
(RP) Abstract

Linear programming is a form of mathematical optimisation in which one seeks
to optimise a linear function subject to linear constraints on the variables. It is
a very versatile tool that has many important applications, one of them being
modelling of production and trade in the petroleum industry.

The Cell Broadband Engine, developed by IBM, Sony and Toshiba, is an in-
novative multicore architecture that has already been proven to have a great
potential for high performance computing. However, developing applications
for the Cell/BE is challenging, particularily due to the low-level memory man-
agement that is mandated by the architecture, and because careful optimisation
by hand is often required to get the most out of the hardware.

In this thesis, we investigate the opportunities for implementing a paral-
lel solver for sparse linear programs on the Cell/BE. A parallel version of the
standard simplex method is developed, and the ASYNPLEX algorithm by Hall
and McKinnon is partially implemented on the Cell/BE. We have met substan-
tial challenges when it comes to numerical stability, and this has prevented us
from spending sufficient time on Cell/BE-specific optimisation and support for
large data sets. Our implementations can therefore only be regarded as proofs
of concept, but we provide analyses and discussions of several aspects of the
implementations, which may guide the future work on this topic.
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Chapter 1
(RP) Introduction

This thesis is a part of a larger project that is a cooperation between my advisor
— Dr.Ing. Lasse Natvig — and the company Miriam AS. Also involved in that
project is Mr. Mujahed Eleyat, whose Ph.D. thesis will be based on our work.
Miriam AS develops “Regina” and “Gas”, two applications for simulation of
production and delivery of oil and gas products through a pipeline network
(more information can be found at http://www.miriam.as/). Such situa-
tions can be modelled by a linear program, which is a linear function of a set of
variables along with a set of constraints on the values of other linear functions
of those variables. The field of linear programming revolves around the study
of algorithms for finding the optimal function values of such systems, and it will
be thoroughly presented in the next chapter. There are two main classes of linear
programming algorithms: the simplex method (and variations thereof), and in-
terior point methods. Although both are mentioned in the problem description,
we only had the time to focus on the former.

Miriam AS has recently invested in a cluster of Playstation 3 machines con-
taining Cell Broadband Engine processors, and is hoping to be able to utilise
these to speed up their simulations. The Cell/BE is a multicore processor with
two different core types: one general-purpose PowerPC core, and eight cores
that are specialised for high computational throughput. The computation cores
do not have direct access to main memory, but they have a small cache that is
controlled manually by the program that is executed on them, and a high-speed
bus can be used to efficiently feed the computation cores with data. This sets the
Cell/BE apart from any other computing platform, and combined with deep
pipelines and SIMD instructions, it holds the promise of excellent performance
if one has a problem that is suited for that platform and one invests a sufficient
amount of time in the programming process.

Unfortunately, it turned out that the field of linear programming is wrought
with peril, in the form of numerical instability. Neither we nor our advisor were

1
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2 CHAPTER 1. (RP) INTRODUCTION

prepared for this (we selected this project in the belief that the primary challenge
would be to program the Cell/BE), and we were not able to fully overcome
the problems we encountered. Therefore, we have adjusted our aims to that of
producing a code base from which further development may take place, and
writing a report that is rich in background material, references and advice that
we hope will prove useful to those that are to continue the project.

Outline

(TODO: Make sure this actually fits the final chapter contents!)
In Chapter 2, we give a presentation of the field of linear programming, and

we describe the standard and revised simplex methods and a parallel revised
simplex method called ASYNPLEX. We also explain the Cell/BE architecture
and programming model.

In Chapter 3, we describe our initial plans, the progress of our work and the
decisions we had to make during the project. We also present our design of a
simple parallel standard simplex algorithm for Cell/BE, and our adaptations of
the ASYNPLEX algorithm (which we did not get the time to fully implement).
This project ended up very differently from what we had anticipated; we there-
fore also discuss the challenges we have encountered.

In Chapter 4, we provide several timing analyses of the parallel standard
simplex algorithm, in order to learn how the parallelisation, number of cores,
and Cell/BE features such as vectorisation, affect the performance. We also dis-
cuss features we did not get the time to implement, and give several pieces of
advice to the researchers that will build upon our work.

Finally, in Chapter 5, we present our conclusions and summarise our sug-
gestions for future work.



Chapter 2
(RP) Background

This chapter will give the reader the necessary theoretical background for the
main subjects of this thesis: linear programming and the Cell Broadband Engine.
We also give some notes on the pthreads API, how to represent sparse vectors,
and a formula for the maximal speedup that can be obtained when parallelising
a program.

2.1 (RP) Linear programming

The term linear programming (LP) refers to a type of optimisation problems in
which one seeks to maximise or minimise the value of a linear function of a
set of variables1. The values of the variables are constrained by a set of linear
equations and/or inequalities. Linear programming is a fairly general problem
type, and many important problems can be cast as LP problems — for instance,
shortest path problems and maximum flow problems (see [7]). However, the
true virtue of linear programming stems from its ability to model a vast range of
optimisation problems for which specialised algorithms do not exist, including
many situations from economics and industry processes.

This entire section is primarily based on Vanderbei[47] and Cormen et al.[7].

2.1.1 (RP) Problem formulation. Standard and slack forms

The following framed text is an example of a simple linear programming prob-
lem. We will use this example throughout this section to illustrate how the linear
programming algorithms work.

1Hence, LP is not (as the name would seem to suggest) a programming technique. The name
originated in the 1940s, when “program” referred to military supply plans and schedules.

3



4 CHAPTER 2. (RP) BACKGROUND

— Example —

A company owns a factory that makes two kinds of products based on two
different raw materials. The profit the company makes per unit of product A
is $30, and the profit of product B is $20. Producing one unit of A requires 1
unit of raw material R and 1 unit of raw material S; one unit of B requires 2
units of R and 1 unit of S. The company possesses 40 units of R and 50 units
of S. We make the simplifying assumptions that all prices are constant and
cannot be affected by the company, and that the company is capable of selling
everything it produces. The company’s goal is to maximise the profit, which
can be described as 30x1 + 20x2, where x1 is the number of units of product
A and x2 is the number of units of product B. The following constraints are
in effect:

• x1 + x2 ≤ 40 (the production of A and B cannot consume more units of
raw material R than the company possesses)

• 2x1 + x2 ≤ 50 (similarly for raw material S)

• x1, x2 ≥ 0 (the company cannot produce negative amounts of its prod-
ucts)

Note that in regular LP problems, one cannot restrict the variables to be inte-
gers — in fact, adding this requirement produces a new kind of problem known
as integer linear programming (ILP), which is NP-hard2. It is also, in general, a re-
quirement that all variables are nonnegative. This is often the case in real-world
problems that deal with physical quantities, but problems involving variables
that may be negative as well as positive can still be modeled by rewriting each
original variable as a difference of two nonnegative variables.

The function to be optimised is called the objective function. In the real world
situation that gives rise to an optimisation problem, the function may contain a
constant term, but it can be removed since that will affect all possible solutions
in the same way. The objective function can then be written as ζ = c1x1 + c2x2 +
. . .+cnxn =

∑n
j=1 cjxj , where the cj are constants. The variables in the objective

function are often called decision variables, since our task is not only to find the
optimal value of the objective function, but also which variable values that yield
this function value. Throughout this report, we will consistently use n to refer
to the number of decision variables and m to refer to the number of equations

2NP-hardness is a term from complexity theory, which deals with the relative difficulties of
solving different kinds of problems. The only known algorithms for solving NP-hard problems
require an amount of time that is exponential in the size of the problem, which renders those
algorithms useless for many real life problem sizes. For further reading on complexity theory,
consult Garey and Johnson[11].
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and/or inequalities. The variables will typically be labelled x1 through xn.

Standard form An LP problem is commonly called a linear program. The equa-
tions and inequalities that (together with the objective function) constitute an
linear program may be represented in different forms. We shall first consider
the standard form, in which only less-than-or-equal-to inequalities with all vari-
ables on the left hand side are allowed3. A problem containing equalities of the
form ai1x1 + . . . + ainxn = bi may be rewritten by splitting each equality into
two inequalities4: ai1x1 + . . .+ ainxn ≤ bi and −ai1x1 − . . .− ainxn ≤ −bi. Also,
the goal must be to maximise the objective function — if the original problem is
to minimize some function f , we let our objective function be ζ = −f . A linear
program in standard form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.1)

with respect to
n∑

j=1

aijxj ≤ bi, for i = 1, . . . ,m. (2.2)

x1, . . . , xn ≥ 0 (2.3)

Slack form The other common representation is slack form, which only allows
a set of equations (and a nonnegativity constraint for each variable). A slack
form program should be produced by rewriting a standard form program. An
inequality of the form ai1xi + . . . + ainxn ≤ bi is converted to an equation by
adding a slack variable wi. Together with the condition that wi ≥ 0, the equation
ai1x1 + . . . + ainxn + wi = bi is equivalent to the original inequality (whose
difference, or “slack”, between the left and right hand sides is represented by
wi). When the program is constructed in this manner, each slack variable only
appears in excactly one equation, which is an important property that will be
utilised later. A linear program in slack form can be expressed as follows:

Maximise

ζ =
n∑

j=1

cjxj (2.4)

3Note that strictly-less-than and strictly-greater-than inequalities are never allowed in LP
problems, as they could easily cause situations in which it is impossible to achieve optimality
— for instance, there is no optimal value for x with respect to x < 3; given any value for x that is
less than 3, one can always find a number between x and 3.

4The drawback of doing this is that it increases the number of equations. See Hillier[20] for
another approach, called artificial variables — with the drawback that it increases the number of
variables.
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with respect to

wi = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.5)

x1, . . . , xn, w1, . . . , wm ≥ 0 (2.6)

— Example —

In standard form, our example is expressed as

Maximise

ζ = 30x1 + 20x2

with respect to

x1 + x2 ≤ 40

2x1 + x2 ≤ 50

x1, x2 ≥ 0

In slack form, it becomes

Maximise

ζ = 30x1 + 20x2

with respect to

w1 = 40− x1 − x2

w2 = 50− 2x1 − x2

x1, x2, w1, w2 ≥ 0

A proposed solution vector (that is, a specification of a value for each vari-
able) of a linear program is called:

Feasible if it does not violate any constraints;

Infeasible if it violates one or more constraints (however, it is still called a “so-
lution”);

Basic if it consists of setting all variables except the slack variables to zero (so
that wi = bi for all i);
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Optimal if it is feasible and no other feasible solutions yield a higher value
for the objective function. An optimal solution vector is not necessarily
unique, although the optimal objective function value obviously is.

2.1.2 (RP) The standard simplex method

The standard simplex method, or simply the simplex method5, developed by George
Dantzig[8] in 1949, was the first systematic approach for solving linear pro-
grams. It requires the linear program to be in slack form. The initial coefficients
and constants are written down in a tableau that will change as the method pro-
gresses. The nonnegativity constraints are not represented anywhere; rather,
they are implicitly maintained by the method. Because the equations will un-
dergo extensive rewriting, it will be convenient not to distinguish the slack vari-
ables from the other variables, so we will relabel wi to xn+i for i = 1, . . . ,m.
Thus, the total number of variables is n + m. Furthermore, we will use over-
lines over the coefficients in the tableau to denote their current value (which will
change in each iteration of the simplex method), and the indices of the coeffi-
cients will refer to the coefficients’ position within the tableau — for instance,
−aij is located in row i, column j. We also introduce a constant term ζ (initially
zero) in the objective function, which will help us keep track of the best func-
tion value we have found so far. The topmost row and leftmost column are not
really a part of the tableau; they are simply headers — the topmost row shows
which variables correspond to which columns, and the leftmost column shows
the slack variables for each row. The first actual tableau row (below the double
line) contains the objective function coefficients [cj ] and is numbered as row 0;
the first actual tableau column (to the right of the double line) contains the [bi]
constants and is numbered as column 0; the rest of the tableau contains the neg-
atives of the coefficients from the equations: [−aij ]. Initially, cj = cj , bi = bi, and
aij = aij . For instance, with n = 3 and m = 3, the initial tableau will look like
this:

x1 x2 x3

ζ 0 c1 c2 c3

x4 b1 −a11 −a12 −a13

x5 b2 −a21 −a22 −a23

x6 b3 −a31 −a32 −a33

Note that this is essentially just a tabular version of the standard form — for
instance, the last row is interpreted as the equation x6 = b3−a31x1−a32x2−a33x3.

5The reason for not calling it the “simplex algorithm” is that there exist several versions of the
method, and that the general method formulation is somewhat underspecified because it does
not say how to choose the pivot elements.
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— Example —

In tableau form, our example becomes

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Note that w1 and w2 have been renamed to x3 and x4, respectively.

The variables are partitioned into two sets. The variables in the leftmost
column (at the left side of the equations) are referred to as the basic variables,
and the variables inside the tableau are called nonbasic variables. At any stage
of the method, the set of the indices of the basic variables is denoted B, and
the set of nonbasic indices is denoted N . Initially, N = {1, . . . , n}, and B =
{n + 1, . . . , n + m}. The sizes of the basic and nonbasic sets are constant, with
|N | = n and |B| = m. The tableau will generally look like this (if, for instance,
m = n = 3):

· · · xj∈N · · ·
ζ ζ c1 c2 c3
... b1 −a11 −a12 −a13

xi∈B b2 −a21 −a22 −a23

... b3 −a31 −a32 −a33

For now, let us assume that the solution that is obtained by setting all non-
basic variables to zero is feasible (which is the case only if all of the bi are non-
negative); we will remove this restriction later. This trivial solution will provide
a lower bound for the value of the objective function (namely, the constant term,
ζ). We will now select one nonbasic variable xj and consider what happens if
we increase its value (since all nonbasic variables are currently zero, we cannot
decrease any of them). Since our goal is to maximise the objective function, we
should select a variable whose coefficient cj in the objective function is positive.
If no such variables exist, we cannot increase the objective function value fur-
ther, and the current solution (the one obtained by setting all nonbasic variables
to zero, so that ζ = ζ) is optimal — we can be certain of this since linear functions
do not have local maxima.

It seems reasonable to select the variable with the greatest coefficient (this
is known as the Dantzig criterion; other rules are possible). Let us say that this
variable is located in column e. Note that because we will soon start swapping
variable positions, the indices of the leaving and entering variables will gener-
ally not correspond to their respective row and column numbers. For notational
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convenience, we therefore let xĩ denote the basic variable that is located in row
i, and we let xĵ denote the nonbasic variable in column j. Then, our variable is
labelled xê. How far can we increase this variable? Recall that each line in the
tableau expresses one basic variable as a function of all the nonbasic variables;
hence we can increase xê until one of the basic variables becomes zero. Let us
look at row i, which is now reduced to xĩ = bi−aiexê since all nonbasic variables
except xê are zero. If aie is positive, the value of xĩ will decrease as xê increases,
so the largest allowable increase is limited by bi. Thus, by setting xê = bi

aie
, xĩ

becomes zero. However, other equations may impose stricter conditions. By
looking at all rows where aie is positive, we can determine an l such that bl

ale
is

minimal and set xê = bl
ale

. This will cause xl̃ to become zero. If all aie are non-
positive, we can increase xê indefinitely without any xĩ ever becoming negative,
and in that case, we have determined the linear program to be unbounded; the
method should report this to the user and terminate.

— Example —

Recall the tableau:

x1 x2

ζ 0 30 20
x3 40 −1 −1
x4 50 −2 −1

Since 30 is the greatest objective function coefficient, we select x1 to be
increased. x3 becomes zero if x1 = b1

a11
= 40

1 , and x4 becomes zero if

x1 = b2
a12

= 50
2 . The latter is the most restrictive constraint, so x4 will become

zero when we increase x1.

The next step, called pivoting, is an operation that exchanges a nonbasic vari-
able and a basic variable. The purpose of pivoting is to produce a new situation
in which all nonbasic variables are zero (and no bi is negative), so that we can
repeat the previous steps all over again and find a new variable whose value
we can increase. The nonbasic variable that was selected to be increased, xê, is
called the entering variable, since it is about to enter the collection of basic vari-
ables. xl̃, which becomes zero when xê is increased appropriately, is called the
leaving variable, since it is to be removed from said collection. Keep in mind that
since xl̃ is a basic variable, it only occurs in one equation, namely

xl̃ = bl −
∑
j∈N

aljxĵ . (2.7)

Note that we have retained all the nonbasic variables, as we want an equation
that is valid at all times, not only when almost all nonbasic variables are zero.
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We can eliminate the entering variable from (and introduce the leaving variable
into) the set of nonbasic variables by rewriting (2.7):

xl̃ = bl − alexê −
∑

j∈N−{ê}

aljxĵ (2.8)

xê =
1
ale

bl − xl̃ −
∑

j∈N−{ê}

aljxĵ

 . (2.9)

Now that we have an expression for xê, we can substitute it into all of the other
equations — this will eliminate xê and introduce xl̃ into the rest of the tableau.
For all i ∈ B − {l̃}, we have:

xĩ = bi −
∑
j∈N

aijxĵ (2.10)

= bi − aiexê −
∑

j∈N−{ê}

aijxĵ (2.11)

= bi −
aie

ale

bl − xl̃ −
∑

j∈N−{ê}

aljxĵ

− ∑
j∈N−{ê}

aijxĵ (2.12)

=
(
bi −

aie

ale
bl

)
+
aie

ale
xl̃ −

∑
j∈N−{ê}

(
aij −

aie

ale
alj

)
xĵ . (2.13)

A similar result will be achieved for the expression for the objective function.
Although it might look complicated, it amounts to subtracting6 aie

ale
times the

tableau row l from all other tableau rows i (and adding ce
ale

times row l to the
objective function row), and then setting the tableau entries in column e to aie

ale

(and to − ce
ale

in the objective function row). Note that because l was selected

such that ale was positive and bl
ale

was minimal, all bi remain nonnegative; and
because e was selected such that ce was positive, ζ cannot decrease (it will either
retain its old value or increase, depending on whether bl was zero).

(2.9) is the new form of the tableau row that originally corresponded to the
basic variable xl̃. The new row, which corresponds to xê, can be easily obtained
from the old one by dividing the row by ale and setting the coefficient of what is
now xl̃ to − 1

ale
.

Finally, we remove l̃ from B and add it to N , and remove ê from N and
add it to B, so that the leaving and entering variables swap positions in the new
tableau. This completes the pivot operation — we again have a tableau in which
all nonbasic variables can be set to zero and all bi are nonnegative, and the entire
process may be repeated.

6Keeping track of the signs here becomes somewhat cumbersome. Keep in mind that the
tableau cell at row i, column j contains −aij (if i, j ≥ 1).
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A 3 × 3 tableau will look like this after one pivot with x2 as the entering
variable and x5 as the entering variable: (TODO: Verify!)

x1 x5 x3

ζ 0 + b2c2/a22 c1 − a21c2/a22 −c2/a22 c3 − a23c2/a22

x4 b1 − b2a12/a22 −a11 + a21a12/a22 a12/a22 −a13 + a23a12/a22

x2 b2/a22 −a21/a22 −1/a22 −a23/a22

x6 b3 − b2a32/a22 −a31 + a21a32/a22 a32/a22 −a33 + a23a32/a22

— Example —

After one pivot with x1 as the entering variable and x4 as the leaving variable,
we get the following tableau:

x4 x2

ζ 750 −15 5
x3 15 0.5 −0.5
x1 25 −0.5 −0.5

For the next pivot operation, only x2 can be selected as the entering variable,
which causes x3 to be selected as the leaving variable. After the pivot, the
tableau looks like this:

x4 x3

ζ 900 −10 −10
x2 30 1 −2
x1 10 −1 1

Since all objective function coefficients are now negative, we have reached
an optimal solution with the value ζ = ζ = 900. This solution value
is obtained by setting the nonbasic variables (x3 and x4) to 0, in which
case x1 = 10 and x2 = 30. We can easily verify that these variable val-
ues do not violate any constraints, and by substituting the values into the
original objective function, we can verify that the optimal value is indeed
ζ = 30x1 + 20x2 = 30 · 10 + 20 · 30 = 900.

