍC, R. BODIK, B. CATANZARO, J. GEBIS, P. HUSBANDS, K. KEUTZER,
D. PATTERSON, W. PLISHKER, J. SHALF, S. WILLIAMS, AND K. YELICK, The Land-
scape of Parallel Computing Research: A View from Berkeley, Tech. Rep. UCB/EECS-
2006-183, Electrical Engineering and Computer Sciences — University of Califor-
nia at Berkeley, December 2006. [cited at p. 31, 36]

[5] H. Y. BENSON AND D. F. SHANNO, An exact primal-dual penalty method approach
to warmstarting interior-point methods for linear programming, Computational Opti-
mization and Applications, 38 (2007), pp. 371–399. [cited at p. 17]

[6] R. E. BIXBY AND A. MARTIN, Parallelizing the Dual Simplex Method, INFORMS Jour-
nal on Computing, 12 (2000), pp. 45–56. [cited at p. 30]

[7] T. H. CORMEN, C. R. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction to
Algorithms, McGraw-Hill Science/Engineering/Math, 2nd ed., 2003. [cited at p. 3, 16,

28, 43]

[8] G. DANTZIG, Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, 1963. [cited at p. 7]

[9] D. P. DOBKIN, R. J. LIPTON, AND S. P. REISS, Linear programming is log-space hard
for P, Information Processing Letters — TODO: Correct number/volume, 2 (1979),
pp. 96–97. [cited at p. 16]

57



58 BIBLIOGRAPHY
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Appendix A
Code

A.1 Sequential standard simplex method for x86 and Cell/B.E.

(TODO: Defines) (TODO: Input format) (TODO: Describe each file: purpose, and if we have
changed it)

It can be compiled in several versions:

• For x86, using float: run g++ -O3 -Wall *.cpp

-o standard simplex x86 float -DTYPE=float

• For x86, using double: run g++ -O3 -Wall *.cpp

-o standard simplex x86 float -DTYPE=double

• For x86, using GMP: run g++ -O3 -Wall *.cpp

-o standard simplex x86 gmp -DTYPE=mpq class -lgmpxx -lgmp -DUSE GMP

• For Cell/B.E., using float and SIMD instructions: run make

• For Cell/B.E., using float and no SIMD instructions: edit the Makefile and remove
-DUSE_SIMD, and run make

Note that the code highlighting package we use (listings) erroneously highglights the
vector class from the Standard Template Library, thinking that it is the vector keyword for
SIMD data types.

Matrix.h and Matrix.cpp

A class for representing matrices where the size of the physical memory buffer for each row is a
multiple of 16 bytes, so that it supports SIMD operations internally. The actual matrix with can be
anything.

#ifndef MATRIX_H

#define MATRIX_H

#include <iostream>
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#include <vector>

#include "gmpInterop.h"

class Matrix {

friend std::ostream & operator << (std::ostream &, const Matrix &);

public:
Matrix(int, int);
Matrix(int rows, int cols, TYPE * data);

Matrix(int, int, bool);
Matrix(const Matrix &);

˜Matrix();

int getRows() { return rows; }

int getCols() { return cols; }

TYPE * getData() { return data; }

inline TYPE & operator () (int r, int c) { return data[r * physicalCols + c

]; }

inline TYPE operator () (int r, int c) const { return data[r * physicalCols

+ c]; }

void swapRows(int firstRow, int secondRow);

void multiplyRow(int row, TYPE factor);

void addRows(int sourceRow, int destinationRow, TYPE factor);

void print(const std::vector<int> & basic, const std::vector<int> & nonbasic

);

private:
int rows;

int cols;

int physicalCols;

TYPE * data;

};

std::ostream & operator << (std::ostream &, const Matrix &);

// Used by addRows to increment one number by another, with support for two

different "zeroing rules", controlled by defines:

// - set to zero if result is below ZEROING_RULE_EPSILON

// - set to zero if the ratios of each of the operands to the result is

greater than ZEROING_RULE_RATIO

// - not defining either of these will simply result in a regular a += b

operation

inline void incr(TYPE & a, const TYPE & b) {

#ifdef ZEROING_RULE_EPSILON

a += b;

if (ABS(a) <= ZEROING_RULE_EPSILON) {

a = 0;

}

#else
#ifdef ZEROING_RULE_RATIO
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TYPE result = a + b;

if (result == 0 || (ABS(a / result) >= ZEROING_RULE_RATIO && ABS(b /

result) >= ZEROING_RULE_RATIO)) {

a = 0;

}

else {

a = result;

}

#else
a += b;

#endif

#endif

}

#endif

#include "Matrix.h"

#define VECTOR_WIDTH 4

#define ALIGN_LOG2 4

#define ROUND_UP_MULTIPLE(x, m) (((x) + (m) - 1) / m * m) // Returns x rounded

up to the nearest multiple of m

#ifdef __powerpc__

// On Cell, we need these includes

// Note: __powerpc__ should perhaps be replaced by something more Cell-

specific in case one wants to compile this on a PowerPC that is not a

Cell PPE

#include <altivec.h>

#include <libmisc.h>

#else
#include <cstdlib>

// On x86, there is no malloc_align and no need for it either

#define malloc_align(size, alignment) malloc(size)

#define free_align(buffer) free(buffer)

#endif

#ifdef USE_SIMD

#ifdef USE_GMP

#error "Cannot use GMP with SIMD operations"

#endif

#endif

using namespace std;

Matrix::Matrix(int rows, int cols) {

this->rows = rows;

this->cols = cols;
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this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

#ifdef USE_GMP

// GMP’s types are classes and require their constructors to be called, so

we need to use new.

// If necessary, it is possible to combine malloc_align and GMP through the

use of ’placement new’.

this->data = new mpq_class[rows * this->physicalCols];
#else
this->data = (TYPE*)malloc_align(rows * this->physicalCols * sizeof(TYPE),

ALIGN_LOG2);

#endif
for (int i = 0; i < rows * this->physicalCols; ++i)

this->data[i] = 0;

}

Matrix::Matrix(int rows, int cols, TYPE * data) {

this->rows = rows;

this->cols = cols;

this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

#ifdef USE_GMP

this->data = new TYPE[rows * this->physicalCols];
#else
this->data = (TYPE*)malloc_align(rows * this->physicalCols * sizeof(TYPE),

ALIGN_LOG2);

#endif
for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c)

this->data[r * this->physicalCols + c] = data[r * cols + c];

for (int c = cols; c < this->physicalCols; ++c)

this->data[r * this->physicalCols + c] = 0;

}

}

Matrix::Matrix(int rows, int cols, bool identity) {

this->rows = rows;

this->cols = cols;

this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

#ifdef USE_GMP

this->data = new TYPE[rows * this->physicalCols];
#else
this->data = (TYPE*)malloc_align(rows * this->physicalCols * sizeof(TYPE),

ALIGN_LOG2);

#endif
for (int i = 0; i < rows * this->physicalCols; ++i)

this->data[i] = 0;

if (identity && rows == cols) {

for (int i = 0; i < rows; ++i) {
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(*this)(i, i) = 1;

}

}

}

Matrix::Matrix(const Matrix & source) {

this->rows = source.rows;

this->cols = source.cols;

this->physicalCols = source.physicalCols;

#ifdef USE_GMP

this->data = new TYPE[source.rows * source.physicalCols];

#else
this->data = (TYPE*)malloc_align(source.rows * source.physicalCols * sizeof(

TYPE), ALIGN_LOG2);

#endif
for (int i = 0; i < source.rows * source.physicalCols; ++i)

this->data[i] = source.data[i];

}

Matrix::˜Matrix() {

#ifdef USE_GMP

delete [] data;

#else
free_align(data);

#endif
}

// Prints the entire matrix

ostream & operator << (ostream & out, const Matrix & matrix) {

out << "=== " << matrix.rows << " x " << matrix.cols << " @ " << matrix.data

<< " ===" << endl;

for (int r = 0; r < matrix.rows; ++r) {

out << matrix(r, 0);

for (int c = 1; c < matrix.cols; ++c)

out << ’ ’ << matrix(r, c);

out << endl;

}

out << "======" << endl;

return out;

}

// A more advanced print operation that prints only nonzero entries, along

with variable names

void Matrix::print(const vector<int> & basic, const vector<int> & nonbasic) {

cout << "=== " << rows << " x " << cols << " @ " << data << " ===" << endl;

for (int r = 0; r < rows; ++r) {

if (r == 0)
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cout << "z = ";

else
cout << "x" << basic[r - 1] << " = ";

cout << (*this)(r, 0);

for (int c = 1; c < cols; ++c)

if ((*this)(r, c) != 0)

cout << " " << (*this)(r, c) << "x" << nonbasic[c - 1];

cout << endl;

}

cout << "======" << endl;

}

// No point in using SIMD here; this function is used very rarely

void Matrix::swapRows(int firstRow, int secondRow) {

if (firstRow == secondRow) return;
for (int j = 0; j < cols; ++j) {

TYPE tmp = (*this)(firstRow, j);

(*this)(firstRow, j) = (*this)(secondRow, j);

(*this)(secondRow, j) = tmp;

}

}

#ifdef USE_SIMD

void Matrix::multiplyRow(int row, TYPE factor) {

if (factor == 1) return;
vector TYPE zero_v = (vector TYPE){0.0f, 0.0f, 0.0f, 0.0f};

vector TYPE factor_v = (vector TYPE){factor, factor, factor, factor}; //

Wanted to use vec_splat(vec_lde(0, &factor), 0) here, but might have

misunderstood the syntax

vector TYPE * data_v = (vector TYPE *)(data + row * physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

data_v[j] = vec_madd(data_v[j], factor_v, zero_v);

}

}

void Matrix::addRows(int sourceRow, int destinationRow, TYPE factor) {

if (factor == 0) return;
vector TYPE factor_v = (vector TYPE){factor, factor, factor, factor}; //

As above

vector TYPE * source_v = (vector TYPE *)(data + sourceRow * physicalCols);

vector TYPE * destination_v = (vector TYPE *)(data + destinationRow *
physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

destination_v[j] = vec_madd(source_v[j], factor_v, destination_v[j]);
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}

}

#else

void Matrix::multiplyRow(int row, TYPE factor) {

if (factor == 1) return;
for (int j = 0; j < cols; ++j) {

(*this)(row, j) *= factor;

}

}

void Matrix::addRows(int sourceRow, int destinationRow, TYPE factor) {

if (factor == 0) return;
for (int j = 0; j < cols; ++j) {

incr((*this)(destinationRow, j), (*this)(sourceRow, j) * factor);

}

}

#endif

mps.h and mps.cpp

An MPS parser. See notes in Appendix A.6 and Appendix A.6.

#ifndef MPS_H

#define MPS_H

#include <iostream>

#include <vector>

#include <string>

std::vector<std::vector<TYPE> > parse(std::istream & input);

std::vector<std::vector<TYPE> > parse(const std::vector<std::string> & lines);

#endif

#include <iostream>

#include <fstream>

#include <string>

#include <map>

#include <vector>

#include <stdexcept>

#include <sstream>

#include <cctype>

#include "gmpInterop.h"
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using namespace std;

enum RowType {

LESS_THAN,

EQUAL_TO,

GREATER_THAN,

OBJECTIVE

};

string rowTypeLabels[] = {"L", "E", "G", "N"};

class Equation {

public:
string label;

RowType type;

map<string, TYPE> values;

int index;

TYPE rhs;

Equation(string label, string type, int index) {

this->label = label;

if (type == "L")

this->type = LESS_THAN;

else if (type == "E")

this->type = EQUAL_TO;

else if (type == "G")

this->type = GREATER_THAN;

else if (type == "N")

this->type = OBJECTIVE;

else
throw invalid_argument("");

this->index = index;

this->rhs = 0;

}

};

string strip(string line) {

int start = 0, end = (int)line.size() - 1;

while (start < (int)line.size() && isspace(line[start])) ++start;

while (end >= 0 && isspace(line[end])) --end;

if (end < start)

return "";

else
return line.substr(start, end - start + 1);

}

vector<string> split(string line) {
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stringstream ss(line);

vector<string> items;

string item;

while (ss >> item) {

items.push_back(item);

}

return items;

}

vector<vector<TYPE> > parse(const vector<string> & lines) {

map<string, Equation *> equations;

vector<string> columnLabels;

map<string, int> columnIndices;

vector<vector<TYPE> > tableau;

unsigned int i = 0;

int objectiveIndex = -1;

while (i < lines.size()) {

string line = lines[i];

string header = strip(line);

i++;

if (line[0] == ’*’ || line[0] == ’ ’ || line.substr(0, 4) == "NAME") {

continue;
}

else if (strip(line) == "ENDATA") {

break;
}

else if (strip(line) == "ROWS") {

int rowIndex = 0;

while (lines[i][0] == ’ ’) {

vector<string> items = split(lines[i]);