2.1.2.1 (RP) Degeneracy and cycling

A tableau is degenerate if some of the bi are zero. Degeneracy may cause prob-
lems because a pivot on a degenerate row will not cause the objective function
value to change, and we will not have gotten any closer to a solution. With
severely bad luck, the algorithm may end up cycling through a number of de-
generate states. This, however, rarely happens — according to Vanderbei[47, p.
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32], cycling “is so rare that most efficient implementations do not take precau-
tions against it”.

As mentioned in Footnote 5 on page 7, the general formulation of the sim-
plex method is underspecified because it does not tell how to break ties between
potential entering and leaving variables. There exist rules that guarantee that cy-
cling will not happen; one of them, called Bland’s rule[47, Sec. 3.4] is to break ties
by always selecting the variable with the smallest subscript. There are

(
m+n

m

)
possible dictionaries — each dictionary is uniquely determined by the set of
basic variables, and the order of the variables is unimportant (if the rows and
columns of a dictionary are permuted, it is still regarded as the same dictionary,
since the same variables will be selected for pivoting). Since each step trans-
forms one dictionary into another, the simplex method is guaranteed to termi-
nate in at most

(
m+n

m

)
steps if precautions are taken against cycling. In practice,

however, the method is usually far more efficient, and algorithms that are guar-
anteed to run in polynomial time are allegedly only superior for very large data
sets (this appears to be “common knowledge” in books about the subject, who
tend not to give further references about this).

2.1.2.2 (RP) Duality

Duality is an interesting property that is exhibited by linear programs, that gives
rise to several variations of the standard simplex method.

Given a linear programming problem in standard form:

Maximise

ζ =
n∑

j=1

cjxj (2.14)

with respect to

xn+i = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.15)

x1, . . . , xn+m ≥ 0 (2.16)

its dual problem is formed by negating everything and interchanging the roles
of rows and columns: the bi become the objective function coefficients, the cj
become the right hand side, and the positions of the aij are transposed. Also,
the xs are replaced by ys (to avoid confusion with the original problem, since
the variables of the dual problems will attain different values in the course of
the method). We still want to maximise, but we define the solution of the dual
problem to be the negative of the maximal value (this is just a technicality to
avoid expressing the problem as a minimisation).
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−Maximise

ξ = −
m∑

i=1

biyi (2.17)

with respect to

ym+j = −cj +
m∑

i=1

aijyi, for j = 1, . . . , n. (2.18)

y1, . . . , ym+n ≥ 0 (2.19)

This corresponds to negating and transposing the entire tableau. Note that
the original problem is referred to as the primal problem, and that the dual of the
dual problem is the primal problem. There are two highly interesting facts about
the dual problem (see [47] for proofs):

The weak duality theorem states that any feasible solution of the dual problem
will be greater than any feasible solution of the primal problem.

The strong duality theorem states that the optimal solution of the dual prob-
lem equals the optimal solution of the primal problem.

We will not utilise duality extensively, except for the Phase I method dis-
cussed below, so we do not give a thorough presentation of it. The concept is
very interesting, however, and interested readers should consult Vanderbei[47,
Chapter 5], who gives a more in-depth presentation, including an intuitive ra-
tionale for the why the dual problem is formed this way.

Duality can be exploited in many ways, one of which is the following: if
one has a linear program where the right hand side contains negative numbers,
but all objective function coefficients are nonpositive, one can form the dual
program (whose right hand side will then contain only nonnegative numbers)
and solve that one instead. This approach is called the dual simplex method, and
it is usually performed without actually transposing the tableau — it just swaps
the roles of the basic and nonbasic variables.

2.1.2.3 (RP) Initially infeasible problems

The method presented so far is capable of solving linear programs whose initial
basic solution (the one obtained by setting all nonbasic variables to 0) is feasible.
This is the case if and only if all of the bi are nonnegative, which we cannot in
general assume them to be. As mentioned in the preceding section, one can get
around this if all the cj are nonpositive, but this does not generally hold either. If
we have one or more negative bi, we get around this by introducing an auxiliary
problem which is based on the original problem, is guaranteed to have a basic
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feasible solution, and whose optimal solution will provide us with a starting
point for solving the original problem. The auxiliary problem is created by sub-
tracting a new variable x0 from the left hand side of each equation of the original
problem (which is assumed to be in standard form), and replacing the objective
function with simply ζ = −x0. The purpose of x0 is that by initially setting it to
a sufficiently large value, we can easily satisfy all equations (even those having
negative entries in the right hand side7). Then, we can try to change variable
values (through regular pivoting) and see if it is possible to make x0 equal to
zero, in which case we can remove it from our equations and reinstate the orig-
inal objective function, thereby having arrived at a problem that is equivalent
to the original one. This is the purpose of our new objective function — since
x0, like all other variables, is required to be nonnegative, the goal of optimising
−x0 means that we are trying to make x0 zero. Fortunately, we do not need a
new algorithm for this optimisation process; we can use the simplex algorithm
as it has been described above. We only need to do one pivot operation before
we start that algorithm: since the idea of x0 is to initially set it to a suitably
large value, and since the algorithm requires a nonnegative right hand side, we
should make x0 a basic variable by performing one pivot operation with the
row containing the most negative bi. This will make the entire right hand side
nonnegative. Solving the auxiliary problem is called Phase I, and solving the re-
sulting problem (with the original objective function) is called Phase II. Thus, the
full simplex method is a two-phase method (but of course, if the right hand side
of the original problem is nonnegative, we can skip Phase I).

Another Phase I method, the one used by Vanderbei, is to first replace neg-
ative terms in the objective function by an arbitrary positive number (e.g. 1)
and then run the dual simplex method as described above. The dual method
will terminate when the original right hand side only consists of nonnegative
numbers, in which case we can reinstate the actual coefficients of the original
objective function and proceed with Phase II.

One-phase methods also exist, such as the parametric self-sual simplex method,
as described in [47, Sec. 7.3].

2.1.2.4 (RP) Formal algorithm statement

In Algorithm 1 on the next page we present the pseudocode for an individual
phase of the standard simplex method (with the first approach described in Sec-
tion 2.1.2.3, the same code can be used for both Phase I and Phase II. The tableau
is called T and is zero-indexed; keep in mind that row 0 is the objective function
and column 0 contains the constants from the right hand sides of the inequali-

7Beware that “the right hand side” refers to the bi, which are on the right hand side of the
original equations — but in the tableau, they are on the left side.
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ties. The current value of the objective function is always in row 0, column 0.
We use row major indexing, so T [2, 3] is row 2, column 3.

loa 1: One phase of the standard simplex method using the Dantzig criterion

1: procedure STANDARDSIMPLEXPHASE(m, n, a[1..m, 1..n], b[1..m], c[1..n])
2: T [0, 0]← 0
3: T [i, j]← −a[i, j] for i = 1 . . .m, j = 1 . . . n
4: T [i, 0]← b[i] for i = 1 . . .m
5: T [0, j]← c[j] for j = 1 . . . n
6: N ← {1, . . . , n}
7: B ← {n+ 1, . . . , n+m}
8: loop
9: Pick the smallest column number e ≥ 1 such that T [0, e] is positive

and maximal
10: if no e is found then
11: return T [0, 0] as the optimal solution
12: end if
13: Pick the smallest row number l ≥ 1 such that T [l, e] < 0 and −T [l,0]

T [l,e] is
minimal

14: if no l is found then
15: return “The problem is infeasible” (if this is Phase I) or “The prob-

lem is unbounded” (if this is Phase II)
16: end if
17: p← −T [l, e]
18: for i← 0,m do
19: if i 6= l then
20: f ← T [i,e]

p
21: Add f times row l of T to row i of T
22: T [i, e]← −f
23: end if
24: end for
25: Divide row l of T by p
26: T [l, e]← −1

p
27: end loop
28: end procedure

2.1.2.5 (RP) Complexity and numerical instability

The complexity classes P and NP should be familiar to anyone that has taken
an algorithms course: NP is the class of decision problems (problems that are in
the form of a yes/no question) where, if the answer is “yes” and we are given a
“certificate” that demonstrates the solution, we can validate the solution in time
that is polynomial in the size of the input. P is the subset of NP that consists
of those decision problems where we can also find the solution in polynomial
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time. The question of whether P = NP remains one of the most important open
questions in the field of computer science, and is one of the seven Clay Mille-
nium Prize problems8. Most researchers believe that P ⊂ NP, and that the most
difficult problems in NP, the so-called NP-complete (NPC) problems, cannot be
solved in polynomial time. Cormen et al.[7] give a good introduction to com-
plexity theory.

When dealing with parallel programming, another complexity class is also
useful: NC, also known as Nick’s Class. This is the class of all problems that can
be solved in O(lgk1 n) steps (so-called polylogarithmic time) using a polynomial
(O(nk2)) number of processors. Here, k1 and k2 are constants. NC is a subset of
P, since any parallel algorithm requiring f(n) steps using p(n) processors can be
simulated in p(n)f(n) steps on a sequential computer. Thus, any NC-algorithm
will require O(nk2 lgk1 n) steps on a sequential machine, and this is polynomial
in n. However, there are problems in P which have not yet been proven to be in
NC, and the most difficult problems among these are called P-complete (PC) —
this is quite analoguous to the NP/P/NPC situation.

In some sense, NC captures the notion of what it means for a problem to be
“parallelisable”, while the P-complete problems can be said to be “hard to par-
allelise”. However, it is not an all-encompassing concept — a problem may be in
NC without being efficiently solvable in practice due to a prohibitive processor
requirement of the algorithm (for instance O(n10) processors) or large constants
hidden by the O-notation, and a parallel algorithms for P-complete problems
may still be useful because they might be faster than their sequential counter-
parts (just not “much faster”).

Where does LP fit into this picture? The trivial upper bound of O(
(
m+n

m

)
)

given in Section 2.1.2.1 for the number of iterations in the simplex method is
absolutely horrible:

(
m+n

m

)
≥
(

m+n
m

)m =
(
1 + n

m

)m, which, if m = n, becomes
2m. Unfortunately, Klee and Minty[30] proved that it is possible to construct
arbitrary-size data sets that make the method hit that bound when a certain piv-
oting rule is used (and no one has succeeded in finding a pivoting rule that can
guarantee polynomial time). In spite of this, the method is said to often be sur-
prisingly efficient in practice (this is stated without further reference in several
books, among them [47] and [7]). In 1979, Khachiyan[29] discovered a differ-
ent kind of algorithm that is guaranteed to run in polynomial time, and thus he
proved LP to be in P.9 However, LP is also P-complete, as proved by Dobkin et
al.[9]. Still, for the reasons mentioned above, this should not discourage us from
seeking parallel versions of LP algorithms.

8http://www.claymath.org/millennium/
9Strictly speaking, LP is a computation problem (one in which we seek a numerical answer)

rather than a decision problem and thus falls outside of the NP/P/NC discussion. However, like
many other computation problems, LP easily can be reformulated as a decision problem that can
be solved by the same algorithms; see [15, Problem A.4.3] for more references.

http://www.claymath.org/millennium/
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Greenlaw et al.[15] give a thorough presentation of NC and other aspects
of parallel complexity, and a more compact survey of the field can be found in
Natvig’s Dr.Ing. thesis[40].

2.1.2.6 (RP) Warmstarting

If one has solved an LP problem and then wishes to solve a very similar problem
(one that has been obtained by slightly altering the various coefficients of the
original problem), it would seem reasonable to believe that the optimal solution
to the original problem would be a great starting point in the search for the
optimal solution to the new problem. This turns out to be the case, and the
idea is known as warmstarting. It normally leads to a great reduction in the time
required to solve the new problem, and it is also very easy to implement —
the simplex method need not be changed at all; the program must simply be
capable of taking a suggested starting solution as input. Note that one might
have to run both phases, in case the original solution is not feasible for the new
problem. Interested readers may consult Vanderbei[47, Chapter 7] for a more
thorough introduction to the subject (which he refers to as sensitivity analysis).

Miriam employs Monte Carlo methods10 that produce a number of random
variations of the current state of the oil pipeline network in order to predict what
will happen if anything changes. (TODO: more information) This is an impor-
tant reason that they want to focus on the simplex method rather than interior
point methods (Section 2.1.5) — warmstarting is possible for the latter class of
methods, but it is much harder to implement. Various approaches to warmstart-
ing interior point methods are described by e.g. Gondzio and Grothey[14] (this
is actually a more general approach for quadratic programming), Yildirim and
Wright[52], and Benson and Shanno[5].

2.1.3 (RP) The revised simplex method

The revised simplex method, also due to Dantzig[8], is essentially just a linear
algebra reformulation of the mathematical operations of the standard simplex
method; however, it is much more numerically stable, for reasons that will be
explained. We begin with expressing the slack form constraint tableau in matrix
notation — note that all vectors are column vectors unless stated otherwise. An
LP problem in slack form (with renaming of the slack variables) looks like the
following:

Maximise

ζ =
n∑

j=1

cjxj (2.20)

10TODO: describe Monte Carlo methods
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with respect to

xn+i = bi −
n∑

j=1

aijxj , for i = 1, . . . ,m. (2.21)

x1, . . . , xn+m ≥ 0 (2.22)

If we let

A =


a11 a12 · · · a1n 1
a21 a22 · · · a2n 1

...
...

. . .
...

. . .
am1 am2 · · · amn 1

 (2.23)

b = [ b1 · · · bm ]> (2.24)

c = [ c1 · · · cn 0 · · · 0 ]> (m zeroes at the end) (2.25)

x = [ x1 · · · xn xn+1 · · · xn+m ]> (2.26)

we can express the problem in a very compact manner:

Maximise

ζ = c>x (2.27)

with respect to

Ax = b (2.28)

x ≥ 0 (2.29)

In order to be able to handle the pivot operations, we will need to split each
of our matrices and vectors into two in order to reflect which entries correspond
to basic variables and which ones do not. As before, we let N be the collection
of nonbasic variable indices (initially {1, . . . , n}), and B the collection of basic
variable indices (initially {n + 1, . . . , n + m}). All the basic variables are put
in the vector xB, and the nonbasic variables are put in xN — the order of the
variables within these vectors do not matter, as long as the entries of the other
matrices are arranged correspondingly. We split A into two matrices: an m × n
matrix N, containing all columns from A that correspond to nonbasic variables
(initially, this will be all the columns containing the aij entries), and B, which
is initially an m × m identity matrix. Similarly, we split c into one vector cN
for the objective function coefficients belonging to nonbasic variables (initially,
cN = [ c1 · · · cn ]>) and one vector cB for the coefficients belonging to basic
variables (initially anm element zero vector). After each pivot operation, entries
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of these matrices and vectors will swap positions according to how the collections
of basic and nonbasic variables have changed, but the values themselves will
never change during the course of the algorithm. This means that numerical
stability may be significantly improved, since the matrices and vectors will not
accumulate errors (practical implementations do, however, maintain additional
vectors that will accumulate errors; see below). Note that the right hand side
vector, b, remains a single vector that will never change. Using these “split”
matrices and vectors, we can express the problem as

Maximise

ζ = c>NxN + c>BxB (2.30)

with respect to

NxN + BxB = b (2.31)

x ≥ 0 (2.32)

During execution of the (standard) simplex method, it is always the case that
each basic variable occurs in exactly one equation, and hence each basic variable
can be written as a function of the nonbasic variables. Therefore, B must be
invertible, so we can multiply (2.31) by B−1 and rearrange it to get

xB = B−1b−B−1NxN . (2.33)

Combining this with (2.30), we get

ζ = c>NxN + c>BxB (2.34)

= c>NxN + c>B (B−1b−B−1NxN ) (2.35)

= c>BB
−1b + (c>N − c>BB

−1N)xN . (2.36)

This is very interesting, because we can use it to acquire explicit formulas for the
simplex tableau at any time during the method, given the current basic/nonba-
sic variable configuration: From (2.33) (which can be rewritten as B−1NxN +
xB = B−1b), we see that:

• The negative of the current body of the standard simplex tableau (the co-
efficients that in the previous subsection were known as [−aij ]) can be ex-
pressed as B−1N.

• The “right hand side” (the leftmost column of the tableau, known as [bi] —
these are also the current values of the basic variables) is B−1b.

• Similarly, we see from (2.36) that c>BB
−1b corresponds to the current value

of the objective function (obtained by setting xN = 0), and the current ob-
jective function coefficients (also called the reduced costs) from the tableau
(known as [cj ]) are c>N − c>BB

−1N.
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How can we express a pivot operation? It turns out to be exceedingly simple
— if the entering variable is xê and the leaving variable is xl̃, it is sufficient to
swap column e of N with column l of B. We do not even need to physically move
the columns; we can implicitly move them by using permutation lists (based on
B and N) to keep track of which columns are located where. Strangely, Van-
derbei[47] does not seem to contain a proof that pivots can be performed in this
manner (for the most part, the book is burgeoning with useful proofs). For the
sake of completeness, we provide here a (not entirely rigorous) demonstration
that at least the first pivot will work. B was initially an identity matrix, and N
was [aij ]. We now perform a pivot where xê enters and xl̃ leaves — this will
cause column e from N to be swapped with column l from B. Let us assume
that the former column does not contain any zeroes (if it does, its inverse will
look different); then we have the following (column l of B and B−1 and column
e and row l of N have been emphasised):

B−1 =



1 a1e

. . .
...
ale
...

. . .
ame 1



−1

=



1 −a1e/ale

. . .
...

1/ale
...

. . .
−ame/ale 1


and

B−1N =



1 −a1e/ale

. . .
...

1/ale
...

. . .
−ame/ale 1





a11 · · · 0 · · · a1n

...
...

...
al1 · · · 1 · · · aln

...
...

...
am1 · · · 0 · · · amn



=



a11 − al1a1e/ale · · · −a1e/ale · · · a1n − alna1e/ale
...

...
...

al1/ale · · · 1/ale · · · aln/ale

...
...

...
am1 − al1ame/ale · · · −ame/ale · · · amn − alname/ale


Compare this to the tableau on page 11 (where m = n = 3 and e = l = 2) —
its main body is the exact negative of this matrix, as expected. Similar deriva-
tions can be carried out for the right hand side and for the objective function
coefficients.

Armed with this knowledge, we can formulate the revised simplex method,
as shown in Algorithm 2 on the facing page. Note that, like the standard simplex
method, it may also require two phases, and it is still necessary to specify a way
of selecting the entering variable.
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loa 2: One phase of the revised simplex method

1: procedure REVISEDSIMPLEXPHASE(m, n, N, cN , b)
2: Let cB be an m element zero vector
3: Let B be an m×m identity matrix
4: Let B−1 be an m×m identity matrix
5: N ← {1, . . . , n}
6: B ← {n+ 1, . . . , n+m}
7: loop
8: ĉ>N ← c>N − c>BB

−1N . Compute the reduced costs
9: Search ĉN for a negative number; let e be its index (the corresponding

nonbasic variable is then xê)
10: if no negative number found in ĉN then
11: return c>BB

−1b, B−1b . Optimal value and basic variable values
12: end if
13: Let Ne be the eth column of N (the one corresponding to xê)
14: â← B−1Ne . Compute the tableau coefficients of xê

15: b̂← B−1b . Compute the basic variable values
16: Let l be a value of i that minimises t = b̂i

âi
(only perform this calcula-

tion for those i ∈ B where âi is positive)
17: if no value is found for l then
18: return “The problem is unbounded”
19: end if
20: Exchange the eth column of N with the lth column of B
21: B ← (B − {l̃}) ∪ {ê}
22: N ← (N − {ê}) ∪ {l̃}
23: Recalculate B−1 from B
24: end loop
25: end procedure

This method looks problematic in that it seems to require B to be inverted
in every single iteration. However, it turns out that since only one column of
B changes in iteration, each B−1 can be calculated from the previous one by
changing one column; furthermore, this change can be expressed as a multipli-
cation with a sparse matrix formed in a certain way. A chain of such matrices is
called an eta file, and this approach is described in greater detail in [47, Section
8.3]. Of course, the longer the eta file gets, the slower the calculation will be-
come, and inaccuracies may accumulate. Therefore, with regular intervals, B−1

should be recomputed from scratch from the current version of B. This will also
eliminate the inaccuracies (unless B is ill-conditioned, in which case one may
run into problems). Note that it is possible to update b̂ and ĉN in each itera-
tion rather than to recalculate them (this is the approach taken by [47]), but the
update calculations are also time consuming.



22 CHAPTER 2. (RP) BACKGROUND

2.1.4 (RP) ASYNPLEX

As we will describe in Section 3.3, even getting (TODO: ) With time becom-
ing scarce, we realised that we most likely would not be able to develop an
algorithm of our own for a parallel revised simplex method, and so we started
looking for existing algorithms. We did not find many, and the most promising
one (in particular because it bears a strong resemblance to the original revised
simplex method) is called ASYNPLEX, and was developed by Hall and McKin-
non[18]. It is an asynchronous algorithm11 for message-passing systems, but the
authors also describe a shared-memory version of the algorithm. We will now
present ASYNPLEX, based on [18]. We did need to make some small changes to
the algorithm, and we have described those in (TODO: reference).

Before proceeding, we should mention that on the coarsest level, one can
distinguish between two ways of achieving parallelism:

Task parallelism can be achieved when two or more different operations can
be performed in parallel.

Data parallelism can be achieved when the same operation is applied to several
pieces of data (TODO: reformulate).

The extent to which the different parts of the computation are independent will
greatly affect the possibilities for speedup. Computations that can be split into
parts that are entirely independent are called embarrassingly parallel (see Section
2.3.3 for more information on this), and such computations will benefit greatly
from parallelisation (unless the computation is so simple that the time spent
distributing the data to the different processors exceeds the time saved on the
computation). (TODO: Amdahl’s law here?) Unfortunately, many important
problems are not embarrassingly parallel because one computation may depend
on an intermediate result from another computation (if, on the other hand, it
depends on the final result, it cannot be said to be parallelisable). (TODO: Comm.
to comp. ratio; scaleability)

In ASYNPLEX, there are four different kinds of processes:

• One invert processor;

• One basis change manager;

• One column selection manager;

• One or more iteration processes.

11In a synchronous algorithm, the code contains synchronisation points where two or more
processes or threads must wait for each other to reach the point before proceeding. In asyn-
chronous algorithms, the only kind of waiting that may occur is waiting for incoming messages
from other processes or threads.



2.1. (RP) LINEAR PROGRAMMING 23

We will interleave their descriptions with the description of the general idea
behind the algorithm.

Matrix inversion

The invert processor is continuously performing inversions of the B matrix. When-
ever one of the iteration processes performs a pivot operation, it sends a mes-
sage to the invert processor telling which variable that entered and which one
that left. Once the invert processor finishes the current inverse calculation, it
distributes the resulting B−1 matrix to the iteration processes. Then, it receives
all incoming basis change messages and begins a new inverse calculation. Most
likely, the iteration processes will find that the inverse is somewhat out of date
when it is received, but they will just delete the appropriate number of entries
from the eta file. This approach sacrifices some numerical stability for the in-
crease in speed that is obtained by dedicating a separate processor to the inver-
sion operation. See Section 3.4.1 for a small discussion of what happens if this
approach is used on its own, without the other elements of ASYNPLEX.

Candidate persistence

The key observation upon which ASYNPLEX is based is a phenonomenom called
candidate persistence. An attractive candidate is a nonbasic variable whose objec-
tive function coefficient is negative, so that it is possible to select it as the en-
tering variable. According to [18], a variable that is attractive in one iteration
(but remains nonbasic because some other variable is eventually selected as the
entering variable) will often remain attractive in subsequent iterations. Further-
more, it can be observed that the pivot operation itself is usually very cheap
(assuming that the implementation swaps matrix columns implicitly by using
permutation lists to keep track of the current location of each column, while the
columns themselves remain in one place) — the majority of the work in each
iteration is associated with determining the entering and leaving variables and
updating the solution vector. This leads to the idea of having several processes
(the iteration processes) speculatively computing the â corresponding to sev-
eral attractive candidates. When an iteration process has completed the calcula-
tion of â, it sends to the basis change manager an offer to compute the leaving
variable and perform the pivot operation. Given any basis, only one iteration
process should be allowed to decide how to pivot away from it (otherwise, the
iteration processes would diverge in different directions), and the basis change
manager handles this. If the offer is accepted, the iteration process will tell all
other processes which variable that left and which one that entered, and the
other iteration processes will update their B and N accordingly. It also com-
putes a new set of attractive candidates. Iteration processes that have had their
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offers rejected will request new variables from the column selection manager,
which keeps track of which variables are currently regarded as attractive.

(TODO: had a todo here, can’t remember...)
The pseudocode uses some overly compact names (that probably stem from

some old naming convention; Maros[37] uses them too) for each step of the al-
gorithm; they are as follows (taken from [18], with some modifications):

BTRAN Compute π> ← cT
BB
−1 (in the process, we will use the eta file entries

in reverse order, hence the name Backwards TRANsformation[37]).

PRICE Compute the reduced costs: ĉ>N ← c>N − π>N.

CHUZC Choose entering variable (Column) by finding a negative entry in ĉN .

FTRAN Compute â ← B−1aq, where aq is the column of N that corresponds
to the entering variable (this time, the eta file will be used forwards, hence
Forwards TRANsformation).

CHUZR Choose leaving variable (Row) by looking at the componentwise ratios
of b̂/â, where b̂← B−1b. Let α be the smallest such ratio.

UPRHS Update the right-hand side by adding αâ to b̂.

UPDATE BASIS Add an entry to the eta file.

We now present the pseudocode for ASYNPLEX as it is given by Hall and
McKinnon[18] (with a few notational adaptations), in Algorithms 3, 4, 5, and 6.
It is assumed that there is a separate, sequential piece of code that handles input
reading and sets up the different processes. In Section 3.4.2, we describe how
we have adapted the algorithm.

A short explanation of Hall’s notation may be useful. Each process has a
number of points where it sends or receives data to or from the other processes.
Each such communication endpoint is given a short identifying tag, both on the
sending and receiving end, and each send or receive operation indicates where
it wishes to send to or receive from (and the process’ own tag for that operation
is indicated with a comment in the right margin — note also that each type of
process has its own letter). Iteration process tags are suffixed with a colon and
the index of the process, since there can be several iteration processes.

2.1.5 (RP) Interior point methods

It is possible to interpret the simplex method in a geometric fashion: with n

decision variables, the space of all vectors of possible decision variable values
form an n-dimensional space. Each constraint can be modelled as a plane in this
space — an equality constraint requires that feasible solutions lie on the plane,
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loa 3: ASYNPLEX — iteration process number i (0 ≤ i < p)

1: procedure RUNITERATIONPROCESS(i, p,N,b, c)
2: ki ← 0
3: BTRAN
4: PRICE
5: FTRAN — let q be the ith most attractive candidate column, or -1 if that

does not exist
6: repeat
7: if received← V2 an LU factorisation of the inverse then . I1
8: Install new inverse
9: end if

10: while basis changes received← I7 are not yet applied do . I2
11: Apply basis change; ki ← ki + 1
12: end while
13: Permute column aq

14: FTRAN
15: while basis changes received← I7 are not yet applied do . I3
16: Apply basis change
17: FTRAN STEP; ki ← ki + 1
18: end while
19: if q = −1 or ĉq > 0 then
20: Send→ C4 a message that the candidate is unattractive . I4
21: else
22: Send→ R1 an offer to perform CHUZR . I5
23: Wait← (R2 or R3) for a reply to offer . I6
24: if Offer accepted then
25: CHUZR
26: Send → (I2/I3/I10 on all other iteration processes) the basis

change and pivotal column . I7
27: Send→ (V1 and C1) basis change . I8
28: UPDATE BASIS; ki ← ki + 1
29: BTRAN
30: Permute π
31: PRICE
32: FTRAN — choose a set of the most attractive candidates
33: Send→ C2 the most attractive candidates . I9
34: else
35: Wait← I7 for next basis change . I10
36: goto line 15
37: end if
38: end if
39: Wait← (C3 or C5) for a new candidate column, q . I11
40: until The algorithm terminates
41: end procedure
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loa 4: ASYNPLEX — invert processor

1: procedure RUNINVERTPROCESSOR(p,m,N)
2: Let B be an m×m identity matrix
3: kv ← 0
4: repeat
5: while received← I8 a notification that xl has left the basis and xe has

entered do . V1
6: Swap the corresponding columns between B and N
7: kv ← kv + 1
8: end while
9: INVERT

10: Send→ I1 on all p iteration processes the new LU factorisation of the
inverse for basis kv . V2

11: until the algorithm terminates
12: end procedure

loa 5: ASYNPLEX — column selection manager

1: procedure RUNCOLUMNSELECTIONMANAGER(m,n)
2: kc ← 0
3: Mark all nonbasic variables as unselected
4: repeat
5: if received← I8 basis change then . C1
6: Mark the variable which has left the basis as unselected
7: else if received ← I9:i a set of candidates corresponding to basis ki

then . C2
8: if ki > kc then
9: Filter out the candidates already selected and those already

rejected after the FTRAN at a basis ≥ ki

10: kc ← ki

11: end if
12: Send→ I11:i the most attractive candidate to enter the basis and

mark the candidate as selected . C3
13: else if received ← I4:i a message that its current candidate is now

unattractive then . C4
14: Send→ I11:i the most attractive candidate to enter the basis and

mark the candidate as selected . C5
15: end if
16: until the algorithm terminates
17: end procedure
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loa 6: ASYNPLEX — basis change manager

1: procedure RUNBASISCHANGEMANAGER

2: kb ← 1
3: repeat
4: if received← I5:i an offer to perform CHUZR for basis ki then . R1
5: if ki = kb then
6: Send→ I6:i an acceptance of the offer . R2
7: kb ← kb + 1
8: else
9: Send→ I6:i a refusal of the offer . R3

10: end if
11: end if
12: until the algorithm terminates
13: end procedure

and an inequality constraint requires that feasible solutions lie on or to one of
the sides of the plane. Together with the planes from the implicit nonnegativ-
ity constraints, this forms a geometrical shape known as a simplex — hence the
name of the simplex method. Each intermediate solution produced by the sim-
plex method represents a point that is a vertex (an intersection between n or
more planes). There exists another class of algorithms called interior point meth-
ods, whose intermediate solutions always lie in the interior of the simplex. A
distinct advantage of most interior point methods over the simplex method is
that they have polynomial worst-case bounds on their time consumption. The
first polynomial interior point method was invented by Khachiyan[29] in 1979,
and one of the most well-known methods is due to Karmarkar[27].

Interior point methods were mentioned in the problem description, but it
was soon discovered that the scope of the project was already large enough
even when only considering the simplex methods. Thus, interior point meth-
ods will not be taken into consideration, but we felt that no discussion of linear
programming would be complete without mentioning this subject.

2.1.6 (RP) State of the art: sequential LP solvers

We now present some existing sequential solvers that we have studied.

ILOG CPLEX

CPLEX, developed by the company ILOG (http://www.ilog.com/products/
cplex/), is a widely used mathematical optimisation package, and also the
one currently used by Miriam AS. Being proprietary closed-source software, we
cannot examine its inner workings (but they are probably too complex for this
project).

http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/
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GLPK

The Gnu Linear Programming Kit is an open source initiative to produce a ver-
satile suite of mathematical optimisation tools. Unfortunately, the code base is
extremely large, comprising more than 75000 lines of C code distributed across
nearly 100 files. While only a handful of these files contain functionality that is
directly related to the simplex method, reverse engineering it still would be a
daunting task — especially given that their coding conventions apparently calls
for very short variable names.

GLPK is released by its authors under version 3 of the GNU General Public
License.

retroLP

As opposed to virtually all other LP solvers, retroLP[50] implements the original
simplex method, not the revised method. The former is advantageous for dense
problems, which occur in some special applications such as “wavelet decompo-
sition, digital filter design, text categorization, image processing and relaxations
of scheduling problems.”[51] As compared to GLPK, the code is fairly short and
readable — but it still consists of (TODO: ) lines.

retroLP is released by its authors under version 2 of the GNU General Public
License.

Numerical Recipes

The Numerical Recipes is a well-known book containing source code for the nu-
merical solution to problems in linear algebra, differential equations and many
other fields. They also provide linear algebra solvers — in the second edi-
tion[42], they use the standard simplex method, while in the third edition[43],
they use the revised simplex method. For reasons to be discussed in Section 3.3,
we suspect that this is due to numerical stability problems, but we found no
mention of such in the book.

Vanderbei’s code

Vanderbei has published a freely available implementation of the revised sim-
plex algorithm and three other algorithms that are presented in his book[47],
at http://www.princeton.edu/˜rvdb/LPbook/. While it comprises more
than 20000 lines of source code, the core parts are fairly short and well separated
from the rest of the code (much of which deals with different input formats). The
code for the revised simplex methods alone is “only” around 7000 lines.

The code has no licence information attached to it. Anyone who wishes to
commercially utilise those parts of our code that are derived from Vanderbei’s
code are strongly advised to contact Vanderbei.

http://www.princeton.edu/~rvdb/LPbook/
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(RP) Others

Here follows a few more solvers we are aware of. We have not had the time to
study them thoroughly, but we list them here for those who might be interested
in doing so.

Xpress — a commercial product, available at http://www.dashoptimization.
com/home/products/products_optimizer.html;

OOPS — http://www.maths.ed.ac.uk/˜gondzio/parallel/solver.

html;

COIN-OR Linear Program Solver (CLP) — http://www.coin-or.org/Clp/;

SoPlex — An implementation developed as a part of Roland Wunderling’s Ph.D.
thesis[49], and available at http://soplex.zib.de/.

2.1.7 (RP) State of the art: parallel LP solvers

Parallel LP solvers also exist. ASYNPLEX[18] has already been discussed in
greater detail, and here is a short list of some of the other solvers we have found.

Parallelisation of the revised simplex method using CUDA (Spampinato)

Compute Unified Device Architecture (CUDA) is a framework from the graph-
ics processing unit (GPU) manufacturer nVidia. Daniele Spampinato, a stu-
dent at our department, implemented the revised simplex method by using the
CUBLAS linear algebra library to offload the linear algebra computations onto
the GPU[46]. He reported overall speedups of 2.0–2.4 relative to a sequential
implementation using ATLAS, but only for dense data sets. The only operation
that (by itself) yielded the vast speedups that are theoretically possible when
using GPUs (which have hundreds of cores) was the basis inversion[46, Figure
5.6 on p. 45]. Furthermore, he experienced major problems with numerical sta-
bility. Note that his implementation parallelised each linear algebra operation
individually; it was not a parallel version of the simplex method itself.

SMoPlex, DoPlex (Wunderling)

These are, respectively, shared memory and distributed memory implementa-
tions of the revised simplex method, also from Wunderling’s thesis[49]. Re-
grettably, these implementations are not available online, and since the thesis is
written in German, we have not been able to study it — but it may prove useful
to someone proficient in German. According to Hall[18], the implementation is
“parallel for only two processors”.

http://www.dashoptimization.com/home/products/products_optimizer.html
http://www.dashoptimization.com/home/products/products_optimizer.html
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
http://www.coin-or.org/Clp/
http://soplex.zib.de/
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Parallelisation of interior point methods

Those interested in interior point methods should consult Karypis, Gupta, and
Kumar[28] for an approach that allegedly scales to hundreds of processors.

retroLP

See above for a general description of retroLP, which also implements a parallel
version of the standard simplex method.

Others

Again, here are some other papers and implementations we are aware of, but
have not studied.

• Prior to ASYNPLEX, Hall and McKinnon developed another parallel re-
vised simplex algorithm, called PARSMI[17];

• A distributed simplex algorithm by Ho and Sundarraj[21];

• A parallelisation of CPLEX’ dual simplex method by Bixby and Martin[6];

• A parallelisation of Xpress’ interior point method by Andersen and An-
dersen[3].

2.2 (RP) Cell Broadband Engine

The Cell Broadband Engine (Cell/BE) is a single chip multiprocessor architecture
jointly developed by IBM, Sony and Toshiba. The initial design goals was to cre-
ate an architecture that would be suitable for the demands of future gaming and
multimedia applications (meaning not only high computational power, but also
high responsiveness to user interaction and network communications), with a
performance of 100 times that of Sony PlayStation 2[26]. Several obstacles to
such goals exist; in particular the infamous brick walls[4]:

Memory wall While processor speeds have grown substantially over the past
few decades, the growth in memory access times has been much more
modest. Because of this, the relative cost of memory accesses is now pro-
hibitively large, and for efficient scientifice computation, it is necessary to
to use caches and try to keep data cached for as long as possible once it has
been loaded from memory.

Power wall Heat dissipation becomes a greater and greater obstacle as frequency
increases.
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ILP wall Instruction-level parallelism techniques such as pipelines and specula-
tive execution face diminishing returns as most programs have a limited
amount of exploitable parallelism, and the hardware and power cost of
implementing such techniques is growing.

The Cell/BE architecture tries to solve these problems in the following ways:

• Having two different kinds of cores: one optimised for control logic and
operating systems, and one optimised for computational throughput.

• Giving the programmer explicit control over data movement in the mem-
ory hierarchy, rather than having hardware-controlled caches.

• Providing an extensive instruction set for letting the programmer manu-
ally specify instruction-level parallelism.

The above lists and most of this section are based on the article by Kahle et al.[26]
and on technical documentation from IBM, primarily [24]. Those interested in
more architecture and programming details may also want to consult [25] and
[23].

2.2.1 (RP) Architecture

2.2.1.1 (RP) Overview

The Cell/BE consists of one PowerPC Processor Element (PPE) and eight Synergis-
tic Processing Elements (SPE), connected by a high-speed bus called the Element
Interconnect Bus (EIB), as shown in Figure 2.1.

Figure 2.1: The Cell/BE architecture. Taken from [24].
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2.2.1.2 (RP) PPE

The PPE (see Figure 2.2) is a 64 bit PowerPC, which is a general purpose RISC
(reduced instruction set) architecture. Its role is that of the “control logic” core
mentioned above, and it is responsible for running the operating system and
controlling the rest of the Cell/BE. The PPE is again subdivided into the Pow-
erPC Processor Unit (PPU12) (the actual PowerPC core, which supports two si-
multaneous threads), and the PowerPC Processor Storage Subsystem (PPSS).
The latter contains the level 2 cache, arbitrates the EIB, and communicates with
I/O devices. Among the most important features of the PPE is its support for
the Vector/SIMD Multimedia Extension, an instruction set for operating on mul-
tiple values simultaneously (see Section 2.2.2.1). Further specifications can be
found in [26] and [23].

Figure 2.2: The architecture of the PPE. Taken from [24].

2.2.1.3 (RP) SPE

Each of the eight SPEs is an independent processor that contains a Synergis-
tic Processor Unit (SPU) (the actual core, which a RISC architecture and a deep
pipeline) and a Memory Flow Controller (MFC) (see Figure 2.3 on the next page).
The SPU contains a Local Store — 256 kB of high-speed memory. Besides the
unified register file (which contains 128 128-bit registers), this is the only mem-
ory to which the code executing on the SPU has direct access — this is probably
the most distinguishing feature of the entire Cell/BE architecture. Furthermore,
the LS must be shared between code and data, and there is no write protection

12We have failed to see any system for when IBM’s own documentation or any other technical
documentation uses the terms PPE/SPE rather than PPU/SPU or the other way around. In this
report, we have tried to stick to PPE/SPE.
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of the code area, so great care must be taken not to overwrite the code (in par-
ticular because the address space of the LS is cyclic — any address is reduced
modulo 216). Whenever the SPU needs data from system memory, that data
must be transferred using DMA (Direct Memory Access — transferring data
from memory to another unit attached to the bus, without going through the
PPU). The MFC is responsible for handling DMA requests, and it can support
several outstanding DMA requests, each with a memory area length of at most
16384 bytes. Base addresses (both in local storage and in system memory) for
all DMA transfers must be aligned on a 16-byte (quadword) boundary, and the
data to be transferred must be a multiple of 16 bytes. Performance is improved
if entire aligned cache lines (128 bytes) are transferred at a time.

The idea of this architecture is that it shall be easy to overlap communication
with computation, since DMA requests can be asynchronous. It does, however,
greatly add to the programming complexity.