Equation * eqn = new Equation(strip(items[1]), strip(items[0]),

rowIndex);

if (eqn->type == OBJECTIVE)

objectiveIndex = rowIndex;

equations[eqn->label] = eqn;

rowIndex++;

i++;

}

}

else if (strip(line) == "COLUMNS") {

int columnIndex = -1;

while (lines[i][0] == ’ ’) {

vector<string> items = split(lines[i]);

int lim = (items.size() == 5 ? 2 : 1);

string columnLabel = strip(items[0]);

if (columnIndices.find(columnLabel) == columnIndices.end()) {

columnIndex++;
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columnLabels.push_back(columnLabel);

columnIndices[columnLabel] = columnIndex;

}

for (int j = 0; j < lim; ++j) {

string rowLabel = strip(items[1 + j * 2]);

stringstream ss(strip(items[2 + j * 2]));

TYPE value;

readNumber(ss, value);

equations[rowLabel]->values[columnLabel] = value;

}

i++;

}

}

else if (strip(line) == "RHS") {

while (lines[i][0] == ’ ’) {

vector<string> items = split(lines[i]);

int lim = (items.size() == 5 ? 2 : 1);

for (int j = 0; j < lim; ++j) {

string rowLabel = strip(items[1 + j * 2]);

stringstream ss(strip(items[2 + j * 2]));

TYPE value;

readNumber(ss, value);

equations[rowLabel]->rhs = value;

}

i++;

}

}

else {

throw invalid_argument("");

}

}

tableau.resize(1); // obj. func.

for (map<string, Equation *>::iterator eqnIter = equations.begin(); eqnIter

!= equations.end(); ++eqnIter) {

Equation * eqn = eqnIter->second;

vector<TYPE> row(columnLabels.size() + 1, 0);

bool any = false;
row[0] = eqn->rhs;

for (map<string, TYPE>::iterator colIter = eqn->values.begin(); colIter !=

eqn->values.end(); ++colIter) {

string colLabel = colIter->first;

row[columnIndices[colLabel] + 1] = -eqn->values[colLabel];

if (eqn->values[colLabel] != 0)

any = true;
}

if (!any)

continue;
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if (eqn->type == OBJECTIVE) {

tableau[0] = row;

}

else {

if (eqn->type == LESS_THAN || eqn->type == EQUAL_TO) {

tableau.push_back(row);

}

if (eqn->type == GREATER_THAN || eqn->type == EQUAL_TO) {

for (unsigned int j = 0; j < row.size(); ++j)

row[j] = -row[j];

tableau.push_back(row);

}

}

delete eqn;

}

return tableau;

}

vector<vector<TYPE> > parse(istream & input) {

string line;

vector<string> lines;

while (getline(input, line)) {

lines.push_back(line);

}

return parse(lines);

}

gmpInterop.h and gmpInterop.cpp

Code for facilitating the use of GMP, whose classes must occasionally be treated differently from
primitive C++ types.

#ifndef GMPINTEROP_H

#define GMPINTEROP_H

#include <iostream>

#ifdef USE_GMP

#include <gmpxx.h>

#define ABS(x) abs(x)

#else
#include <cmath>

#define ABS(x) fabs(x)

#endif

void readNumber(std::istream & in, TYPE & number);

void printNumber(const TYPE & number);
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void printNumberFull(const TYPE & number);

#endif

#ifdef USE_GMP

#include <gmpxx.h>

#endif
#include "gmpInterop.h"

using namespace std;

#ifdef USE_GMP

// Only handles floats using regular notation (no 0x, no E) and integers.

// Accepts numbers < 1 without a leading zero.

// The string cannot be empty or contain any spaces.

static void parseRational(const string & str, mpq_class & number) {

//bool negative = (str[0] == ’-’);

size_t dotIndex = str.find(’.’);

if (dotIndex == string::npos) {

number = str;

number.canonicalize();

return;
}

string noDot = str.substr(0, dotIndex) + str.substr(dotIndex + 1);

// size_t firstNonzeroIndex = noDot.find_first_not_of("-0");

// if (firstNonzeroIndex == string::npos) {

// number = 0;

// return;

// }

// string noLeadingZeroes = negative ? "-" : "";

// noLeadingZeroes += noDot.substr(firstNonzeroIndex);

mpq_class numerator(noDot, 10);

int power = str.size() - dotIndex - 1;

mpq_class denominator = 1;

while (power--) {

denominator *= 10;

}

number = numerator / denominator;

number.canonicalize();

}

#endif

void readNumber(istream & in, TYPE & number) {

#ifdef USE_GMP

string str;

in >> str;

parseRational(str, number);

#else
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in >> number;

#endif
}

void printNumber(const TYPE & number) {

#ifdef USE_GMP

cout << number.get_d();

#else
cout << number;

#endif
}

void printNumberFull(const TYPE & number) {

#ifdef USE_GMP

cout << number.get_d() << " (approx); " << number << " (exact)";

#else
cout << number;

#endif
}

/*
int main() {

mpq_class a;

parseRational("0.00001", a);

cout << a << endl;

parseRational("10.00001", a);

cout << a << endl;

parseRational("12.00000", a);

cout << a << endl;

parseRational(".02001", a);

cout << a << endl;

parseRational("-.5", a);

cout << a << endl;

parseRational("-0.00001", a);

cout << a << endl;

parseRational("-120", a);

cout << a << endl;

parseRational("-0.0", a);

cout << a << endl;

parseRational("-0.0", a);

cout << a << endl;

parseRational("0", a);

cout << a << endl;

parseRational("-0", a);

cout << a << endl;

parseRational("32.1234", a);

cout << a << endl;
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return 0;

}

*/

TableauSimplex.h and TableauSimplex.cpp

Code for performing a simplex iteration (with pivoting).