Figure 2.3: The architecture of an SPE. Taken from [24].

2.2.2 (RP) Programming methods

2.2.2.1 (RP) SIMD processing

Both the PPE and the SPE support Single Instruction Multiple Data (SIMD) op-
erations through a data type modifier called vector. A vector is 128 bits long,
and can hold e.g. four ints, four floats, or two doubles. vectors must start
at addresses that are divisible by 16. Declarations of automatic variables (those
located on the stack) may be suffixed with __attribute__((aligned(16))) to
indicate such alignment. Memory allocated on the heap can be aligned by using
malloc_align() (note that the second argument to this function is the base two
logarithm of the byte boundary, so to get alignment on 16 byte boundaries, we
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would have to pass 4.
There is a rich instruction set for operating on vectors; see [23] for a full

overview. All SIMD instructions are available in C and C++ as compiler intrin-
sics. An example is the fused multiply-add operation: d = vec_madd(a, b, c),
where all variables are vectors, will set each component of d to the componen-
twise sum of c and the componentwise product of a and b. Without the SIMD
instructions, this would have had to be done with arrays and a loop: for (int

i = 0; i < 4; ++i){ d[i] = a[i] * b[i] + c[i]; }.

2.2.2.2 (RP) Compiler directives

There are several compiler directives that the programmer can employ to aid the
compiler and the hardware in making good decisions. Two of the most interest-
ing ones are related to branch prediction and avoidance (given the deep pipeline
of the SPEs, branch mispredictions are very expensive):

1. __builtin_expect(expression, expected) will evaluate and return
expression while informing the compiler that the programmer expects
the result to be expected. This is typically placed in the condition of an
if/else.

2. If the condition of an if/else is not easily predictable, but the if/else
bodies are very simple, one might be better off by computing both bodies
and using a special selection instruction to determine which result will be
kept. spu_sel(a, b, condition) will return either a or b depending on
the truth value of condition, but is translated to instructions that do not
involve branches.

2.2.2.3 (RP) PPE-SPE communication and synchronisation

It is possible for each SPE to send small (32 bit) messages to the PPE and vice
versa, through an MFC-controlled mechanism called mailboxes. Each SPE’s MFC
contains an outbound queue to which the SPE can write a message. If the queue
is full and the SPE tries to write another message, it will stall until the PPE has
read the previous one (messages from different SPEs do not interfere with each
other, however). The MFC also contains an inbound queue to which the PPE can
write up to four messages, and from which the corresponding SPE can read. If
the queue is full, the last message will be overwritten. It is possible to check the
status of a mailbox before writing to it, thus allowing mailboxes to be used as a
synchronisation mechanism.

Another method that is available for communication between the cores is
signals, but we will not cover it here since we do not use them in our code.
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2.2.2.4 (RP) Double and triple buffering

For most applications, data sets of realistic size will not fit in the small LS. One
must then employ either double, triple, or quadruple buffering. In this project,
we expect to need triple buffering, in which the data area of the LS is divided
into three segments (there is no hardware support for this division; the program
must handle the three buffers manually — note that the emphasised words are
our own terms):

• The incoming buffer is in the process of being filled (by a DMA request)
with data the SPE is about to need.

• The work buffer is being manipulated by the actual computation opera-
tions. This assumes that the output of the communication can be written
back to the same area where the input was located; otherwise, a four-buffer
scheme is needed with separate input/output buffers for the computation.

• The outgoing buffer contains the results of the most recently completed
computation, and the data is in the process of being sent to main memory
by using DMA.

When all three operations (incoming DMA, computation, and outgoing DMA)
have completed, the buffer pointers are being swapped so that the computation
can continue with the recently received data, the results of the recently com-
pleted computation can be sent back to main memory, and the old outgoing
buffer can be used to receive new data.

2.2.2.5 (RP) Overlays

Very large SPE programs are problematic because the small LS must be shared
between code and data. Overlays is a mechanism where the programmer di-
vides the code into regions of more or less independent code which will not
be needed simultaneously. At execution time, the code segments will be dy-
namically loaded into and unloaded from the LS, based on what code is being
executed. This allows programs of arbitrary size to be executed on the SPEs (un-
less there are extremely large functions, as each function must be fully contained
within one region), at the cost of the time and bus bandwidth that is needed for
the code segment transfer. One should strive to structure the segments such that
segment loading will occur as infrequently as possible.

2.2.3 (RP) Tools and libraries

There exist several libraries for easing the development of scientific applications
on the Cell/BE. We now provide a very quick survey of the libraries that seemed
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to be the most relevant to us. Only one of them, the Cell Messaging Layer, was
eventually used; we discuss our choice in (TODO: reference).

(RP) The Cell Messaging Layer

There are numerous articles about Cell/BE implementations of the popular Mes-
sage Passing Interface (MPI), e.g. Kumar et al.[34] and Krishna et al.[33]. How-
ever, the only implementation we could find the source code for was The Cell
Messaging Layer (CML); it is located at http://www.ccs3.lanl.gov/˜pakin/
software/cellmessaging/. The current version implementats only a subset
of MPI: the synchronous point-to-point communication primitives and the col-
lective primitives (broadcast, scatter, etc.). In addition, it supports remote proce-
dure calls (RPC) so that the SPEs can invoke code on the PPE. This library may
facilitate the implementation of ASYNPLEX, which is an algorithm for message
passing systems.

(RP) Others

The following are libraries that we have not used, but which may be interesting
to others.

Accelerated Library Framework (ALF) is IBM’s own framework for easing the
development of Cell/BE applications. We believe that ALF could have
been useful to us (among other things, it provides automatic triple buffer-
ing), but it is a fairly large framework, and we never got the time to study
it properly.

BlockLib [1] is a collection of skeletons, which are small “building blocks” (es-
sentially functions) that are implemented in a parallel manner, and which
can be combined into larger programs.

IBM Cell/BE BLAS library is a full implementaion of the BLAS interface for
linear algebra libraries (http://www.netlib.org/blas/blast-forum/
blas-report.pdf, but only some functions utilise the SPEs, according
to [25].

OpenMP has been implemented for Cell/BE[48]. It lets the programmer an-
notate the source code with #pragmas in order to indicate where there is
opportunitites for parallelism. A special compiler then generates PPE and
SPE programs that cooperate on performing the desired computations.

RapidMind (http://www.rapidmind.net/) is a commercial platform for
developing software that can run without modification on several differ-
ent multicore platforms, including Cell/BE.

Cell Superscalar (CellSs) [41] is similar in spirit to OpenMP.

http://www.ccs3.lanl.gov/~pakin/software/cellmessaging/
http://www.ccs3.lanl.gov/~pakin/software/cellmessaging/
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.rapidmind.net/
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2.3 (RP) Miscellaneous topics

2.3.1 (RP) Data sets

netlib[12] is a collection of 98 LP problem sets, many of which stem from real
life problems. This is our primary source for data sets to test our solvers with.
They range in size from 28×32 to 16676×15695, and are mostly fairly sparse (the
set with the biggest dimensions contains 74004 nonzeroes). Some of them have
special properties, such as being extremely degenerate. All sets are represented
in the MPS format; see Section 3.2.3 for a brief description and further references.

The official netlib site is http://www.netlib.org/lp/index.html,
but it contains compressed files versions that must be decompressed with a for-
tran program. The collection is available in more convenient formats elsewhere,
e.g. ftp://ftp.numerical.rl.ac.uk/pub/cuter/netlib.tar.gz.

2.3.2 (RP) Representation of sparse matrices

There are many ways of representing a sparse matrix efficiently, of which Shah-
naz[45] provides a compact review. The one we ended up using in this project
(see Section 3.4.4.1 for the reason why) is called the Compressed Column Storage
format, also known as the Harwell-Boeing Sparse Matrix Storage Format[45]. A
sparse m×n-matrix containing k nonzero values is represented as two numbers
telling the number of rows and columns, and three arrays:

values contains all k nonzero values, column by column (first all nonzero values
from the first column, from top to bottom, then from the second column,
and so on).

rowIndices contains k integers, one for each element of the values array, telling
which row that element is located in.

columnPositions always contains n + 1 elements — one for each column, and
one additional element. Each entry contains an index into the two other
arrays, which tells where the values of the corresponding column start.
The last element contains k, which in effect tells us the last valid index into
the two other arrays (namely k − 1). Thus, the indices of the elements of
column i are rowIndices[i] through rowIndices[i+ 1]− 1.

For instance, the matrix  9 0 0
0 2 7
4 3 0


would be represented as follows:

http://www.netlib.org/lp/index.html
ftp://ftp.numerical.rl.ac.uk/pub/cuter/netlib.tar.gz
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Value 9 4 2 3 7 —
Row index 0 2 1 2 1 —

Column positions 0 2 4 5
Note that we use zero-based indices. A sparse (column) vector can be rep-

resented similarly, as two arrays containing the nonzeroes and the row indices,
and two single variables telling the number of rows and the number of nonze-
roes.

2.3.3 (RP) Amdahl’s law

The following section is taken from our fall project report[10].
In 1967, Gene Amdahl argued[2] that parallel processing was not a good way

to improve performance, based on the following observation: If we have a com-
putation that consists of a sequence of serial steps that take a total time of ts,
and a certain percentage f of these steps can be performed in parallel using p

processors13, then the total time for the sequential part of the calculation will be
fts, and if we can distribute the remaining workload equally over the p proces-
sors, the parallel part will take the time (1 − f)ts/p. Since the sequential part
must presumably be completed before the parallel computations can begin (or
the other way around), these times must be added together for a total time of
tp = fts + (1− f)ts/p, and we arrive at Amdahl’s law14 for the speedup S(p):

S(p) =
ts
tp

=
ts

fts + (1− f)ts/p
=

1
f + (1− f)/p

=
p

1 + f(p− 1)
(2.37)

The most significant aspect of this formula is that it highlights the importance of
f as a severely limiting factor for the potential speedup of parallelising. Amdahl
used this to claim that parallel programming was not a good idea. However,
since parallelisation is currently regarded as the primary way of improving per-
formance in high performance computing[4], the modern interpretation is that
speedups can come arbitrarily close to p if only we can make f small enough,
and thus, one should focus on reducing f when parallelising a calculation. On
the other hand, since f in most situations cannot (even approximately) become
equal to zero15, Amdahl’s law provides an upper bound on performance gain
for a specific problem given the best nonzero f we can achieve: As p tends to
infinity, the speedup converges to 1/f . Again, it should be noted that these
bounds are optimistic, as they are based on very simplifying assumptions.

13These are quite optimistic calculations, since we assume that the calculation can be paral-
lelised without incurring communication penalties or extra computation steps, and that the par-
allel processors are as fast as the sequential one.

14Amdahl did not actually state this formula in his article, but it has been derived later (in
many different forms) from his article.

15Calculations in which f ≈ 0 and where the assumptions about independence between the
parallel parts hold are called embarrassingly parallel.
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(TODO: Actually refer to this law somewhere; fix references in chapter intro,
also to pthreads)





Chapter 3
Development

(TODO: Chapter introduction)

3.1 (RP) Overall approach

The author and his advisor agreed that we should follow a step by step approach
in which we begin with solving simpler problems and gradually proceed to-
wards more challenging problems. We decided upon the following overall plan:

1. Implement the standard simplex method on a sequential machine, in order
to gain familiarity with the subject and produce a program on which we
can base our later development.

2. Parallelise the standard simplex method on Cell/BE (if the Cell/BE turns
out to be very hard to program, we could first parallelise it on a regular
multicore machine using e.g. pthreads or OpenMP (see http://openmp.
org/wp/) to make sure our parallelisation approach is correct).

3. Implement the revised simplex method on a regular (single core) machine.

4. Parallelise the revised simplex method on Cell/BE. This is expected to be
much harder than the parallelisation of the standard simplex method, and
we may have to resort to implementing one or more preexisting parallel
simplex methods. For each implementation, several possibilities for re-
finements could be investigated:

a) Investigating various ways of handling numerical instability that may
occur when using single precision arithmetic rather than of double
precision.

b) Experimenting with how different representations of sparse matrices
and vectors affect performance.

41

http://openmp.org/wp/
http://openmp.org/wp/
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c) Figuring out how to improve performance by utilising the Cell/BE’s
SIMD operations.

d) Using autotuning to find good values for e.g. data transfer block
sizes.

5. Investigate interior point methods and implement them if time permits.

3.2 (RP) Standard simplex method

In order to become familiar with programming the Cell/BE, we initially imple-
mented a few versions of the standard simplex method (which is best suited for
dense problems). We began with a straightforward implementation for regular
(sequential) x86 machines, then ported it to run on the Cell/BE PPE while util-
ising its SIMD instructions. Finally, we created a parallel version of the method
which uses the SPEs. However, as will be discussed in Section 3.3, it turned out
that it is extremely hard to make the standard simplex method work reliably on
even medium-sized data sets.

(RP) Choice of development language The Cell/BE SDK offers three languages:
assembly, C, and C++. Assembly language is of course out of the question (due
to development time and risk), except perhaps for a few very performance-
critical parts — but modern compilers are normally very good at optimising,
and there are C and C++ intrinsics for the extended instruction sets of the Cel-
l/BE. Although we do not need advanced object-oriented features that cannot
easily be emulated in C, C++ is the language of our choice, for the following
reasons:

• The author is more familiar with C++ than with C.

• It offers more high-level data structures than C, through the Standard Tem-
plate Library — in particular, the vector class for dynamic arrays.

• The author prefers the syntactic sugar of working with classes with mem-
ber methods rather than functions that take structures as parameters.

3.2.1 (RP) x86 and PPE version

Our x86 solver is a more or less direct implementation of the pseudocode from
Vanderbei[47] and Cormen et al.[7]. However, there are some refinements:

• Rather than a raw array, we use a class for representing the tableau, so that
we can make functions for operations such as adding a multiple of a pivot
row to another.
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• We would like the ability to switch between different data types in order
to test how much the numerical stability is affected by the use of single
precision arithmetic rather than double precision. Therefore, we use the
symbol TYPE as a data type. This symbol is expected to be defined as
float or double or any other suitable data type (see Section 3.3.3) — this
can be done through a compiler switch, e.g. -DTYPE=float.

• During development, all functions that accessed the tableau performed
bounds checking, in order to facilitate debugging. This incurs a perfor-
mance penalty, in particular in simple functions that just read or write one
entry, so we removed the code after the development was complete. In
hindsight, we should have used defines to allow for simple enabling or
disabling of that feature, but it will not be hard to add such code again.

The PPE solver is very similar. As described in Section 2.2.1.2, the PPE sup-
ports SIMD instructions (also referred to as vector instructions) capable of op-
erating on four single precision floating point values simultaneously. Since the
simplex method primarily consists of row operations on the tableau, it is an
excellent target for such vectorisation. The only problem might be the low arith-
metic intensity of the simplex method, which may reduce performance because
a lot of data needs to be loaded into the registers, and only a very simple and
fast operation is being performed on each element before it is thrown out again.
However, the Cell/BE has an advantage in this situation over other architec-
tures, since the LS is faster than regular caches. On the other hand, once the
tableau becomes too large to fit in the LS, one may start seeing reduced payoffs
from SIMD instructions because data cannot be provided fast enough.

We only need one type of SIMD instruction, namely the fused multiply-add,
as described in Section 2.2.2.1. The central part of the code is the following line:
destination_v[j] = vec_madd(source_v[j], factor_v, destination_v

[j]);, which multiplies four values from the source row by a specified factor
and adds them to the destination row.

An interesting implementation detail related to SIMD is that vector instruc-
tions can only operate on data that is aligned on 16-byte boundaries (that is, four.
Therefore, we must use malloc_align() for memory allocation. Furthermore,
one must keep in mind that the width of the tableau may not be divisible by four,
in which case the last elements will not fill an entire vector. The simplest way
of getting around this (and avoiding tests for whether one has reached the end of
a row) is to round the number of columns up to the nearest multiple of four and
allocate the corresponding amount of memory. To the other parts of the code,
the width will still appear to be the original number of columns, whereas all in-
ternal operations will utilise the fact that each row contains an integral number
of vectors. The last elements in a row may be garbage, but that does not matter
since they are not reachable from the rest of the code (and there are no division
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operations, so division by zero is not a risk). This is implemented in the Matrix
class (see Appendix A.1) by having one variable called cols, which keeps track
of the original number of tableau columns, and one called physicalCols, which
keeps track of the rounded-up width.

(RP) Code The PPE code was developed by copying and rewriting the x86
code, but we were able to merge them back into one program (through the use of
#defines that control which parts of the code are activated), listed in Appendix
A.1. This sacrifices a little bit of readability for the sake of compactness and
avoidance of code duplication. The appendix also contains information on how
to compile it, and short descriptions of what each file contains.

3.2.2 (RP) SPE version

Our approach is fairly obvious1:

1. The PPE, which initially holds the entire tableau, distributes the tableau
rows evenly among the SPEs, giving each SPE a batch of consecutive rows.

2. The first SPE analyses the objective function to determine the leaving vari-
able and sends the column number to the PPE, which distributes this num-
ber to the other SPEs. If no leaving variable was found, the optimal solu-
tion has been found, and the SPEs are asked to send their basic variable
values to the PPE and terminate.

3. Each SPE determines the strictest bound (imposed by its subset of the
rows) on the value of the leaving variable and sends the bound and the
corresponding row number to the PPE.

4. The PPE determines which SPE that “wins” (because it has the strictest
bound) and requests this SPE to transfer the pivot row to main memory
using DMA; afterwards, all the other SPEs are asked to initiate a DMA
transfer to receive this row. If no SPEs found a finite bound, the problem
is unbounded, and the SPEs are asked to terminate.

5. Each SPE performs row operations on its part of the tableau, using the
pivot row, and notifies the PPE upon completion. Go to step 2.

We would have liked to employ some sort of broadcast operation for distribut-
ing the pivot row in step 4, but we could not find out how to do so.

Note that we have only implemented Phase II. The code is listed in Appendix
A.2. SIMD operations are utilised on the SPEs, in a manner similar to what was
done in the sequential PPE solver.

1After having written the application, we found that Yarmish[50] uses a very similar ap-
proach, albeit for cluster computers with MPI.
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3.2.3 (RP) MPS and CPLEX parsers

The netlib data sets are stored in a file format called MPS (Mathematical Pro-
gramming System). The format hails from the punch card age; as such, it is fairly
arcane (it employs fixed format), but all the simpler to parse. This was fortunate;
since we could not find any available parsers, we had to write our own. We also
needed to write a parser for the ILOG CPLEX format, since Miriam AS provided
us with a few data sets in that format (see Appendix B.2). Our parsers do not
handle all aspects of the formats, but they are sufficient for those sets that we
use. The source can be found in Appendices A.6 and A.6. Maros[37, Chapter 6]
gives a fairly compact presentation of the MPS format.

3.3 (RP) Implementation problems

(TODO: Put the schedules somewhere (original, revised, and after meeting?))

3.3.1 (RP) Numerical instability

Our initial plan was to begin with something we thought to be fairly straight-
forward and then gradually proceed towards harder problems, along the lines
described in Section 3.1. Steps 1 and 2 initially seemed to have been as sim-
ple as we had assumed them to be (step 1 was based on the descriptions and
pseudocode from [7] and [47]), and the Cell/BE parallelisation appeared to go
well. These implementations are listed in Appendices A.1 and A.2. Unfortu-
nately, once we started running the solvers on data sets of nontrivial size (the
netlib sets), we started experiencing problems. For some sets, the solver gave
answers that were correct only to a few decimal places, while for other sets, the
answer was off by several orders of magnitude and thereby entirely useless. Yet
other sets would cause the solver to go into a cycle where the same sequence
of pivots was repeated over and over. Most of the sets that needed a Phase I
would be declared infeasible because the solver never managed to make the ob-
jective function value reach zero. After much fiddling and debugging (we did
have some minor errors in our initial implementations), and after starting to use
Bland’s rule (see Section 2.1.2.1), we seemed to get rid of the cycling problems.
However, the answers we got were still mostly wrong.

We were of course aware of the fact that floating point calculations are not
precise, and we noticed that the Phase I problems normally were caused by the
objective function reaching a value that was very close to zero, but not exactly
zero. We tried various approaches to zeroing out numbers that were “small
enough”, as detailed in Section 3.3.2 below, but nothing (except for the GMP
approach in Section 3.3.3) gave consistently good results, and we began to se-
riously doubt our own abilities to code anything properly — because we were
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assuming that the standard simplex algorithm (like all other algorithms we have
encountered during our university studies) was supposed to “simply work”
when implemented as specified. Our beliefs were reinforced by the fact that
well-known works such as [7] and [47] make no mention of the standard sim-
plex method being particularily unstable (they only say that other methods are
being used in practice because they are more efficient). Also, [42] provided an im-
plementation of the standard simplex method — but when we got around to try
it (we had originally just consulted the book, noticed that it used the standard
simplex method, and decided to implement our own solver before looking at the
“solution”), it ran into the same kinds of stability problems as our code (TODO:
Make a section detailing experiments on this). Tellingly, in the third edition[43],
it has been replaced by an implementation of the revised simplex method (but
we could not quite get it to work; we have probably misunderstood the way the
input data was supposed to be formatted).

Already at the beginning of the project, concerns were raised about the suit-
ability of the Cell/BE for this kind of computations, since its double precision
arithmetic is very slow compared to its single precision arithmetic. We had ini-
tially developed our code using single precision, but switching to double pre-
cision did not help much — the solver gave better answers for several sets, but
the problems persisted, in particular for larger sets.

We eventually resigned and contacted a group of mathematicians with which
Natvig is acquainted, describing our problems and asking them for help on how
to make the standard simplex method work stably. The response, from Anders-
son and Christiansen[19], was highly useful. First, they indicated that we were
not alone about having such problems: “Implementing the standard simplex
method is unfortunately considered both highly inefficient and very numeri-
cally unstable. From your email I see that you have encountered many of the
“famous” problems with this implementation.” Second, they suggested a di-
rection in which we could continue, namely implementing the revised simplex
method and a parallel algorithm called ASYNPLEX. Third, they suggested a
splendid book that would have been perfect to us if we had been aware of it
from the start: Computational techniques of the simplex method by Maros[37]. This
is the closest we have come to a book that is detailing everything one needs
to do in order to make the (revised) simplex method stable. At this point, we
had lost enough confidence in our own abilities in numerical mathematics that
we did not dare to start implementing the revised simplex method from scratch
(in particular because more than half the project time had passed at this point,
and because an entire book apparently was necessary for the implementation of
one algorithm). Therefore, we have only briefly studied [37], but we strongly
recommend this book to anyone who intendes to develop a serious LP solver.

Agreeing with the words of Donald Knuth, “premature optimization is the
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root of all evil”[31], we decided not to optimise our Cell/BE standard simplex
method beyond the simple step of using SIMD instructions for the matrix ma-
nipulations. Time spent optimising an incorrect program is most likely going to
be wasted time, as the optimised parts will probably be rewritten (or the whole
program is discarded and another one is developed from scratch). Instead, we
decided to focus on implementing ASYNPLEX.

3.3.2 (RP) Attempts to handle roundoff errors

As mentioned above, we tried different approaches to handling the roundoff
errors that will necessarily occur when using floating point numbers. They in-
clude:

• Scanning the tableau in-between each iteration and setting every number
whose absolute value is below a certain threshold to zero.

• Terminating Phase I when x0 has reached a value that is “sufficiently close”
to zero.

• Whenever two numbers are added to or subtracted from each other, the
result is compared to the two original numbers. If the ratios between the
result and each of the original numbers are sufficiently small, the tresult is
set to zero. We had some success with this rule; if the ratio is e.g. 0.00001,
the right result for AFIRO is produced.

Although for some small data sets, we were able to find values that made the
program produce the right answer, none of these approaches yielded consis-
tently improved results.

See comments in the source code of Matrix.cpp in Appendix A.1 for in-
structions on how to enable some of these roundoff techniques.

3.3.3 (RP) An exact LP solver using rational numbers

In order to demonstrate that the stability problems are not caused by errors in
our implementation, we have made our code support usage of the GNU multiple
precision arithmetic library (GMP — see http://gmplib.org/), which among
other features has a data type for representing arbitrary-size rational numbers
exactly. Since the simplex methods only apply the four basic arithmetic opera-
tions throughout their operation, all numbers in the tableau will remain ratio-
nal2. Compile the code by running the buildgmp.sh script; this will link to
GMP (which must first have been downloaded, compiled and installed on the
system) and tell our code to use the mpq_class data type for all arithmetic

2Assuming, of course, that they were initially rational — but all data formats for representat-
ing of LP problems are based on floating point numbers, which are inherently rational.

http://gmplib.org/
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operations and to output results in fraction form. When using GMP, the code
obviously slows down by a significant factor and the memory consumption in-
creases (which is why this approach is useless in practice unless it is absolutely
essential to obtain exact results). Table 3.3.3 shows the results for some of the
small-to-medium netlib sets. Note that our solver performs maximisation,
while the netlib sets are supposed to be minimised (but for some reason, the
MPS format does not specify whether to maximise or minimise) — therefore,
our MPS parser negates the objective function, so that the answers will have
correct absolute value but wrong sign. According to the README file, The “of-
ficial” netlib results have been obtained using the MINOS solver, version 5.3.
All digits of the netlib results agree with our exact results.

Data set Netlib result Our result Iterations Time
AFIRO −4.6475314286 · 102 406659

875 16 0.044 s

BRANDY 1.5185098965 · 103

−16065877392598163704545292298
35255763845946280057831648209
5777480900411096633986368891

1058002811160721713504750150
8720411569323127506371426417
345909327662918125000000000

605 491.402 s

LOTFI −2.5264706062 · 101 631617651547
25000000000 537 40.362 s

SCFXM2 3.6660261565 · 104

−487467141911986101107830583924465
3390630042031652016001773580110200
0732423011933261045459132101058706
9407177301915047835480055104995559

132968811760304712675433640078488
877195894209916975474747392970467
484815850625849844147283072046261
38144465522586000000000000000000

1299 2363.2 s

STOCFOR1 −4.1131976219 · 104

7368963026860358678147
0598121420626868798940
69612494322055836783

17915412056905368048
97461796875000000000
00000000000000000000

135 3.381 s

Table 3.1: Some results of our exact standard simplex implementation

3.4 Revised simplex method

(TODO: )

3.4.1 (RP) Performing the matrix inversion in parallel

The revised simplex method as described in (TODO: reference) must occasion-
ally spend some time reinverting the basis matrix. A simple yet attractive idea is
to offload the matrix inversion onto a separate processor, which may then spend
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all of its time performing inversions. Then, the main processor can spend all
of its time on the remaining steps of the method (while occasionally being pro-
vided with a reinverted basis matrix from the inversion processor), and one gets
the added benefit of the matrix being reinverted more often (which should be
good for numerical stability). (TODO: can the inversion itself be parallelised?)
Unfortunately, as reported by Ho and Sundarraj[21, Table 2], the inversion con-
sumes less than 20% of the total time of the revised simplex method, and as such,
speedups are limited as per Amdahl’s law (see Section 2.3.3). Furthermore, this
approach does not scale to more than two processors. Therefore, we have cho-
sen not to pursue this direction. Note, however, that ASYNPLEX incorporates
the same idea of having a separate inversion processor.

3.4.2 (RP) Decision to adapt ASYNPLEX and Vanderbei’s code

Considering the problems discussed in Section 3.3, we realised that we had too
little experience with numerical computation in general and the simplex method
in particular. We could perhaps have been able to implement a stable sequential
solver from scratch by following Maros’ book[37], but this would most likely
consume the rest of the project time. Therefore, we decided to find an existing
sequential implementation of the revised simplex method and rewrite it as per
some existing parallel revised simplex method. Finding a suitable implemen-
tation was not easy, because one apparantly needs to make a trade-off between
small code size and ease of understanding on one hand and numerical stability
on the other hand. As noted in Section 2.1.6, all the major, well-known imple-
mentations have exceedingly large code bases. After unsuccessful attempts at
understanding GLPK and retroLP, we chose Vanderbei’s implementation. The
choice of parallelisation approach fell on the ASYNPLEX algorithm, described
in Section 2.1.4, mostly due to its strong resemblance to the sequential revised
simplex method, and because it was recommended to us by Christiansen and
Andersson[19].

Basing ourselves on an existing sequential implementation also has the ad-
vantage of allowing a direct comparison between the sequential and parallel
versions of the same code, allowing us to better gauge the speedup that is of-
fered by ASYNPLEX itself (Hall et al. measured their performance against an
entirely different sequential implementation), and the further speedup that is
obtained on Cell/BE.

The disadvantage, of course, is that retrofitting an sequential implementa-
tion may require a vast effort in case parts of the code does not lend itself well
to parallelisation (this easily happens when the code relies on global variables
or internal, static variables, because such variables will need to be duplicated so
that each thread has its own instance of it.)



50 CHAPTER 3. DEVELOPMENT

3.4.3 (RP) ASYNPLEX prototype in C#

In order to make sure we actually understood the ASYNPLEX algorithm, we
first implemented a prototype in C#, using dense linear algebra (because sparse
linear algebra operations are much more complicated to implement, and we
only wanted a proof of concept implementation that could run on small datasets).
The reason for using C# is that it is a more high-level language (than C++) in
which development is quicker and thread handling is simpler than with C++
and pthreads. Furthermore, the Visual Studio integrated development envi-
ronment provides an excellent debugger, which would be highly useful for de-
bugging the many threading mistakes we suspected (rightfully) that we would
make.

We succeeded in implementing a mostly functional prototype, albeit with
some remaining threading glitches, and therefore decided to go ahead with
ASYNPLEX. The code is not particularily useful, but for the sake of complete-
ness, we list it in Appendix A.3.

3.4.4 Restructuring of Vanderbei’s code

(TODO: ) Vanderbei’s code is available at http://www.princeton.edu/˜rvdb/
LPbook/. It is written in C, and we initially chose to continue the develop-
ment in that language, since we felt that gaining more practice in pure C coding
would be useful. While we still agree to that sentiment, we later regretted that
choice(TODO: )

3.4.4.1 (RP) Sparse vector and matrix representations

Vanderbei’s implementation uses the Compressed Column Storage format (as
described in Section 2.3.2) for sparse matrices and a similar scheme for sparse
vectors. Unfortunately, he did not have a structure or class that contained the
arrays and variables for each sparse matrix or vector. For instance, the matrix A
would be represented with the arrays a (values), ia (row indices), ka (column
positions) and the variable na (TODO: ) (number of nonzeroes) — a naming
scheme that we found to be very impractical (all variables must be passed as pa-
rameters to functions that are to manipulate sparse vectors and matrices), and
which (TODO: oppos. facilitate) our process of understanding his code. There-
fore, we introduced structures that combined these related arrays and variables,
and we refactored the code to use these strucures throughout. Our structure for
sparse matrices looks like this:(TODO: remove typedefs)

struct SparseMatrix {

int rows;

int cols;

int numNonzeroes;

http://www.princeton.edu/~rvdb/LPbook/
http://www.princeton.edu/~rvdb/LPbook/
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int * rowIndices;

int * colPos;

TYPE * values;

};

Note that TYPE is a preprocessor symbol which facilitates experimentation with
different precisions (TODO: describe TYPE somewhere) — it should be defined
as either float or double.

Due to the vast amounts of vector manipulation (and also in order to track
down some bugs we believed were related to reading/writing outside of the
array bounds, but turned out to be caused by wrong memory management),
we made a more elaborate sparse vector structure, which uses the vector class
from the C++ Standard Template Library. The at() function performs boundary
access checking on each access. (TODO: a define to enable/disable usage of at(),
and update this code) The compiler will most likely inline the simple accessor
functions and operators, so that the usage of classes with and vector will not
incur any performance penalty (if the boundary checking is turned off). The
structure can be found in (TODO: file name, appendix ref).

Beware that in order to save time, Vanderbei preallocates the arrays for any
sparse vector with r rows to have size r, but only the first k entries are used at
any time (where k is the number of nonzeroes). Whenever the contents (and the
number of nonzeroes) of the vector changes, one can simply fill the arrays with
as many entries as necessary, since each individual vector has a constant size
throughout the program and the number of nonzeroes obviously will never ex-
ceed the full vector size. This, in combination with our lack of unit tests, caused a
rather insidious bug: our copySparseVector() function only allocated as much
space for the new vector as the current amount of nonzeroes in the source vec-
tor — and when other parts of the code proceeded to add more nonzeroes to
the new vector, data in other vectors would be corrupted. This also demon-
strates why the use of std::vector is useful (at least during development), as
it would have caught such index out of bounds errors.

Also, Vanderbei did not explicitly store the sizes of the vectors and matrices,
as they could always be deduced from context (normally as havingm or n rows).
We feel that this practice obscures the relationship between a loop header and its
body — if v is a sparse matrix with n columns and we want to write a loop that
manipulates v, we prefer e.g. for (int j = 0; j < v.cols; ++j) to for (

int j = 0; j < n; ++j). Therefore, we have included the size information
into our structures and have tried to used them instead of m and n (this also
makes the linear algebra functions slightly more general, and it would facilitate
unit testing). Note that such preallocation is not done for matrices, since this
would require too much space, and because the main part of the algorithm never
changes the matrices directly (it uses permutation lists to keep track of how
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columns are swapped).

3.4.4.2 (RP) Overview of changed files

Here, we describe the files we have created ourselves and those of Vanderbei’s
files we have modified in a nontrivial manner.

lueta.c performs the basis matrix inversion when the eta file approach (which
is the one we use) is activated. It needed a few accessor functions to allow
the invert processor to access the internal representation of the inverted
basis matrix.

tree.c|h contains a binary search tree structure. It only supported one active
tree at any time (through the use of static variables). Because it is used by
some of the linear algebra operations in the iteration process, we needed
to create a struct for the internal tree information so that we could have
several tree instances.

sparse.c|h contains our structs and supporting functions for Vanderbei’s
sparse vectors and arrays.

print.c|h is a utility for making sure that outputs from different threads do
not collide with each other (often, a line that is output from one thread
gets cut in half by a line from another thread). It is implemented with
mutexes (making sure that only one thread is allowed to print at a time),
so excessive printing may hurt performance, so it should only be used
during development.

2phase.c was the core of Vanderbei’s original revised simplex solver, and
iterationprocess.c is strongly based on this file. We have chosen
the solver() function in this file as the “entry point” of our code, be-
cause the input parsing and processing has been completed at this point.
If the useAsynplex variable is true, we skip Vanderbei’s solver and instead
launch the ASYNPLEX threads and wait for their completion.

columnselectionmanager.c|h contains the ASYNPLEX column selection
manager. We had problems implementing it because we feel that [18] is
unclear on how the statuses of the variables are supposed to change, in
particular when new candidates arrive. Our current interpretation is that
a new candidate should be accepted into the pool of attractive candidates
unless its status is “selected” or “rejected” and it obtained that status at a
basis that is more recent than the basis where the candidate was formed.

basischangemanager.c|h contains the ASYNPLEX basis change manager,
whose functionality is so simple that the code probably speaks for itself.
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communication.c|h is a simple communication layer strongly inspired by
MPI. A message has a sender (string), a receiver (string), tag (string) and
payload (generic memory buffer). The communication primitives are se-
cured with mutexes. When a thread requests to receive a message, it may
choose whether or not to specify a sender (passing NULL as the sender
parameter indicates “any sender”) and whether or not to specify a tag
(passing NULL as the tag parameter indicates “any tag”). If no matching
message is available, an empty message is returned. The implementation
is somewhat inefficient in that sequential search is used to locate matching
messages. Also, we should have used std::queue instead of a vector
(but as noted, the project started out in C, where STL is not available).
However, in ASYNPLEX, the message queue does not grow particularily
long, so this is not a big problem in practice.

iterationprocess.c|h (TODO: )

invertprocessor.c|h (TODO: )

genericvectors.c and the similarly-named files are our attempt at simu-
lating C++ templates in C. The approach is to write the code with lots
of macro symbols as placeholders for function and type names, and then
#includeing the code repeatedly while #defineing the symbols appro-
priately. This leads to rather unreadable code, and was one of the most
important reason that we eventually switched to C++.

timer.h is the timing utility described in Section 4.1.3.

3.4.4.3 Iteration process functions

(TODO: )

3.4.4.4 Threading

pthreads is the de facto threading library for Unix and Linux, and since we
have some prior experience with it, the choice was simple. There is no need
for advanced threading features; beyond the functions for starting the threads
and waiting for them to finish, we only employ the mutex (mutual exclusion)
mechanism: a pthread_mutex_t variable can be declared and then initialised
with pthread_mutex_init(). Any thread may then call pthread_mutex_lock
() on the mutex in order to request a lock on it. The lock is granted if no other
thread is holding the lock; otherwise, the thread is queued. When a thread re-
leases the mutex with pthread_mutex_unlock(), an arbitrary thread among
the queued threads (if any) is granted the mutex.
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As usual with threading, the hard part is not the underlying concepts, but all
the problematic situations that can occur when the threads start interactin.(TODO:
)

3.4.5 Cell/BE implementation of ASYNPLEX

3.4.5.1 Communication approach

ASYNPLEX is an algorithm for message-passing distributed memory systems,
but its authors describe how to adapt it to shared memory systems. While the
Cell/BE architecture resembles both shared memory and distributed memory
architectures, we chose to go with the message-passing approach because this is
what we are the most familiar with. On x86, we implemented a simple message
passing system ourselves, located in communication.c(TODO: reference). It
worked quite well, but for higher performance, one might want to consider us-
ing an actual MPI implementation, such as mpich.(TODO: link)

One issue we became aware of, and that we do not know how to solve with
MPI, is that the following race condition may occur:(TODO: )

On Cell/BE, we use the Cell Messaging Layer (CML) (see Section 2.2.3) —
we were in a hurry and therefore started using the first MPI implementation we
could find for Cell/BE. Unfortunately, CML does have some disadvantages:

• It only supports messaging between the SPEs, not between an SPE and the
PPE.

• Like MPI, CML employs the Single Program Multiple Data (SPMD) model,
which means that all processors must run the same program. This means
that even if different SPEs are to perform different tasks, they must each
contain the code both for its own functionalify and the code for the func-
tionaligy of all other SPEs. Still, we chose to run both the column selection
manager and the basis change manager on the SPEs, because their code is
fairly short, their operations are fast and simple, and it is vital that they are
able to respond quickly to messages from the iteration processes. For the
same reasons, one should merge them into one SPE thread so that the other
seven SPEs (rather than six) would be available for iteration processes, but
we did not get the time to do this.

• CML only supports synchronous point-to-point primitives, and we did not
realise soon enough that this is not sufficient for ASYNPLEX. Therefore,
we resorted to implementing our own message passing system (again) on
the PPE and using CML’s remote procedure call (RPC) functionality to
send and receive messages to and from the a message queue on the PPE.
It is cumbersome, but it works.

(TODO: )
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3.4.5.2 Overview of changed files

We do have some .cpp files that are common to the PPE program and the SPE
program (which reside in different projects). Eclipse does not seem to support
the inclusion of files that lie outside of the project directory. Therefore, we have
resorted to using symlinks to put the same file into both projects without actu-
ally duplicating it. However, in the zip file attachment to this thesis, the files
are physically duplicated. The #include statements are crisscrossing several
(TODO: )





Chapter 4
Evaluation

Due to all the challenges we have faced, we have not been able to produce suffi-
ciently stable solvers, and our Cell/BE implementations only handle very small
data sets. Still, a number of interesting questions can be posed, and their an-
swers might serve as a guidance to those that will continue the project.

4.1 Performance measurements

4.1.1 (RP) Testing environments

The x86 experiments were run on a machine containing an Intel Core2 Quad
Q9550 with four cores at 2.83 GHz, with 4 GB of system memory. The compiler
is gcc version 4.2.4. The system is running Ubuntu version 9.04 “jaunty” with
Linux kernel version 2.6.28-11-generic.