#ifndef TALBEAUSIMPLEX_H

#define TALBEAUSIMPLEX_H

#include "Matrix.h"

#include <vector>

enum SimplexResult {

SUBOPTIMAL,

OPTIMAL,

INFEASIBLE_OR_UNBOUNDED

};

class TableauSimplex {

public:
static SimplexResult iteration(Matrix & tableau, std::vector<int> & basic,

std::vector<int> & nonbasic);

static void pivot(Matrix & tableau, std::vector<int> & basic, std::vector<

int> & nonbasic, int leaving, int entering);

};

#endif

#include "TableauSimplex.h"

#include "gmpInterop.h"

#include <cmath>

#include <vector>

using namespace std;

void TableauSimplex::pivot(Matrix & tableau, std::vector<int> & basic, std::

vector<int> & nonbasic, int leaving, int entering) {

cout << "Pivoting: x" << basic[leaving - 1] << " (row " << leaving << ")

leaves, x" << nonbasic[entering - 1] << " (column " << entering << ")

enters" << endl;

TYPE xFactor = tableau(leaving, entering);

int leavingLabel = basic[leaving - 1];

basic[leaving - 1] = nonbasic[entering - 1];

nonbasic[entering - 1] = leavingLabel;
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// Cancel out occurrences of the entering variable

for (int i = 0; i < tableau.getRows(); ++i) {

if (i == leaving) continue;
TYPE factor = -tableau(i, entering) / xFactor;

TYPE savedColVal = tableau(i, entering);

tableau.addRows(leaving, i, factor);

tableau(i, entering) = savedColVal / xFactor;

}

tableau.multiplyRow(leaving, -1 / xFactor);

tableau(leaving, entering) = 1 / xFactor;

}

SimplexResult TableauSimplex::iteration(Matrix & tableau, vector<int> & basic,

vector<int> & nonbasic) {

int n = tableau.getCols() - 1, m = tableau.getRows() - 1;

// Find entering variable by searching the objective function (row 0) for a

positive coefficient (disregard the constant in column 0)

int entering = -1;

for (int j = 1; j <= n; ++j) {

if (tableau(0, j) > 0 && (entering == -1 || tableau(0, j) > tableau(0,

entering) || (tableau(0, j) == tableau(0, entering) && nonbasic[j - 1]

< nonbasic[entering - 1])))

entering = j;

}

if (entering == -1)

return OPTIMAL;

// Find leaving variable by searching the column of the entering variable

and determine the strictest bound

int leaving = -1;

TYPE smallestRatio = -1; // Keep the compiler from complaining about

uninitialised variables

for (int i = 1; i <= m; ++i) {

if (tableau(i, entering) >= 0)

continue;
TYPE ratio = -tableau(i, 0) / tableau(i, entering); // The "right hand

side", tableau(i, 0), is always nonnegative, and we only get here if

tableau(i, entering) is negative, so ’ratio’ will be nonnegative

if (leaving == -1 || ratio < smallestRatio || (ratio == smallestRatio &&

basic[i - 1] < basic[leaving - 1])) {

smallestRatio = ratio;

leaving = i;

}
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}

if (leaving == -1)

return INFEASIBLE_OR_UNBOUNDED;

pivot(tableau, basic, nonbasic, leaving, entering);

return SUBOPTIMAL;

}

simplex.cpp

Driver code — initiates input reading, handles the two phases, and initiates iterations.

#include "Matrix.h"

#include "TableauSimplex.h"

#include "mps.h"

#include <cmath>

#include <iostream>

#include <vector>

#include <cstdlib>

#include <fstream>

#include <cstring>

#include <ctime>

#include "../timer.h"

#define FEASIBILITY_THRESHOLD 1.0e-5 // abs(x0) must be below this value in

order for the program to be declared feasible (only applies if Phase I is

needed)

using namespace std;

int main(int argc, char * argv[]) {

int rows, cols;

bool initiallyFeasible = true;
bool print = argc >= 3 && strcmp(argv[2], "print") == 0;

istream * input;

ifstream infile;

if (argc == 1)

input = &cin;

else {

infile.open(argv[1]);

input = &infile;

}

vector<vector<TYPE> > parsedTableau = parse(*input);

rows = parsedTableau.size();

cols = parsedTableau[0].size();
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Matrix A(rows, cols + 1);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

A(r, c) = parsedTableau[r][c];

}

if (r > 0 && A(r, 0) < 0) {

initiallyFeasible = false;
}

A(r, cols) = 1;

}

unsigned long long startTime = rdtsc();

std::vector<int> basic, nonbasic;

// Nonbasic variables are labeled 1 .. n

for (int i = 1; i < cols; ++i)

nonbasic.push_back(i);

nonbasic.push_back(0); // Phase I variable

// Basic variables are labeled n+1 .. n+m

for (int i = cols; i < cols + rows - 1; ++i)

basic.push_back(i);

int numIterations = 0;

SimplexResult status = SUBOPTIMAL;

Matrix obj(1, cols); // Saves the original objective function

if (!initiallyFeasible) {

cout << "Entering Phase I" << endl;

for (int c = 0; c < cols; ++c) {

obj(0, c) = A(0, c);

A(0, c) = 0;

}

A(0, cols) = -1; // The goal is to maximize -x0

int leaving = 1;

for (int i = 2; i < rows; ++i) {

if (A(i, 0) < A(leaving, 0))

leaving = i;

}

TableauSimplex::pivot(A, basic, nonbasic, leaving, cols);

if (print) A.print(basic, nonbasic);

while ((status = TableauSimplex::iteration(A, basic, nonbasic)) ==

SUBOPTIMAL) {

++numIterations;

if (print) A.print(basic, nonbasic);

cout << numIterations << ": " << A(0, 0) << endl;

}
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if (status == INFEASIBLE_OR_UNBOUNDED || ABS(A(0, 0)) >

FEASIBILITY_THRESHOLD) {

cout << "INFEASIBLE" << endl;

return 0;

}

cout << "PHASE I COMPLETED" << endl;

if (print) A.print(basic, nonbasic);

}

// Locate x0, which is expected to be nonbasic

int x0 = -1;

for (int i = 0; i < cols; ++i) {

if (nonbasic[i] == 0) {

x0 = i + 1;

nonbasic.erase(nonbasic.begin() + i);

break;
}

}

if (x0 == -1) {

for (int j = 0; j < rows - 1; ++j) {

if (basic[j] == 0) {

x0 = j + 1;

break;
}

}

cout << "x0 is basic, and has value " << A(x0, 0) << " - terminating" <<

endl;

// If x0 is basic, but has value 0, it should be possible to continue by

pivoting it out, but we haven’t spent time on this since the program

usually does not give the right answer anyway

return 0;

}

// Even if there was no Phase I, we still copy the tableau - this should be

avoided

Matrix newTableau(rows, cols);

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

newTableau(i, j) = A(i, j < x0 ? j : j + 1);

}

}

if (!initiallyFeasible) {

if (print) newTableau.print(basic, nonbasic);

newTableau(0, 0) = obj(0, 0);

for (int j = 1; j < cols; ++j)

if (nonbasic[j - 1] < cols)

newTableau(0, j) = obj(0, nonbasic[j - 1]);
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for (int i = 1; i < rows; ++i) {

if (basic[i - 1] < cols) {

newTableau.addRows(i, 0, obj(0, basic[i - 1]));

}

}

}

if (print) newTableau.print(basic, nonbasic);

cout << "Entering phase II" << endl;

while ((status = TableauSimplex::iteration(newTableau, basic, nonbasic)) ==

SUBOPTIMAL) {

++numIterations;

if (print) newTableau.print(basic, nonbasic);

cout << numIterations << ": " << newTableau(0, 0) << endl;

}

if (status == INFEASIBLE_OR_UNBOUNDED) {

cout << "UNBOUNDED" << endl;

return 0;

}

cout << "OPTIMAL" << endl;

cout << "Optimal value: " << newTableau(0, 0) << endl;

cout << "Elapsed time (minus input parsing): " << rdtsc() - startTime <<

endl;

return 0;

}

Makefile

Makefile for compiling the Cell/B.E. versions. The file must be renamed to simply Makefile

(unlike what it says under “List of code listings”); the code highlighting package does not seem to
handle files without extensions.

# Use comments to select if you want SIMD or not

#PROGRAM_ppu := standard_simplex_ppe_float_serial

#CPPFLAGS_gcc = -DTYPE=float

PROGRAM_ppu := standard_simplex_ppe_float_simd

CPPFLAGS_gcc = -DTYPE=float -DUSE_SIMD

INCLUDE := -I .

INSTALL_DIR = /tmp

INSTALL_FILES = $(PROGRAM_ppu)

IMPORTS = -lmisc
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ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

A.2 Parallel standard simplex method for Cell

A.3 ASYNPLEX, C# prototype

A.4 ASYNPLEX for x86, based on Vanderbei

(TODO: Describe each file: purpose, and if we have changed it)

A.5 ASYNPLEX for Cell, based on Vanderbei

(TODO: Describe each file: purpose, and if we have changed it) (TODO: Describe necessary sym-
links)

A.6 (RP) Utilities

We could not find any available parsers for the MPS or CPLEX file formats, so we had to write our
own. Other people may find them useful, so we include them here. Common languages of choice
for writing small text manipulation programs are Python and Perl; we selected the former since
we are more familiar with it.

Important note: These parsers are not fully compliant with the MPS and CPLEX file format
specifications. They seem to work with the data sets we have used, but have not been thoroughly
tested beyond that.

(RP) mps.py — MPS file format parser

This parser was written in the early stages of the project, when our standard simplex solver would
simply expect a full tableau as input. The parser first outputs a line containing m (the number of
rows) and n (the number of columns), followed by m lines containing n numbers each. The first
row contains the objective function coefficients, and the leftmost column contains the right hand
sides from the constraints. The tableau body contains the negatives of the original coefficients, as
per our discussion in Section 2.1.2. Equality constraints are split into two less-than constraints.

We later rewrote the parser to C++ (mps.cpp as listed above), so that it could be an integrated
part of our solver.
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Note that both this parser and the C++ port are fairly simplistic, and they do not handle the
BOUNDS or RANGES sections. As such, the number of netlib sets on which they (and thereby our
entire standard simplex solver) can be used is reduced to 54 (from a total of 98); see the netlib
README file for information on which sets contain which sections. Also, note that since the
MPS format does not specify the direction of optimisation, and the netlib default seems to be
minimisation, the CPLEX parser will negate the objective function for all maximisation data sets.

#!/usr/bin/python

from sys import stdin

class Row:

label = None

type = None

values = None

index = None

def __init__(self, label, type, index):

self.label = label

self.type = type

self.index = index

self.values = {}

def __str__(self):

return self.label + " (" + self.type + "): " + str(self.values)

lines = []

for line in stdin:

lines.append(line)

rows = {}

columnLabels = []

columnIndices = {}

i = 0

while i < len(lines):

line = lines[i]

i += 1

if line[0] == ’ ’:

pass
else:

header = line.strip()

if header == "ROWS":

rowIndex = 0

while lines[i][0] == ’ ’:

items = lines[i].split()

row = Row(items[1].strip(), items[0].strip(), rowIndex)

if row.type == "N":

objectiveIndex = rowIndex

rows[row.label] = row

rowIndex += 1
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i += 1

tableau = [None] * len(rows)

elif header == "COLUMNS":

columnIndex = -1

while lines[i][0] == ’ ’:

items = lines[i].split()

lim = 2 if len(items) == 5 else 1

columnLabel = items[0].strip()

if not columnIndices.has_key(columnLabel):

columnIndex += 1

columnLabels.append(columnLabel)

columnIndices[columnLabel] = columnIndex

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rows[rowLabel].values[columnLabel] = value

i += 1

for j in xrange(len(tableau)):

tableau[j] = [0] * (len(columnLabels) + 1)

for row in rows.values():

for colLabel in row.values:

tableau[row.index][columnIndices[colLabel]] = row.values[colLabel]

elif header == "RHS":

while lines[i][0] == ’ ’:

items = lines[i].split()

lim = 2 if len(items) == 5 else 1

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rowIndex = rows[rowLabel].index

tableau[rowIndex][-1] = value

i += 1

for row in rows.values():

tab = tableau[row.index]

if row.type == "G":

for i in xrange(len(tab)):

tab[i] = -tab[i]

elif row.type == "E":

tableau.append([-x for x in tab])

tmp = tableau[objectiveIndex]

tableau[objectiveIndex] = tableau[0]

tableau[0] = tmp

ti = 0

while ti < len(tableau):

nonzero = 0
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for x in tableau[ti]:

if x != 0:

nonzero = 1

break
if not nonzero:

tableau.pop(ti)

ti -= 1

ti += 1

print len(tableau), len(tableau[0])

for tab in tableau:

for cell in tab:

print cell,

print

(RP) cplex.py — ILOG CPLEX file format parser

This parser was written in order to convert some sample data sets we received from Miriam AS to
the MPS format. A restriction of the MPS format is that the row and column names are limited in
length. Therefore, our parser will convert any name that is longer than eight characters to a string
that is formed by appending a sequence number (starting at zero) to the string v (a very arbitrary
choice). For instance, the fourth name that is found to be too long will be converted to v3. Further
occurrences of the same name will of course be replaced by the same string. The parser does not,
however, check for name collisions with variables who actually have that name.