The Cell/BE experiments were run using the IBM Full-System Simulator,
version 3.1-8.f9, on a computer running Fedora 9. Being a simulator, the tim-
ing results obtained on it are independent of the physical hardware of the host
computer. The simulated PPE cores have a frequency of 3.2 GHz.

4.1.2 What to measure (TODO: reword — “research questions?”)

(TODO: Is all of this covered below?)

• How the numerical stability and the accuracy of the answer is affected by
using single precision in place of double precision

• Speedup of the Cell/BE parallel standard simplex implementation relative
to the x86 implementation

• How the speedup of the Cell/BE parallel standard simplex implementa-
tion depends on the number of SPEs used (relative to a version using only
the PPE)

57
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• How well a vectorised Cell/BE parallel standard simplex implementation
the performs relative to a non-vectorised version

• Speedup of the x86 ASYNPLEX implementation (on a multicore) relative
to Vanderbei’s original solver

• Speedup of the Cell/BE ASYNPLEX implementation relative to the x86
implementation

• Time spent waiting for data to be moved to the local store (both for the
standard simplex method and for ASYNPLEX)

We will use data sets ranging from the smallest ones to the largest that our solver
can handle, in order to test the scalability of our implementations. (TODO: )

4.1.3 (RP) Measurement methods

All Linux distributions incorporate the time utility, which reports the amount
of time spent by a process: real (wall time), user (time spent in the process’
own code), and sys (time spent in system calls on behalf of the process). For
multithreaded programs, the two latter values will be the sums of the time spent
by all threads and may therefore exceed the first value. The precision is at most
one millisecond, and it is limited to timing an entire program. In order to time
only parts of a program, the standard C++ function clock() is commonly used.
Unfortunately, its resolution is system-dependent and often too coarse. There-
fore, we opted for a much more high-precision timer that is available on In-
tel processors and PowerPC (and thereby on the PPE), called the Time Stamp
Counter. This counter is incremented on each clock cycle (on PowerPC, it might
be controlled by a separate clock[53]), and it may be read by using the rdtsc

instruction. Timing utilities have been implemented in timer.h, and they em-
ploy the function rdtsc(), taken from [53], that uses the aforementioned in-
struction. The drawback is that in order to get the time in seconds, we must
emprically determine the rdtsc frequency. Using the following simple code
fragment (which was run with time in order to verify that it actually slept for
that long; we also tried several different delays), it was found to be 25 MHz on
the PPE (we later discovered that this could also be found with the command
cat /proc/cpuinfo) and 2.83 GHz (as expected) on the machine described
in Section 4.1.1:

#include <unistd.h>

#include <cstdio>

#include "timer.h" // See the source listings in the appendix

int main() {

unsigned long long start = rdtsc();

usleep(1000000); // Sleep for one second
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printf("%llu\n", rdtsc() - start);

return 0;

}

All x86 and PPE programs were compiled with the -O3 switch (maximal
optimisation level).

The Cell/BE simulator can gather detailed statistics on each of the SPEs.
Before invoking the program one wishes to analyse, all SPEs must be set to
“pipeline mode”, and after the program has been run and the simulator has
been stopped, the simulator command mysim spu X stats print can be
issued for each SPE by replacing the X by a number between 0 and 7 to indicate
which SPE one wants the statistics for.

4.2 Results

Note that the timings do not include the reading and parsing of the MPS input
file, as this must necessarily be done by any implementation, and is not of in-
terest when one desires to gauge the efficiency of the core algorithm. We do,
however, include the time required for starting and stopping the SPE threads,
as this is a Cell/BE specific feature, and we felt that excluding it would give the
Cell/BE an unfair apparent advantage in comparison to other architectures.

4.2.1 Standard simplex method

As discussed in Section 3.3, the standard simplex method is highly susceptible
to numerical instability, and our implementation is no exception to this. It is
essentially useless in practice because for most sets of realistic size, it produces
answers that are off by orders of magnitude. Still, we might be able to learn
something about the computation to communication ratio of the algorithm, and
how much time vector operations are capable of saving. Also, Miriam stated
that they are interested in such measurements.

It should be noted that these timings were obtained while running the sim-
ulator in “fast” mode, rather than in “cycle” mode (which is what one should
ideally use for benchmarking), because we had problems getting the latter mode
to work1. These modes control how closely the simulator mimicks the real hard-
ware, and it could be that the results will be different if the experiments are
repeated in “cycle” mode.

Again, please take note that our solvers did not produce the right answer on
most of the sets used here (and some sets may only have been solved to the end
of Phase I, because the solver never finds a feasible solution because of the nu-

1In general, we have struggled a lot with the Cell SDK and simulator, whose installation
procedures, user interfaces, and documentation are often somewhat obscure and lacking in detail.
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merical instability). These analyses are merely for evaluating the performance
benefits of our design and implementation approaches, without regard for nu-
merical stability — in the hope that more stable implementations may benefit
from our observations.

Numerical stability

Numerical stability is not something that is easily quantified. (TODO: )

(RP) Speedup of sequential PPE version by using SIMD

The standard simplex method has very low arithmetic intensity (number of arith-
metic instructions per load from memory) — so much time is spent moving
data from main memory into the cache and from there into the registers that the
SIMD speedup of the simple operation that is executed on the data once it is in
the registers may not have much impact. In order to find out how much impact
the SIMD operations have in this situation, we compared the run times of the
sequential standard simplex method on the PPE with and without SIMD oper-
ations. The results are seen in Figure 4.1 on the next page. As expected, they
are far away from the fourfold speedup that should in theory be possible. Note,
however, that the speedup increases with the size of the data set. We did not
test larger sets than these because the simulator is terribly slow, but we suspect
that once the data set is too large to fit in the cache, additional slowdowns will
be incurred (but this, of course, will apply whether or not SIMD is used; it will
just further diminish the gains from SIMD).

(RP) Time consumption depending on number of SPEs

For our parallel standard simplex solver, it will be interesting to see how the
number of SPEs (which can be anything between 1 and 8) affect the run time.
Since that solver only implements Phase II, we must limit ourselves to netlib

sets whose right hand sides are nonnegative, such as the SC sets. The SPEs
do not currently track the locations of each variable, and therefore they cannot
employ Bland’s rule. Because of this, the solver cycles on SC205, so we have
omitted that set.

The results, which are averaged over five runs, are presented in Figure 4.2 on
page 62, and they are not very encouraging: going from 1 to 2 SPEs gives a minor
speedup (but only for the largest set), but increasing the number of SPEs beyond
2 actually causes a slowdown. By looking at the detailed SPE timing statistics (as
described in Section 4.1.3), in particular the overview of what the SPE spends
its cycles on, we get the explanation (note that these are SPE cycles and are not
supposed to match the cycle counts in the graph):

Single cycle 507683 ( 4.9%)
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Figure 4.1: Speedup obtained in the sequential PPE standard simplex solver by
using SIMD, relative to not using SIMD. Higher is better; 1.0 means no speedup.

Dual cycle 89774 ( 0.9%)

Nop cycle 62087 ( 0.6%)

Stall due to branch miss 183518 ( 1.8%)

Stall due to prefetch miss 0 ( 0.0%)

Stall due to dependency 733134 ( 7.1%)

Stall due to fp resource conflict 3024 ( 0.0%)

Stall due to waiting for hint target 1324 ( 0.0%)

Issue stalls due to pipe hazards 6 ( 0.0%)

Channel stall cycle 8812670 ( 84.8%)

SPU Initialization cycle 9 ( 0.0%)

------------------------------------------------------

Total cycle 10393229 (100.0%)

The SPE spends the majority of its time waiting for data, and only 5.8% ac-
tually performing computations! This highlights the importance of overlapping
communication and communication (which we have essentially ignored in the
development since there is not much use in optimising a program that does
not produce correct answers). Furthermore, this algorithm will most likely per-
form better for sets that have much more rows than columns, since the pivot
row to be transferred will be narrower. Most netlib sets are either approxi-
mately square or have more columns than rows, but such sets could be handled
by using the dual simplex method instead (which in effect solves the transpose
of the original problem). Also, if it is possible to perform some sort of DMA
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Figure 4.2: Time consumption (in PPE timer cycles) of parallel SPE standard
simplex solver, depending on the number of SPE threads used. Lower is better.

broadcasting operation so that the pivot row could be distributed to all SPEs
simultaneously, performance could be improved (but it could be that the MFC
is advanced enough to be able to notice that all SPEs ask for the same memory
region and then performs an efficient broadcast).

Given that the SPE is stalled for 94.2% of its time, we see no point in per-
forming experiments to compare single precision performance versus double
precision performance, a speedup or slowdown which affects only 5.8% of the
run time will hardly be noticeable.

Speedup of parallel SPE version vs. sequential PPE version

(TODO: )

4.2.2 ASYNPLEX

Performance of x86 ASYNPLEX vs. original Vanderbei solver

Even with a quad core processor, our ASYNPLEX implementation turns out to
be much slower than the original Vanderbei code. We suspect that this in part is
due to the extensive data copying that takes place; we could have done a better
job of (TODO: )

Note that we do have (at least) one unresolved threading bug or array bound-
ary violation problem. The more iteration processes we use, the more frequently



4.2. RESULTS 63

it crashes in the following manner: it runs normally (and produces correct in-
termediate values for the objective function) for a while, and then it starts to
gradually produce more and more extreme values for the step length, and fi-
nally, one of the linear algebra operations crashes because one of the vectors
does not contain a value at an expected index. We have tried to figure out if this
is caused by an incorrect pivot operation or not, by recording all pivot operations
performed by our solver and then forcing Vanderbei’s original solver to follow
the same path (this is easily done by hardcoding lists of leaving and entering
variables into the code, and changing the pivot variable selection functions to
simply return values from these lists).(TODO: )

Some comments on our incomplete Cell/BE ASYNPLEX

(TODO: )

4.2.3 (RP) Other aspects

(RP) Code size

Vanderbei’s Phase I/II scheme causes the code size to be larger than necessary,
because much code must be duplicated and changed slightly in order to work
with both A and A>. It is vital that the executable (compiled and linked) SPE
program does not take up too much space in the LS, so that there is still room for
storing data (and programs that take up more than 256 kB will not be possible
to run at all). We will briefly discuss some of our experiences with trying to
minimise the program size.

The debug flags, in particular -g3, dramatically increase the program size.
Optimisation flags, in particular -O3, reduce object file size greatly (strangely,
-Os does not seem to have much effect).

As often happens in optimisation, there are tradeoffs that must be considered
— for instance, while loop unrolling gives a good speedup of tight loops, it
increases the object file size, which one cannot always afford on Cell/BE. Thus,
neither manual unrolling nor -funroll-loops should be done if (like us) one
has a large program.

When optimising for size, one would normally want to consider using -fno-inline
in order to disable function inlining (replacing calls to short functions by the ac-
tual function code). However, this flag actually increased the size of the object
files. We suspect that this is due to heavy use of std::vector and its [] op-
erator — the operator code itself can probably be translated into one instruction
(load using memory address and offset), while a function call would require
several instructions for parameter passing, stack management, etc.

The option that by far had the greatest impact on the final code size was
-s, which tells the linker not to include symbol information (a debugging and
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linking aid) in the executable. Using the flag on our ASYNPLEX code reduces
the size of the executable by a factor of almost four.

(RP) Memory leaks

valgrind with MemCheck (http://valgrind.org) is an invaluble tool for
detecting memory leaks (forgetting to release memory segments that are no
longer in use, such that the program will continuously consume more and more
memory) and illegal use of the memory allocation system (such as calling free()
on the same pointer twice, which may easily cause corruption of the memory
allocator’s internal data structures). It can also detect corruption caused by di-
rectly overwriting the memory allocator’s internal data, but not corruption of
user data caused by writing outside of the boundaries of an array. We have used
this tool on several occasions during this project, and we believe that we have
removed all memory leaks caused by our own code. The only leaks that remain
are caused by Vanderbei’s own code, but each “leak” occurs only once (not in-
side loops) and the data that is being allocated is needed throughout the entire
program (and is automatically freed when the program terminates), so that we
chose not to spend time on removing them. A valgrind report on one run of
our x86 ASYNPLEX solver can be found in Appendix (TODO: ).

4.3 (RP) Reflections on unimplemented features. Ideas
for future work

We will now discuss features we believe will be useful, but that we did not
get the time to implement. One may also want to study a fairly recent survey
article by Hall, which discusses the current state of research on parallel simplex
methods[16].

4.3.1 (RP) Interior point methods

The most time consuming step of many interior point methods is a Cholesky
factorisation. Monien and Schulze[39] discuss approaches to parallelising this
operation for sparse matrices, and one of those methods, called the multifrontal
method, is elaborated by Schulze[44].

Andersen and Andersen[3] present a parallel shared memory version of the
interior point method that is (or was at the time) underlying the Xpress solver
(see Section 2.1.6). Yet another parallel interior point method is presented by
Karypis et al.[28].

The opportunities for implementing any of these methods on the Cell/BE
should be investigated, but, given our experiences, it will probably be necessary
to dedicate at least an entire master’s thesis to that subject.

http://valgrind.org
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For dense matrices, Cholesky factorisation has already been implemented
on the Cell/BE by Kurzak, Buttari, and Dongarra[35], whose work should be
studied by those who wish to implement the same operation for sparse matrices.

4.3.2 (RP) Mixed precision

It may be possible to overcome the limited precision that is offered by the Cel-
l/BE without rewriting the computation to use double precision (which will in-
cur a massive slowdown). Some linear algebra problems can be solved by using
a technique called iterative refinement. Kurzak and Dongarra[36] describe a suc-
cessful implementation of a Cell/BE program for solving equations of the form
Ax = b, which meets the LINPACK benchmark’s requirements for the precision
of the solution. Similar techniques may be investigated for the linear algebra op-
erations that underlie the revised simplex methods.

4.3.3 (RP) Stabilisation techniques

According to Hall and McKinnon, their own ASYNPLEX implementation uses a
technique developed by Gill et al.[13] called EXPAND, which allegedly prevents
cycling and improves numerical stability. Koberstein’s thesis [32] also includes
a survey of a number of ways to handle stability. Such techniques should be
studied.

4.3.4 (RP) Parallel linear algebra operations

It is be possible to utilise parallel BLAS libraries to parallelise the linear algebra
operations themselves. Such an approach was tried on the CUDA architecture
by Spampinato[46] (see Section 2.1.7), but the speedups were limited. Further-
more, as long as the number of threads is limited (such as it is on Cell/BE), it
may be difficult to combine with an algorithm that itself is parallel (and there-
fore requires several threads of its own), such as ASYNPLEX.

4.3.5 (RP) Loop unrolling

Loop unrolling consists of duplicating the body of a loop such that several itera-
tions are performed sequentially inside the loop body. This reduces the number
of jumps and may yield good speedups in short, tight loops. Manual loop un-
rolling is usually not necessary, as compilers can be instructed to perform this
operation automatically, but they may not always succeed. Unfortunately, the
price that necessarily must be paid when loops are unrolled is an increase in
code size, which is undesirable on Cell/BE.
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4.3.6 (RP) Unit testing

While one might argue that testing an LP solver by running it against a collec-
tion of large data sets provides sufficient evidence that the implementation is
correct, one will gain even more confidence in the implementation by creating
unit tests. Any decent programmer knows how to structure a program by break-
ing it down into functions, each performing a limited, well-defined part of the
overall task. Unit testing, on the other hand, is often neglected, even though it is
highly beneficial during development2 There is a lot of literature on the subject
(a good introductory book is [22], and [38] is a more thorough work), but the ba-
sic idea is simple: write code that tests other code. This is fairly straightforward
to do as long as the code is partitioned into functions in a reasonable manner.
Code should be written to test each nontrivial function for a number of different
parameter combinations.

Another important aspect is that unit testing gives regression testing for free.
If one discovers a bug, one should immediately add a test that demonstrates the
bug before one fixes the code. That way, one can easily demonstrate that the bug
has been fixed, and since this test is now a part of the test suite (all of which
should be run after each change to any code) it will immediately discover the
bug if it resurfaces — in large applications, bugs in one part of the code can
often be triggered by a change in distante part of the code.

While some of these considerations are most relevant for commercial soft-
ware companies, researchers might also find that unit testing provides a useful
safety net.

4.3.7 (RP) Overlays

By using overlays (see Section 2.2.2.5) wisely, it may be possible to significantly
reduce the size of the (TODO: I think they have a word for this - active or resi-
dent set?) that at any time resides in the local store, and thereby freeing up space
for data. For instance, because of the SPMD approach mandated by CML, the
code for all four ASYNPLEX processes must reside in the same program. With
overlays, each SPE will only need to load the code for the process type that it
is responsible for. Furthermore, since the code for each phase is slightly differ-
ent, but the phase change only occurs once, it should be beneficial to only load
the code for one phase at a time. We doubt that even more fine-grained use of
overlays will help, unless the linear program is extremely large, in which case it
may also be possible to use overlays for the code of the individual linear algebra
operations that are executed in each iteration.

2As with many other good practices, unit testing is easier to preach than to practice, as evi-
denced by the lack of unit testing in this project.
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4.3.8 (RP) Representation of sparse matrices

Sparse matrices and vectors can be represented in numerous ways; Shahnaz et
al.[45] give a good review of different storage schemes. Several operations in a
linear solver will depend on the choice of such a representation. If one takes care
to place the code for each such operation in a separate function, only a modest
amount of work will be required to create implementations of several storage
schemes (with the added benefit that these implementations can be tested sep-
arately, and as long as they work, the entire solver will still work). Then, one
can measure how performance is impacted by the choice of storage scheme. The
first alternative representation to try might be the jagged diagonal storage, which,
according to [45], is “specially tailored for sparse matrix-vector multiplications”,
and its variation transposed jagged diagonal storage, which is “suitable for parallel
and distributed processing”.

It should be noted that some formats are intended for general matrices, while
others make assumptions about the distribution of nonzeroes — the latter cate-
gory may be risky to use internally in the solver, since one cannot tell in advance
what kind of patterns might emerge in the intermediate matrices produced in
the course of the algorithm. (TODO: are we sure about this?) Vanderbei’s im-
plementation uses the Compressed Column Storage format described in Section
2.3.2.

4.3.9 (RP) Vectorisation

As mentioned in Section 2.2.2.1, utilising vector operations is essential in order
to obtain the high computational throughput that is promised by the Cell/BE.
While vectorisation of dense matrix-vector operations is fairly trivial (as seen
in our parallel standard simplex solver), putting vectors to good use in sparse
operations is much harder. For instance, vectorisation of a simple addition of
(mathematical) vectors will require the opportunity to add four adjacent num-
bers to four other adjacent numbers simultaneously, but with sparse representa-
tions, adjacent numbers in one vector may not correspond to adjacent numbers
(or any numbers at all) in the other vector.

One approach may be to, for each nonzero number, store all four numbers
that are located in the same vector (even if the other three are zeroes) — if the
element at index i is nonzero, we would store all elements from bn4 c · 4 through
bn4 c · 4 + 3. This would permit operations on four adjacent numbers — but
only if there is a matching vector in the other vector. Thus, the gains from this
approach may be rather limited. Furthermore, it would come at the cost of an
increase in the storage requirements, which may be detrimental since it would
increase the traffic on the Cell/BE bus. When using the compressed column
storage format as described in Section 2.3.2, the required space would increase
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from 2k + 1 elements to 5k + 1 elements (it is sufficient to store the row index
of each vector, so only the value array would quadruple its size) in the worst
case of a vector having k nonzeroes with none of them spaced closer than four
elements apart. For an m × n-matrix containing k nonzeroes it would increase
from 2k + n+ 3 elements to 5k + n+ 3 elements.

4.3.10 (RP) Autotuning

Autotuning is the process of experimentally finding good values for compile-
time constants such as block sizes for data transfer and matrix multiplication3.
As implied by the word “auto”, the experimentation is performed by another
program, which repeatedly recompiles the target program with new parameters
and runs benchmarks; the best parameter combination is then used for the final
compilation.

A well-known software product that utilises autotuning is ATLAS, which is
a BLAS library which can be automatically optimised for any architecture.

However, the benefits from autotuning may be smaller on Cell/BE than on
regular computers, since one of the points of the Cell/BE architecture is that it
should be possible to produce code that is predictably good because it utilises
the manually-controlled memory hierarchy well — but this, of course, is com-
plicated, and using autotuning may be simpler in some situations. A good
Cell/BE-specific target for autotuning may be buffer sizes for triple buffering.

(TODO: We feel that Kurzak and Dongarra expressed this very eloquently:
“Great effort has been invested throughout the years in optimizing code per-
formance for cache-based systems, in most cases leading to the programmers
reverse engineering the memory hierarchy. By requiring explicit data motion,
the memory design of the Cell takes the guesswork out of the equation and de-
livers predictable performance.”[36])

4.3.11 (RP) Triple buffering

The double/triple/quadruple buffering technique is described in Section 2.2.2.4.
We believe this to be the by far most important optimisation to consider — we
might even go as far as to state that it is a necessity rather than an optimisation.
Triple buffering is necessary in order to support data sets of realistic sizes — a
solver that can only handle data sets of less than a hundred kilobytes (which is
what remains when the large solver code has taken its share of the local store) is
of little practical use.

3A typical matrix multiplication is to divide each matrix into blocks and perform the multi-
plication blockwise, with the goal of having each block stay in the cache for as long as possible.
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4.4 Discussion





Chapter 5
Conclusion

The purpose of this project was to explore how linear programming algorithms,
primarily variations of the simplex method, might be parallelised and imple-
mented on the Cell Broadband Engine, a multicore processor with an inno-
vative architecture. To the surprise of both the author and his advisor, the
various simplex methods turned out to be exceedingly difficult to implement,
even on a regular computer and without parallelisation — a fact which we later
learned is well-known within the mathematical optimisation community. We
are astonished that well-known books on the subject of linear programming do
not present this simple fact (“the standard simplex method is virtually useless
in practice”) more clearly; knowing this would have saved us a considerable
amount of time. (TODO: )

Thus, the project was turned into an exercise in reading and refactoring other
people’s code (a useful skill to have, but it does not exactly qualify as research)

The author selected this project (from a collection of many project proposals
provided by his institute) in the belief that the algorithms , and that he would
spend most of his time

5.1 Experiences

Building an industrial-strength LP solver is a vast amount of work and must
only be undertaken by someone who has extensive knowledge of both program-
ming and numerics.

5.2 Future work

The following is a summary of our discussion in Section 4.3. We recommend that
those who are to continue this project investigate the following areas: (TODO: )
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• Triple (or quadruple) buffering for supporting data sets of nontrivial size
— a necessity more than an optimisation.

• Implementing existing techniques for anti-cycling and numerical stability.

• Unit testing.

• Parallelisation of the individual linear algebra operations.

• Mixed precision computations for obtaining double precision accuracy while
primarily using single precision computation.

• Loop unrolling

• Use of overlays to free up more space for data buffers in the SPE local
stores, and to allow for bigger and more complex solvers.

• Experimenting with different representations of sparse matrices (this will
require a lot of coding, since the linear algebra operations are dependent
on the matrix representation).

• Vectorisation of the matrix operations; the opportunities for this will de-
pend on the matrix representation.

• Autotuning, for determining good values for e.g. triple buffer sizes.

In addition, interior point methods can be investigated, but that subject is most
likely large enough for at least an entire thesis.
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Appendix A
Code

A.1 (RP) Sequential standard simplex method for x86 and Cell/BE

(TODO: Defines) (TODO: Input format) (TODO: Describe each file: purpose, and if we have
changed it)

It can be compiled in several versions:

• For x86, using float: run g++ -O3 -Wall *.cpp

-o standard simplex x86 float -DTYPE=float

• For x86, using double: run g++ -O3 -Wall *.cpp

-o standard simplex x86 float -DTYPE=double

• For x86, using GMP: run g++ -O3 -Wall *.cpp

-o standard simplex x86 gmp -DTYPE=mpq class -lgmpxx -lgmp -DUSE GMP

• For Cell/BE (but uses only the PPE), using float and SIMD instructions: run make

• For Cell/BE, using float and no SIMD instructions: edit the Makefile and remove -DUSE_SIMD,
and run make

Note that the code highlighting package we use (listings) erroneously highglights the
vector class from the Standard Template Library, thinking that it is the vector keyword for
SIMD data types.

Matrix.h and Matrix.cpp

A class for representing dense matrices where the size of the physical memory buffer for each row
is a multiple of 16 bytes, so that it supports SIMD operations internally. The actual matrix with
can be anything.

#ifndef MATRIX_H

#define MATRIX_H

#include <iostream>
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#include <vector>

#include "gmpInterop.h"

class Matrix {

friend std::ostream & operator << (std::ostream &, const Matrix &);

public:
Matrix(int, int);
Matrix(int rows, int cols, TYPE * data);

Matrix(int, int, bool);
Matrix(const Matrix &);

˜Matrix();

int getRows() { return rows; }

int getCols() { return cols; }

int getPhysicalCols() { return physicalCols; }

#ifdef VOLATILE_DATA

// When this class is being used in the parallel standard simplex method for

Cell, the data buffer must be marked as volatile because it will be the

target of DMA transfers

volatile
#endif
TYPE * getData() { return data; }

inline
#ifdef VOLATILE_DATA

volatile
#endif
TYPE & operator () (int r, int c) { return data[r * physicalCols + c]; }

inline TYPE operator () (int r, int c) const { return data[r * physicalCols

+ c]; }

void swapRows(int firstRow, int secondRow);

void multiplyRow(int row, TYPE factor);

void addRows(int sourceRow, int destinationRow, TYPE factor);

void print(const std::vector<int> & basic, const std::vector<int> & nonbasic

);

private:
int rows;

int cols;

int physicalCols;

#ifdef VOLATILE_DATA

volatile
#endif
TYPE * data;

};

std::ostream & operator << (std::ostream &, const Matrix &);
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// Used by addRows to increment one number by another, with support for two

different "zeroing rules", controlled by defines:

// - set to zero if result is below ZEROING_RULE_EPSILON

// - set to zero if the ratios of each of the operands to the result is

greater than ZEROING_RULE_RATIO

// - not defining either of these will simply result in a regular a += b

operation

#ifdef VOLATILE_DATA

inline void incr(volatile TYPE & a, const TYPE & b) {

#else
inline void incr(TYPE & a, const TYPE & b) {

#endif
#ifdef ZEROING_RULE_EPSILON

a += b;

if (ABS(a) <= ZEROING_RULE_EPSILON) {

a = 0;

}

#else
#ifdef ZEROING_RULE_RATIO

TYPE result = a + b;

if (result == 0 || (ABS(a / result) >= ZEROING_RULE_RATIO && ABS(b /

result) >= ZEROING_RULE_RATIO)) {

a = 0;

}

else {

a = result;

}

#else
a += b;

#endif

#endif

}

#endif

#include "Matrix.h"

#define VECTOR_WIDTH (16 / sizeof(TYPE))
#define ALIGN_LOG2 4

#define ROUND_UP_MULTIPLE(x, m) (((x) + (m) - 1) / m * m) // Returns x rounded

up to the nearest multiple of m

#ifdef __powerpc__

// On Cell, we need these includes

// Note: __powerpc__ should perhaps be replaced by something more Cell-

specific in case one wants to compile this on a PowerPC that is not a

Cell PPE
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#include <altivec.h>

#include <libmisc.h>

#else
#include <cstdlib>

// On x86, there is no malloc_align and no need for it either

#define malloc_align(size, alignment) malloc(size)

#define free_align(buffer) free(buffer)

#endif

#ifdef USE_SIMD

#ifdef USE_GMP

#error "Cannot use GMP with SIMD operations"

#endif

#endif

using namespace std;

Matrix::Matrix(int rows, int cols) {

this->rows = rows;

this->cols = cols;

this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

#ifdef USE_GMP

// GMP’s types are classes and require their constructors to be called, so

we need to use new.

// If necessary, it is possible to combine malloc_align and GMP through the

use of ’placement new’.

this->data = new mpq_class[rows * this->physicalCols];
#else
this->data = (TYPE*)malloc_align(rows * this->physicalCols * sizeof(TYPE),

ALIGN_LOG2);

#endif
for (int i = 0; i < rows * this->physicalCols; ++i)

this->data[i] = 0;

}

Matrix::Matrix(int rows, int cols, TYPE * data) {

this->rows = rows;

this->cols = cols;

this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

#ifdef USE_GMP

this->data = new TYPE[rows * this->physicalCols];
#else
this->data = (TYPE*)malloc_align(rows * this->physicalCols * sizeof(TYPE),

ALIGN_LOG2);

#endif
for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c)
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this->data[r * this->physicalCols + c] = data[r * cols + c];

for (int c = cols; c < this->physicalCols; ++c)

this->data[r * this->physicalCols + c] = 0;

}

}

Matrix::Matrix(int rows, int cols, bool identity) {

this->rows = rows;

this->cols = cols;

this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

#ifdef USE_GMP

this->data = new TYPE[rows * this->physicalCols];
#else

this->data = (TYPE*)malloc_align(rows * this->physicalCols * sizeof(TYPE),
ALIGN_LOG2);

#endif
for (int i = 0; i < rows * this->physicalCols; ++i)

this->data[i] = 0;

if (identity && rows == cols) {

for (int i = 0; i < rows; ++i) {

(*this)(i, i) = 1;

}

}

}

Matrix::Matrix(const Matrix & source) {

this->rows = source.rows;

this->cols = source.cols;

this->physicalCols = source.physicalCols;

#ifdef USE_GMP

this->data = new TYPE[source.rows * source.physicalCols];

#else
this->data = (TYPE*)malloc_align(source.rows * source.physicalCols * sizeof(

TYPE), ALIGN_LOG2);

#endif
for (int i = 0; i < source.rows * source.physicalCols; ++i)

this->data[i] = source.data[i];

}

Matrix::˜Matrix() {

#ifdef USE_GMP

delete [] data;

#else
free_align((float*)data);

#endif
}
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// Prints the entire matrix

ostream & operator << (ostream & out, const Matrix & matrix) {

out << "=== " << matrix.rows << " x " << matrix.cols << " @ " << matrix.data

<< " ===" << endl;

for (int r = 0; r < matrix.rows; ++r) {

out << matrix(r, 0);

for (int c = 1; c < matrix.cols; ++c)

out << ’ ’ << matrix(r, c);

out << endl;

}

out << "======" << endl;

return out;

}

// A more advanced print operation that prints only nonzero entries, along

with variable names

void Matrix::print(const vector<int> & basic, const vector<int> & nonbasic) {

cout << "=== " << rows << " x " << cols << " @ " << data << " ===" << endl;

for (int r = 0; r < rows; ++r) {

if (r == 0)

cout << "z = ";

else
cout << "x" << basic[r - 1] << " = ";

cout << (*this)(r, 0);

for (int c = 1; c < cols; ++c)

if ((*this)(r, c) != 0)

cout << " " << (*this)(r, c) << "x" << nonbasic[c - 1];

cout << endl;

}

cout << "======" << endl;

}

// No point in using SIMD here; this function is used very rarely

void Matrix::swapRows(int firstRow, int secondRow) {

if (firstRow == secondRow) return;
for (int j = 0; j < cols; ++j) {

TYPE tmp = (*this)(firstRow, j);

(*this)(firstRow, j) = (*this)(secondRow, j);

(*this)(secondRow, j) = tmp;

}

}

#ifdef USE_SIMD

void Matrix::multiplyRow(int row, TYPE factor) {
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if (factor == 1) return;
vector TYPE zero_v = (vector TYPE){0.0f, 0.0f, 0.0f, 0.0f};

vector TYPE factor_v = (vector TYPE){factor, factor, factor, factor}; //

Wanted to use vec_splat(vec_lde(0, &factor), 0) here, but might have

misunderstood the syntax

vector TYPE * data_v = (vector TYPE *)(data + row * physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

data_v[j] = vec_madd(data_v[j], factor_v, zero_v);

}

}

void Matrix::addRows(int sourceRow, int destinationRow, TYPE factor) {

if (factor == 0) return;
vector TYPE factor_v = (vector TYPE){factor, factor, factor, factor}; //

As above

vector TYPE * source_v = (vector TYPE *)(data + sourceRow * physicalCols);

vector TYPE * destination_v = (vector TYPE *)(data + destinationRow *
physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

destination_v[j] = vec_madd(source_v[j], factor_v, destination_v[j]);

}

}

#else

void Matrix::multiplyRow(int row, TYPE factor) {

if (factor == 1) return;
for (int j = 0; j < cols; ++j) {

(*this)(row, j) *= factor;

}

}

void Matrix::addRows(int sourceRow, int destinationRow, TYPE factor) {

if (factor == 0) return;
for (int j = 0; j < cols; ++j) {

incr((*this)(destinationRow, j), (*this)(sourceRow, j) * factor);

}

}

#endif

mps.h and mps.cpp

An MPS parser. See notes in Appendix A.6 and Appendix A.6.

#ifndef MPS_H

#define MPS_H
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#include <iostream>

#include <vector>

#include <string>

std::vector<std::vector<TYPE> > parse(std::istream & input);

std::vector<std::vector<TYPE> > parse(const std::vector<std::string> & lines);

#endif

#include <iostream>

#include <fstream>

#include <string>

#include <map>

#include <vector>

#include <stdexcept>

#include <sstream>

#include <cctype>

#include "gmpInterop.h"

using namespace std;

enum RowType {

LESS_THAN,

EQUAL_TO,

GREATER_THAN,

OBJECTIVE

};

string rowTypeLabels[] = {"L", "E", "G", "N"};

class Equation {

public:
string label;

RowType type;

map<string, TYPE> values;

int index;

TYPE rhs;

Equation(string label, string type, int index) {

this->label = label;

if (type == "L")

this->type = LESS_THAN;

else if (type == "E")

this->type = EQUAL_TO;

else if (type == "G")

this->type = GREATER_THAN;
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else if (type == "N")

this->type = OBJECTIVE;

else
throw invalid_argument("");

this->index = index;

this->rhs = 0;

}

};

string strip(string line) {

int start = 0, end = (int)line.size() - 1;

while (start < (int)line.size() && isspace(line[start])) ++start;

while (end >= 0 && isspace(line[end])) --end;

if (end < start)

return "";

else
return line.substr(start, end - start + 1);

}

vector<string> split(string line) {

stringstream ss(line);

vector<string> items;

string item;

while (ss >> item) {

items.push_back(item);

}

return items;

}

vector<vector<TYPE> > parse(const vector<string> & lines) {

map<string, Equation *> equations;

vector<string> columnLabels;

map<string, int> columnIndices;

vector<vector<TYPE> > tableau;

unsigned int i = 0;

int objectiveIndex = -1;

while (i < lines.size()) {

string line = lines[i];

string header = strip(line);

i++;

if (line[0] == ’*’ || line[0] == ’ ’ || line.substr(0, 4) == "NAME") {

continue;
}

else if (strip(line) == "ENDATA") {

break;
}

else if (strip(line) == "ROWS") {
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int rowIndex = 0;

while (lines[i][0] == ’ ’) {

vector<string> items = split(lines[i]);

Equation * eqn = new Equation(strip(items[1]), strip(items[0]),

rowIndex);

if (eqn->type == OBJECTIVE)

objectiveIndex = rowIndex;

equations[eqn->label] = eqn;

rowIndex++;

i++;

}

}

else if (strip(line) == "COLUMNS") {

int columnIndex = -1;

while (lines[i][0] == ’ ’) {

vector<string> items = split(lines[i]);

int lim = (items.size() == 5 ? 2 : 1);

string columnLabel = strip(items[0]);

if (columnIndices.find(columnLabel) == columnIndices.end()) {

columnIndex++;

columnLabels.push_back(columnLabel);

columnIndices[columnLabel] = columnIndex;

}

for (int j = 0; j < lim; ++j) {

string rowLabel = strip(items[1 + j * 2]);

stringstream ss(strip(items[2 + j * 2]));

TYPE value;

readNumber(ss, value);

equations[rowLabel]->values[columnLabel] = value;

}

i++;

}

}

else if (strip(line) == "RHS") {

while (lines[i][0] == ’ ’) {

vector<string> items = split(lines[i]);

int lim = (items.size() == 5 ? 2 : 1);

for (int j = 0; j < lim; ++j) {

string rowLabel = strip(items[1 + j * 2]);

stringstream ss(strip(items[2 + j * 2]));

TYPE value;

readNumber(ss, value);

equations[rowLabel]->rhs = value;

}

i++;

}

}



A.1. (RP) SEQUENTIAL STANDARD SIMPLEX METHOD FOR X86 AND
CELL/BE 89

else {

throw invalid_argument("");

}

}

tableau.resize(1); // obj. func.

for (map<string, Equation *>::iterator eqnIter = equations.begin(); eqnIter

!= equations.end(); ++eqnIter) {

Equation * eqn = eqnIter->second;

vector<TYPE> row(columnLabels.size() + 1, 0);

bool any = false;
row[0] = eqn->rhs;

for (map<string, TYPE>::iterator colIter = eqn->values.begin(); colIter !=

eqn->values.end(); ++colIter) {

string colLabel = colIter->first;

row[columnIndices[colLabel] + 1] = -eqn->values[colLabel];

if (eqn->values[colLabel] != 0)

any = true;
}

if (!any)

continue;
if (eqn->type == OBJECTIVE) {

tableau[0] = row;

}

else {

if (eqn->type == LESS_THAN || eqn->type == EQUAL_TO) {

tableau.push_back(row);

}

if (eqn->type == GREATER_THAN || eqn->type == EQUAL_TO) {

for (unsigned int j = 0; j < row.size(); ++j)

row[j] = -row[j];

tableau.push_back(row);

}

}

delete eqn;

}

return tableau;

}

vector<vector<TYPE> > parse(istream & input) {

string line;

vector<string> lines;

while (getline(input, line)) {

lines.push_back(line);

}

return parse(lines);

}
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gmpInterop.h and gmpInterop.cpp

Code for facilitating the use of GMP, whose classes must occasionally be treated differently from
primitive C++ types.

#ifndef GMPINTEROP_H

#define GMPINTEROP_H

#include <iostream>

#ifdef USE_GMP

#include <gmpxx.h>

#define ABS(x) abs(x)

#else
#include <cmath>

#define ABS(x) fabs(x)

#endif

void readNumber(std::istream & in, TYPE & number);

void printNumber(const TYPE & number);

void printNumberFull(const TYPE & number);

#endif

#ifdef USE_GMP

#include <gmpxx.h>

#endif
#include "gmpInterop.h"

using namespace std;

#ifdef USE_GMP

// Only handles floats using regular notation (no 0x, no E) and integers.

// Accepts numbers < 1 without a leading zero.

// The string cannot be empty or contain any spaces.

static void parseRational(const string & str, mpq_class & number) {

//bool negative = (str[0] == ’-’);

size_t dotIndex = str.find(’.’);

if (dotIndex == string::npos) {

number = str;

number.canonicalize();

return;
}

string noDot = str.substr(0, dotIndex) + str.substr(dotIndex + 1);

// size_t firstNonzeroIndex = noDot.find_first_not_of("-0");

// if (firstNonzeroIndex == string::npos) {

// number = 0;

// return;

// }

// string noLeadingZeroes = negative ? "-" : "";
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// noLeadingZeroes += noDot.substr(firstNonzeroIndex);

mpq_class numerator(noDot, 10);

int power = str.size() - dotIndex - 1;

mpq_class denominator = 1;

while (power--) {

denominator *= 10;

}

number = numerator / denominator;

number.canonicalize();

}

#endif

void readNumber(istream & in, TYPE & number) {

#ifdef USE_GMP

string str;

in >> str;

parseRational(str, number);

#else
in >> number;

#endif
}

void printNumber(const TYPE & number) {

#ifdef USE_GMP

cout << number.get_d();

#else
cout << number;

#endif
}

void printNumberFull(const TYPE & number) {

#ifdef USE_GMP

cout << number.get_d() << " (approx); " << number << " (exact)";

#else
cout << number;

#endif
}

/*
int main() {

mpq_class a;

parseRational("0.00001", a);

cout << a << endl;

parseRational("10.00001", a);

cout << a << endl;

parseRational("12.00000", a);

cout << a << endl;
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parseRational(".02001", a);

cout << a << endl;

parseRational("-.5", a);

cout << a << endl;

parseRational("-0.00001", a);

cout << a << endl;

parseRational("-120", a);

cout << a << endl;

parseRational("-0.0", a);

cout << a << endl;

parseRational("-0.0", a);

cout << a << endl;

parseRational("0", a);

cout << a << endl;

parseRational("-0", a);

cout << a << endl;

parseRational("32.1234", a);

cout << a << endl;

return 0;

}

*/

timer.h

Precise timing module, taken from [53].