Note that while the CPLEX format allows constraints to be split over multiple lines, this parser
not handle that, so files containing split constraints must be modified by joining such constraints
into one line.

#!/usr/bin/python

from sys import stdin, stderr

class Equation:

comparator = ""

constant = 0

values = {}

name = ""

def __init__(self, comparator, constant, name):

self.comparator = comparator

self.constant = constant

self.values = {}

self.name = name

class Bound:
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variable = ""

lower = 0

upper = None

free = False

fixed = False

def __init__(self, variable):

self.variable = variable

variableCodeNames = {}

def truncate(name):

global variableCodeNames

if len(name) <= 8:

return name

else:
if variableCodeNames.has_key(name):

return variableCodeNames[name]

else:
codeName = "v" + str(len(variableCodeNames))

variableCodeNames[name] = codeName

return codeName

def printCodeNames():

global variableCodeNames

if len(variableCodeNames) > 0:

stderr.write("Some variable names have been changed:\n")

stderr.write("New\tOriginal\n")

for name in variableCodeNames:

stderr.write(variableCodeNames[name] + "\t" + name + "\n")

def expand(string, length):

if len(string) > length:

raise ValueError("string too long")

return string + " " * (length - len(string))

class LP:

pos = 0

lines = []

variables = {}

equations = []

variableList = []

bounds = []

direction = "max"

def __init__(self):

lines = []



A.6. (RP) UTILITIES 87

variables = {}

equations = []

variableList = []

def printMPS(self):

print "NAME UNKNOWN"

print "ROWS"

for eq in self.equations:

if eq.comparator == "=":

print " E ",

elif eq.comparator[0] == "<":

print " L ",

elif eq.comparator[0] == ">":

print " G ",

elif eq.comparator == "obj":

print " N ",

else:
raise NameError("Illegal comparator: " + eq.comparator)

print expand(truncate(eq.name), 8)

print "COLUMNS"

for var in self.variableList:

for eq in self.equations:

if eq.values.has_key(var):

line = expand(" " + truncate(var), 14) + truncate(eq.name)

print expand(line, 24) + str(eq.values[var])

print "RHS"

for eq in self.equations:

if eq.constant != 0:

print expand(" B " + truncate(eq.name), 24) + str(eq.

constant)

print "BOUNDS"

for bound in self.bounds:

if bound.free:

print " FR BOUND " + truncate(bound.variable)

elif bound.fixed:

print expand(" FX BOUND " + truncate(bound.variable), 24) + str(

bound.upper)

else:
if bound.lower != 0:

print expand(" LO BOUND " + truncate(bound.variable), 24) + str(

bound.lower)

if bound.upper != None:

print expand(" UP BOUND " + truncate(bound.variable), 24) + str(

bound.upper)

print "ENDATA"

def parseObjective(self):
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tokens = self.lines[self.pos]

self.pos += 1

self.parseEquation(tokens, 1)

def parseEquation(self, tokens, isObjective):

if tokens[1] != ’+’ and tokens[1] != ’-’:

tokens.insert(1, ’+’)

if isObjective:

eq = Equation("obj", 0, "OBJ")

else:
eq = Equation(tokens[-2], float(tokens[-1]), tokens[0][:-1])

self.equations.append(eq)

i = 1

limit = len(tokens) - 1 if isObjective else len(tokens) - 3

while i < limit:

if tokens[i] == ’-’:

sign = -1

elif tokens[i] == ’+’:

sign = 1

else:
print "Illegal sign on line", self.pos, ":", tokens

if isObjective and self.direction == "max":

sign *= -1

try:
value = float(tokens[i + 1])

i += 2

except ValueError:

value = 1

i += 1

name = tokens[i]

self.addVariable(name)

eq.values[name] = sign * value

i += 1

def parseEquations(self):

while 1:

tokens = self.lines[self.pos]

if tokens[0][-1] != ’:’: break
self.pos += 1

self.parseEquation(tokens, 0)

def addVariable(self, name):

if not self.variables.has_key(name):

self.variables[name] = len(self.variables)

self.variableList.append(name)

def parseBounds(self):
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while 1:

tokens = self.lines[self.pos]

if len(tokens) == 1: break
self.pos += 1

if len(tokens) == 2 and tokens[1] == "Free":

bound = Bound(tokens[0])

bound.free = True

self.bounds.append(bound)

elif len(tokens) == 3:

bound = Bound(tokens[0])

if tokens[1][0] == "<":

bound.upper = float(tokens[2])

elif tokens[1][0] == ">":

bound.lower = float(tokens[2])

elif tokens[1][0] == "=":

bound.fixed = True

bound.upper = float(tokens[2])

else:
raise NameError("Illegal bound type")

self.bounds.append(bound)

elif len(tokens) == 5:

bound = Bound(tokens[2])

bound.lower = float(tokens[0])

bound.upper = float(tokens[4])

self.bounds.append(bound)

else:
print "Unrecognised bounds line:", self.pos, ":", tokens

def parse(self):

for line in stdin:

tokens = line.split()

if len(tokens) == 0 or tokens[0] == ’\\’: continue
self.lines.append(tokens)

self.pos = 0

while self.pos < len(self.lines):

if self.lines[self.pos][0] == "Maximize":

self.direction = "max"

self.pos += 1

self.parseObjective()

elif self.lines[self.pos][0] == "Minimize":

self.direction = "min"

self.pos += 1

self.parseObjective()

elif self.lines[self.pos][0] == "Subject":

self.pos += 1

self.parseEquations()

elif self.lines[self.pos][0] == "Bounds":
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self.pos += 1

self.parseBounds()

else:
self.pos += 1

lp = LP()

lp.parse()

lp.printMPS()

printCodeNames()



Appendix B
(RP) Data sets

The full netlib collection is freely available online1, so we only produce one small set here in
order to show an example of a file in the MPS format. The answers to all netlib sets can be
found in the netlib README file. We also received four small sets (extracted from a larger data
set) from Miriam AS.

B.1 (RP) Sample netlib data set — afiro.mps

This is the afiro set, in MPS format. It contains 32 variables and 27 constraints, and 88 nonzero
coefficients. The answer, according to the README file, is −4.6475314286 · 102.

***************************

* SET UP THE INITIAL DATA *

***************************
NAME AFIRO

* Problem:

* ********

* An LP, contributed by Michael Saunders.

* Source:

* The NETLIB collection of test problems.

* SIF input: (already in MPS format)

* classification LLR2-AN-32-27

ROWS

E R09

E R10

L X05

L X21

E R12

1The official site is http://www.netlib.org/lp/index.html, but it contains com-
pressed files versions that must be decompressed with a fortran program. It is available in
more convenient formats elsewhere, e.g. ftp://ftp.numerical.rl.ac.uk/pub/cuter/
netlib.tar.gz.
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E R13

L X17

L X18

L X19

L X20

E R19

E R20

L X27

L X44

E R22

E R23

L X40

L X41

L X42

L X43

L X45

L X46

L X47

L X48

L X49

L X50

L X51

N COST

COLUMNS

X01 X48 .301 R09 -1.

X01 R10 -1.06 X05 1.

X02 X21 -1. R09 1.

X02 COST -.4

X03 X46 -1. R09 1.

X04 X50 1. R10 1.

X06 X49 .301 R12 -1.

X06 R13 -1.06 X17 1.

X07 X49 .313 R12 -1.

X07 R13 -1.06 X18 1.

X08 X49 .313 R12 -1.

X08 R13 -.96 X19 1.

X09 X49 .326 R12 -1.

X09 R13 -.86 X20 1.

X10 X45 2.364 X17 -1.

X11 X45 2.386 X18 -1.

X12 X45 2.408 X19 -1.

X13 X45 2.429 X20 -1.

X14 X21 1.4 R12 1.

X14 COST -.32

X15 X47 -1. R12 1.

X16 X51 1. R13 1.

X22 X46 .109 R19 -1.
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X22 R20 -.43 X27 1.

X23 X44 -1. R19 1.

X23 COST -.6

X24 X48 -1. R19 1.

X25 X45 -1. R19 1.

X26 X50 1. R20 1.

X28 X47 .109 R22 -.43

X28 R23 1. X40 1.

X29 X47 .108 R22 -.43

X29 R23 1. X41 1.

X30 X47 .108 R22 -.39

X30 R23 1. X42 1.

X31 X47 .107 R22 -.37

X31 R23 1. X43 1.

X32 X45 2.191 X40 -1.

X33 X45 2.219 X41 -1.

X34 X45 2.249 X42 -1.

X35 X45 2.279 X43 -1.

X36 X44 1.4 R23 -1.

X36 COST -.48

X37 X49 -1. R23 1.

X38 X51 1. R22 1.

X39 R23 1. COST 10.

RHS

B X50 310. X51 300.

B X05 80. X17 80.

B X27 500. R23 44.

B X40 500.

ENDATA

B.2 (RP) Data sets provided by Miriam AS

These sets are in the ILOG CPLEX format. Miriam AS also provided us with the answers found
by CPLEX. (TODO: answers; all sets)

dp 0.lp

Answer: 4.20001 · 102.

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0
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CapE52: v52_49 - RgCapE52 = 0

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0

OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 - RgCapS60 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 - RgCapS61 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 - RgCapS62 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 - x546_49 = 0

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

Dem53_49: d53_49 <= 150

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0

SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 200

0 <= v51_49 <= 200

0 <= v52_49 <= 200

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 299.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 120

0 <= RgCapS60 <= 200

0 <= RgCapS61 <= 120
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0 <= RgCapS62 <= 120

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

0 <= RgCapD54 <= 200

End

dp 150.lp

Answer: 1.001 · 100.

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0

CapE52: v52_49 - RgCapE52 = 0

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0

OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 - x546_49 = 0

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

Dem53_49: d53_49 <= 150

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0
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SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 100

0 <= v51_49 <= 100

0 <= v52_49 <= 100

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 0.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 1

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

0 <= RgCapD54 <= 200

End

dp 170.lp

Answer: 1.00001 · 102.

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0

CapE52: v52_49 - RgCapE52 = 0

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0

OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 - RgCapS60 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 - x546_49 = 0



B.2. (RP) DATA SETS PROVIDED BY MIRIAM AS 97

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

Dem53_49: d53_49 <= 150

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0

SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 100

0 <= v51_49 <= 100

0 <= v52_49 <= 100

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 99.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 120

0 <= RgCapS60 <= 200

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

0 <= RgCapD54 <= 200

End

gas.lp

Answer: 2.0009824199873 · 101.

Maximize

obj: zMax3873 + 0.000001 tieBreak0 + id214

Subject To

R2_3362: - v3362 + v3362_3371 = 0

R10_3362_3371: - v3362_3371 + x3856_3371 = 0

R2_3364: - v3364 + v3364_3371 = 0

R6_3364_3371: x3856_3371 - v3364_3371 = 0

R18_3856: - x3856 + 10 y3856 >= 0
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R21_3856: _inletPressure3364 <= 10000

R25_3364_0: - 1.42072309829124 _inletPressure3364 +

_outletPressure3364 <= 8441.5873846062

R25_3364_1: - 1.42916309321641 _inletPressure3364 +

_outletPressure3364 <= 8324.69345489257

R25_3364_2: - 1.43813237097197 _inletPressure3364 +

_outletPressure3364 <= 8205.40206074365

R25_3364_3: - 1.4476886789981 _inletPressure3364 +

_outletPressure3364 <= 8083.55913341047

R25_3364_4: - 1.45789899041056 _inletPressure3364 +

_outletPressure3364 <= 7958.99333417841

R25_3364_5: - 1.46884149019766 _inletPressure3364 +

_outletPressure3364 <= 7831.5132116587

R25_3364_6: - 1.48060811048304 _inletPressure3364 +

_outletPressure3364 <= 7700.90372649103

R25_3364_7: - 1.49330780379467 _inletPressure3364 +

_outletPressure3364 <= 7566.9219620533

R11_3364_3371: v3364_3371 - x3858_3371 = 0

R33_3364_3355: - F3364_3355 + F3856_3355 = 0

R35_3364_3355: QDown3364_3355 - QUp3364_3355 = 0

R33_3364_3356: - F3364_3356 + F3856_3356 = 0

R35_3364_3356: QDown3364_3356 - QUp3364_3356 = 0

R33_3364_3357: - F3364_3357 + F3856_3357 = 0

R35_3364_3357: QDown3364_3357 - QUp3364_3357 = 0

R33_3364_3358: - F3364_3358 + F3856_3358 = 0

R35_3364_3358: QDown3364_3358 - QUp3364_3358 = 0

R33_3364_3359: - F3364_3359 + F3856_3359 = 0

R35_3364_3359: QDown3364_3359 - QUp3364_3359 = 0

R33_3364_3360: - F3364_3360 + F3856_3360 = 0

R35_3364_3360: QDown3364_3360 - QUp3364_3360 = 0

R33_3364_3361: - F3364_3361 + F3856_3361 = 0

R35_3364_3361: QDown3364_3361 - QUp3364_3361 = 0

R2_3363: - v3363 + v3363_3371 = 0

R6_3363_3371: x3858_3371 - v3363_3371 = 0

R14_3363: totalDelivery3363_3371 <= 10

R19_3858: - x3858 + 10 y3858 >= 0

R23_3858: _outletPressure3364 >= 14400

R33_3363_3355: - F3363_3355 + F3858_3355 = 0

R33_3363_3356: - F3363_3356 + F3858_3356 = 0

R33_3363_3357: - F3363_3357 + F3858_3357 = 0

R33_3363_3358: - F3363_3358 + F3858_3358 = 0

R33_3363_3359: - F3363_3359 + F3858_3359 = 0

R33_3363_3360: - F3363_3360 + F3858_3360 = 0

R33_3363_3361: - F3363_3361 + F3858_3361 = 0

R12_3363_3371: - v3363_3371 + d3363_3371 = 0

R13_3363_3371: - totalDelivery3363_3371 + d3363_3371 = 0

AggR5_3856: x3856_3371 - x3856 = 0



B.2. (RP) DATA SETS PROVIDED BY MIRIAM AS 99

R36_3856_3355: F3856_3355 = 0

R36_3856_3356: F3856_3356 = 0

R36_3856_3357: F3856_3357 = 0

R36_3856_3358: F3856_3358 = 0

R36_3856_3359: F3856_3359 = 0

R36_3856_3360: F3856_3360 = 0

R36_3856_3361: F3856_3361 = 0

AggR5_3858: x3858_3371 - x3858 = 0

Max3873: - d3363_3371 + zMax3873 = 0

MaxTieBreak3873: _inletPressure3364 - _outletPressure3364 + tieBreak0 =

0

Bilin3859F3364_33550: F3364_3355 - 10 QUp3364_3355 + slack3859F3364_33550 =

0

Bilin3860F3364_33560: F3364_3356 - 10 QUp3364_3356 + slack3860F3364_33560 =

0

Bilin3861F3364_33570: F3364_3357 - 10 QUp3364_3357 + slack3861F3364_33570 =

0

Bilin3862F3364_33580: F3364_3358 - 10 QUp3364_3358 + slack3862F3364_33580 =

0

Bilin3863F3364_33590: F3364_3359 - 10 QUp3364_3359 + slack3863F3364_33590 =

0

Bilin3864F3364_33600: F3364_3360 - 10 QUp3364_3360 + slack3864F3364_33600 =

0

Bilin3865F3364_33610: F3364_3361 - 10 QUp3364_3361 + slack3865F3364_33610 =

0

Bilin3866F3858_33550: - 10 QDown3364_3355 + F3858_3355 + slack3866F3858_33550

= 0

Bilin3867F3858_33560: - 10 QDown3364_3356 + F3858_3356 + slack3867F3858_33560

= 0

Bilin3868F3858_33570: - 10 QDown3364_3357 + F3858_3357 + slack3868F3858_33570

= 0

Bilin3869F3858_33580: - 10 QDown3364_3358 + F3858_3358 + slack3869F3858_33580

= 0

Bilin3870F3858_33590: - 10 QDown3364_3359 + F3858_3359 + slack3870F3858_33590

= 0

Bilin3871F3858_33600: - 10 QDown3364_3360 + F3858_3360 + slack3871F3858_33600

= 0

Bilin3872F3858_33610: - 10 QDown3364_3361 + F3858_3361 + slack3872F3858_33610

= 0

Bounds

0 <= v3362 <= 10

0 <= v3362_3371 <= 20

0 <= v3364 <= 10

y3856 = 1

0 <= _inletPressure3364 <= 10000

_outletPressure3364 >= 14400

F3364_3355 Free
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F3856_3355 Free

QUp3364_3355 = 0

F3364_3356 Free

F3856_3356 Free

QUp3364_3356 = 0

F3364_3357 Free

F3856_3357 Free

QUp3364_3357 = 0

F3364_3358 Free

F3856_3358 Free

QUp3364_3358 = 0

F3364_3359 Free

F3856_3359 Free

QUp3364_3359 = 0

F3364_3360 Free

F3856_3360 Free

QUp3364_3360 = 0

F3364_3361 Free

F3856_3361 Free

QUp3364_3361 = 0

0 <= v3363 <= 20

0 <= v3363_3371 <= 20

0 <= totalDelivery3363_3371 <= 10

y3858 = 1

F3363_3355 Free

F3858_3355 Free

F3363_3356 Free

F3858_3356 Free

F3363_3357 Free

F3858_3357 Free

F3363_3358 Free

F3858_3358 Free

F3363_3359 Free

F3858_3359 Free

F3363_3360 Free

F3858_3360 Free

F3363_3361 Free

F3858_3361 Free

zMax3873 Free

tieBreak0 Free

slack3859F3364_33550 = 0

slack3860F3364_33560 = 0

slack3861F3364_33570 = 0

slack3862F3364_33580 = 0

slack3863F3364_33590 = 0

slack3864F3364_33600 = 0

slack3865F3364_33610 = 0
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slack3866F3858_33550 = 0

slack3867F3858_33560 = 0

slack3868F3858_33570 = 0

slack3869F3858_33580 = 0

slack3870F3858_33590 = 0

slack3871F3858_33600 = 0

slack3872F3858_33610 = 0

id214 = 0

End
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