#ifndef TIMER_H

#define TIMER_H

// Thanks to Kazutomo Yoshii

// http://www.mcs.anl.gov/˜kazutomo/rdtsc.html

#if defined(__i386__)

static __inline__ unsigned long long rdtsc(void)
{

unsigned long long int x;

__asm__ volatile (".byte 0x0f, 0x31" : "=A" (x));

return x;

}

#elif defined(__x86_64__)

static __inline__ unsigned long long rdtsc(void)
{

unsigned hi, lo;

__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));

return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 );
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}

#elif defined(__powerpc__)

static __inline__ unsigned long long rdtsc(void)
{

unsigned long long int result=0;

unsigned long int upper, lower,tmp;

__asm__ volatile(
"0: \n"

"\tmftbu %0 \n"

"\tmftb %1 \n"

"\tmftbu %2 \n"

"\tcmpw %2,%0 \n"

"\tbne 0b \n"

: "=r"(upper),"=r"(lower),"=r"(tmp)

);

result = upper;

result = result<<32;

result = result|lower;

return(result);
}

#else

#error "No tick counter is available!"

#endif

/* $RCSfile: $ $Author: kazutomo $

* $Revision: 1.6 $ $Date: 2005/04/13 18:49:58 $

*/

#endif

TableauSimplex.h and TableauSimplex.cpp

Code for performing a simplex iteration (with pivoting).

#ifndef TALBEAUSIMPLEX_H

#define TALBEAUSIMPLEX_H

#include "Matrix.h"

#include <vector>
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enum SimplexResult {

SUBOPTIMAL,

OPTIMAL,

INFEASIBLE_OR_UNBOUNDED

};

class TableauSimplex {

public:
static SimplexResult iteration(Matrix & tableau, std::vector<int> & basic,

std::vector<int> & nonbasic);

static void pivot(Matrix & tableau, std::vector<int> & basic, std::vector<

int> & nonbasic, int leaving, int entering);

};

#endif

#include "TableauSimplex.h"

#include "gmpInterop.h"

#include <cmath>

#include <vector>

using namespace std;

void TableauSimplex::pivot(Matrix & tableau, std::vector<int> & basic, std::

vector<int> & nonbasic, int leaving, int entering) {

cout << "Pivoting: x" << basic[leaving - 1] << " (row " << leaving << ")

leaves, x" << nonbasic[entering - 1] << " (column " << entering << ")

enters" << endl;

TYPE xFactor = tableau(leaving, entering);

int leavingLabel = basic[leaving - 1];

basic[leaving - 1] = nonbasic[entering - 1];

nonbasic[entering - 1] = leavingLabel;

// Cancel out occurrences of the entering variable

for (int i = 0; i < tableau.getRows(); ++i) {

if (i == leaving) continue;
TYPE factor = -tableau(i, entering) / xFactor;

TYPE savedColVal = tableau(i, entering);

tableau.addRows(leaving, i, factor);

tableau(i, entering) = savedColVal / xFactor;

}

tableau.multiplyRow(leaving, -1 / xFactor);

tableau(leaving, entering) = 1 / xFactor;

}
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SimplexResult TableauSimplex::iteration(Matrix & tableau, vector<int> & basic,

vector<int> & nonbasic) {

int n = tableau.getCols() - 1, m = tableau.getRows() - 1;

// Find entering variable by searching the objective function (row 0) for a

positive coefficient (disregard the constant in column 0)

int entering = -1;

for (int j = 1; j <= n; ++j) {

if (tableau(0, j) > 0 && (entering == -1 || tableau(0, j) > tableau(0,

entering) || (tableau(0, j) == tableau(0, entering) && nonbasic[j - 1]

< nonbasic[entering - 1])))

entering = j;

}

if (entering == -1)

return OPTIMAL;

// Find leaving variable by searching the column of the entering variable

and determine the strictest bound

int leaving = -1;

TYPE smallestRatio = -1; // Keep the compiler from complaining about

uninitialised variables

for (int i = 1; i <= m; ++i) {

if (tableau(i, entering) >= 0)

continue;
TYPE ratio = -tableau(i, 0) / tableau(i, entering); // The "right hand

side", tableau(i, 0), is always nonnegative, and we only get here if

tableau(i, entering) is negative, so ’ratio’ will be nonnegative

if (leaving == -1 || ratio < smallestRatio || (ratio == smallestRatio &&

basic[i - 1] < basic[leaving - 1])) {

smallestRatio = ratio;

leaving = i;

}

}

if (leaving == -1)

return INFEASIBLE_OR_UNBOUNDED;

pivot(tableau, basic, nonbasic, leaving, entering);

return SUBOPTIMAL;

}

simplex.cpp

Driver code — initiates input reading, handles the two phases, and initiates iterations.

#include "Matrix.h"
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#include "TableauSimplex.h"

#include "mps.h"

#include <cmath>

#include <iostream>

#include <vector>

#include <cstdlib>

#include <fstream>

#include <cstring>

#include <ctime>

#include "../timer.h"

#define FEASIBILITY_THRESHOLD 1.0e-5 // abs(x0) must be below this value in

order for the program to be declared feasible (only applies if Phase I is

needed)

using namespace std;

int main(int argc, char * argv[]) {

int rows, cols;

bool initiallyFeasible = true;
bool print = argc >= 3 && strcmp(argv[2], "print") == 0;

istream * input;

ifstream infile;

if (argc == 1)

input = &cin;

else {

infile.open(argv[1]);

input = &infile;

}

vector<vector<TYPE> > parsedTableau = parse(*input);

rows = parsedTableau.size();

cols = parsedTableau[0].size();

Matrix A(rows, cols + 1);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

A(r, c) = parsedTableau[r][c];

}

if (r > 0 && A(r, 0) < 0) {

initiallyFeasible = false;
}

A(r, cols) = 1;

}

unsigned long long startTime = rdtsc();

std::vector<int> basic, nonbasic;
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// Nonbasic variables are labeled 1 .. n

for (int i = 1; i < cols; ++i)

nonbasic.push_back(i);

nonbasic.push_back(0); // Phase I variable

// Basic variables are labeled n+1 .. n+m

for (int i = cols; i < cols + rows - 1; ++i)

basic.push_back(i);

int numIterations = 0;

SimplexResult status = SUBOPTIMAL;

Matrix obj(1, cols); // Saves the original objective function

if (!initiallyFeasible) {

cout << "Entering Phase I" << endl;

for (int c = 0; c < cols; ++c) {

obj(0, c) = A(0, c);

A(0, c) = 0;

}

A(0, cols) = -1; // The goal is to maximize -x0

int leaving = 1;

for (int i = 2; i < rows; ++i) {

if (A(i, 0) < A(leaving, 0))

leaving = i;

}

TableauSimplex::pivot(A, basic, nonbasic, leaving, cols);

if (print) A.print(basic, nonbasic);

while ((status = TableauSimplex::iteration(A, basic, nonbasic)) ==

SUBOPTIMAL) {

++numIterations;

if (print) A.print(basic, nonbasic);

cout << numIterations << ": " << A(0, 0) << endl;

}

if (status == INFEASIBLE_OR_UNBOUNDED || ABS(A(0, 0)) >

FEASIBILITY_THRESHOLD) {

cout << "INFEASIBLE" << endl;

return 0;

}

cout << "PHASE I COMPLETED" << endl;

if (print) A.print(basic, nonbasic);

}

// Locate x0, which is expected to be nonbasic

int x0 = -1;

for (int i = 0; i < cols; ++i) {

if (nonbasic[i] == 0) {

x0 = i + 1;
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nonbasic.erase(nonbasic.begin() + i);

break;
}

}

if (x0 == -1) {

for (int j = 0; j < rows - 1; ++j) {

if (basic[j] == 0) {

x0 = j + 1;

break;
}

}

cout << "x0 is basic, and has value " << A(x0, 0) << " - terminating" <<

endl;

// If x0 is basic, but has value 0, it should be possible to continue by

pivoting it out, but we haven’t spent time on this since the program

usually does not give the right answer anyway

return 0;

}

// Even if there was no Phase I, we still copy the tableau - this should be

avoided

Matrix newTableau(rows, cols);

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

newTableau(i, j) = A(i, j < x0 ? j : j + 1);

}

}

if (!initiallyFeasible) {

if (print) newTableau.print(basic, nonbasic);

newTableau(0, 0) = obj(0, 0);

for (int j = 1; j < cols; ++j)

if (nonbasic[j - 1] < cols)

newTableau(0, j) = obj(0, nonbasic[j - 1]);

for (int i = 1; i < rows; ++i) {

if (basic[i - 1] < cols) {

newTableau.addRows(i, 0, obj(0, basic[i - 1]));

}

}

}

if (print) newTableau.print(basic, nonbasic);

cout << "Entering phase II" << endl;

while ((status = TableauSimplex::iteration(newTableau, basic, nonbasic)) ==

SUBOPTIMAL) {

++numIterations;

if (print) newTableau.print(basic, nonbasic);

cout << numIterations << ": " << newTableau(0, 0) << endl;
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}

if (status == INFEASIBLE_OR_UNBOUNDED) {

cout << "UNBOUNDED" << endl;

return 0;

}

cout << "OPTIMAL" << endl;

cout << "Optimal value: " << newTableau(0, 0) << endl;

cout << "Elapsed time (minus input parsing): " << rdtsc() - startTime <<

endl;

return 0;

}

Makefile

Makefile for compiling the Cell/BE versions. The file must be renamed to simply Makefile

(unlike what it says under “List of code listings”); the code highlighting package does not seem to
handle files without extensions.

# Use comments to select if you want SIMD or not

#PROGRAM_ppu := standard_simplex_ppe_float_serial

#CPPFLAGS_gcc = -DTYPE=float

PROGRAM_ppu := standard_simplex_ppe_float_simd

CPPFLAGS_gcc = -DTYPE=float -DUSE_SIMD

INCLUDE := -I .

INSTALL_DIR = /tmp

INSTALL_FILES = $(PROGRAM_ppu)

IMPORTS = -lmisc

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

A.2 (RP) Parallel standard simplex method for Cell/BE

This program also requires several files listed in the previous section: gmpInterop.h, gmpInterop.cpp,
Matrix.h, Matrix.cpp, mps.h, mps.cpp, and timer.h. They (or a symlink to them, to avoid
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unnecessary file duplication) should be placed in the top level source code folder of this program.

spu/PartialMatrix.h and spu/PartialMatrix.cpp

A class very similar to the Matrix class above, but with the property that it only contains a
contiguous subset of the rows of the complete matrix. The idea is to give each SPE one part of
the entire tableau. When addressing the PartialMatrix, all indices are relative to the original
matrix.

#ifndef PARTIALMATRIX_H

#define PARTIALMATRIX_H

class PartialMatrix {

public:
PartialMatrix(int, int, int, int, int);
PartialMatrix(int rows, int cols, int physicalCols, int startRow, int

containedRows, float * data);

PartialMatrix(int rows, int cols, int physicalCols, int startRow, int
containedRows, bool identity);

PartialMatrix(const PartialMatrix &);

˜PartialMatrix();

inline int getRows() const { return rows; }

inline int getCols() const { return cols; }

inline int getPhysicalCols() const { return physicalCols; }

inline int getStartRow() const { return startRow; }

inline int getContainedRows() const { return containedRows; }

inline int getRowLimit() const { return startRow + containedRows; }

inline volatile float * getData() { return data; }

inline volatile float & operator () (int r, int c) { return data[(r -

startRow) * physicalCols + c]; }

inline float operator () (int r, int c) const { return data[(r - startRow) *
physicalCols + c]; }

void multiplyRow(int row, float factor);

void addRows(float factor, int sourceRow, int destinationRow);

void addRows(float factor, float * sourceRow, int destinationRow);

void swapRows(int firstRow, int secondRow);

void print();

private:
void init(int rows, int cols, int physicalCols, int startRow, int

containedRows);

int rows;

int cols;

int physicalCols;

int startRow;

int containedRows;

volatile float * data;
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};

#endif

#include "PartialMatrix.h"

#include <spu_intrinsics.h>

#include <libmisc.h>

#include "../types.h"

#include <stdio.h>

using namespace std;

void PartialMatrix::init(int rows, int cols, int physicalCols, int startRow,

int containedRows) {

this->rows = rows;

this->cols = cols;

this->physicalCols = ROUND_UP_MULTIPLE(cols, VECTOR_WIDTH);

this->startRow = startRow;

this->containedRows = containedRows;

this->data = (float*)malloc_align(containedRows * physicalCols * sizeof(
float), ALIGN_QUAD_LOG2);

}

PartialMatrix::PartialMatrix(int rows, int cols, int physicalCols, int
startRow, int containedRows) {

init(rows, cols, physicalCols, startRow, containedRows);

for (int i = 0; i < containedRows * physicalCols; ++i)

this->data[i] = 0;

}

PartialMatrix::PartialMatrix(int rows, int cols, int physicalCols, int
startRow, int containedRows, float * data) {

init(rows, cols, physicalCols, startRow, containedRows);

for (int r = 0; r < containedRows; ++r) {

for (int c = 0; c < cols; ++c)

this->data[r * physicalCols + c] = data[r * cols + c];

for (int c = cols; c < physicalCols; ++c)

this->data[r * physicalCols + c] = 0;

}

}

PartialMatrix::PartialMatrix(int rows, int cols, int physicalCols, int
startRow, int containedRows, bool identity) {

init(rows, cols, physicalCols, startRow, containedRows);

for (int i = 0; i < containedRows * physicalCols; ++i)

this->data[i] = 0;

if (identity && rows == cols) {
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for (int i = 0; i < containedRows; ++i) {

data[i * physicalCols + (startRow + i)] = 1;

}

}

}

PartialMatrix::PartialMatrix(const PartialMatrix & source) {

init(source.rows, source.cols, source.physicalCols, source.startRow, source.

containedRows);

for (int i = 0; i < containedRows * physicalCols; ++i)

this->data[i] = source.data[i];

}

PartialMatrix::˜PartialMatrix() {

free_align((void *)data);

}

void PartialMatrix::print() {

printf("=== %d x %d: %d rows: [%d, %d) ===\n", rows, cols, containedRows,

startRow, getRowLimit());

for (int r = startRow; r < getRowLimit(); ++r) {

printf("%f", (*this)(r, 0));

for (int c = 1; c < cols; ++c)

printf(" %f", (*this)(r, c));

printf("\n");

}

printf("======\n");

}

void PartialMatrix::multiplyRow(int row, float factor) {

if (factor == 1) return;
vector float zero_v = (vector float){0.0f, 0.0f, 0.0f, 0.0f};

vector float factor_v = (vector float){factor, factor, factor, factor};

vector float * data_v = (vector float *)(data + (row - startRow) *
physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

data_v[j] = spu_madd(data_v[j], factor_v, zero_v);

}

}

void PartialMatrix::addRows(float factor, int sourceRow, int destinationRow) {

if (factor == 0) return;
vector float factor_v = (vector float){factor, factor, factor, factor};

vector float * source_v = (vector float *)(data + (sourceRow - startRow) *
physicalCols);

vector float * destination_v = (vector float *)(data + (destinationRow -

startRow) * physicalCols);
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for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

destination_v[j] = spu_madd(source_v[j], factor_v, destination_v[j]);

}

}

// Adds a multiple of a row that is not a part of this PartialMatrix to one of

the rows that are a part of it

void PartialMatrix::addRows(float factor, float * sourceRow, int
destinationRow) {

if (factor == 0) return;
vector float factor_v = (vector float){factor, factor, factor, factor};

vector float * source_v = (vector float *)sourceRow;

vector float * destination_v = (vector float *)(data + (destinationRow -

startRow) * physicalCols);

for (int j = 0; j < physicalCols / VECTOR_WIDTH; ++j) {

destination_v[j] = spu_madd(source_v[j], factor_v, destination_v[j]);

}

}

void PartialMatrix::swapRows(int firstRow, int secondRow) {

if (firstRow == secondRow) return;
for (int j = 0; j < cols; ++j) {

float tmp = (*this)(firstRow, j);

(*this)(firstRow, j) = (*this)(secondRow, j);

(*this)(secondRow, j) = tmp;

}

}

spu/SpuTableauSimplex.h and spu/SpuTableauSimplex.cpp

Code for performing a simplex iteration (with pivoting) within an SPE and communicating with
the PPE.

#ifndef SPUTABLEAUSIMPLEX_H

#define SPUTABLEAUSIMPLEX_H

#include "PartialMatrix.h"

#include "../types.h"

class SpuTableauSimplex {

public:
static SimplexResult iterate(PartialMatrix & tableau, float * ppuPivotRow,

uint tagId, int spuIndex);

static void pivot(PartialMatrix & tableau, float * pivotRow, int leaving,

int entering);

};
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#endif

#include "SpuTableauSimplex.h"

#include "../types.h"

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

#include <libmisc.h>

#include <cstdio>

using namespace std;

void SpuTableauSimplex::pivot(PartialMatrix & tableau, float * pivotRow, int
leaving, int entering) {

float xFactor = pivotRow[entering];

// Cancel out occurrences of the entering variable

for (int i = tableau.getStartRow(); i < tableau.getRowLimit(); ++i) {

if (i == leaving) continue;
float factor = -tableau(i, entering) / xFactor;

float savedColVal = tableau(i, entering);

tableau.addRows(factor, pivotRow, i);

tableau(i, entering) = savedColVal / xFactor;

}

if (leaving != -1) {

tableau.multiplyRow(leaving, -1 / xFactor);

tableau(leaving, entering) = 1 / xFactor;

}

}

// Communications (* means "all";[ˆx] means "all except x"):

// Each communication end point is tagged in the code as "comm0" etc.

// 0. SPU0 -> PPU: entering variable, or optimality

// 1. PPU -> SPU[ˆ0]: entering variable, or termination instruction

// 2. SPU* -> PPU: value and index of leaving variable, or unboundedness (both

determined locally; PPU determines global choice - let x be the spu that

’wins’)

// 3. PPU -> SPU*: whether this spu ’won’, or termination instruction

// 4. SPUx -> PPU: transfer pivot row; spu writes to (ppe reads from) mbox to

notify

// 5. PPU -> SPU[ˆx]: ppe writes to (spu reads from) mbox to sync; transfer

pivot row

SimplexResult SpuTableauSimplex::iterate(PartialMatrix & tableau, float *
ppuPivotRow, uint tagId, int spuIndex) {

int n = tableau.getCols() - 1;

int entering = -1;

volatile float * pivotRow;
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static volatile float * incomingPivotRowBuffer = (float *)malloc_align(

tableau.getPhysicalCols() * sizeof(float), ALIGN_QUAD_LOG2);

if (tableau.getStartRow() == 0) {

// Find entering variable by searching the objective function (row 0) for

a positive coefficient (disregard the constant in column 0)

for (int j = 1; j <= n; ++j) {

// We are not using Bland’s rule here, since the SPEs do not maintain

the basic/nonbasic lists (they could of course be arranged to do so)

if (tableau(0, j) > 0 && (entering == -1 || tableau(0, j) > tableau(0,

entering)))

entering = j;

}

if (entering == -1) {

spu_write_out_mbox(SIMPLEX_MBOX_OPTIMAL); //comm0

return OPTIMAL;

}

else
spu_write_out_mbox((uint)entering); //comm0

}

else {

entering = (int)spu_read_in_mbox(); //comm1

if ((uint)entering == SIMPLEX_MBOX_OPTIMAL)

return OPTIMAL;

}

// Find leaving variable by searching the column of the entering variable

and determine the strictest bound

int localLeaving = -1;

Value32 largestRatio;

int i = tableau.getStartRow();

if (i == 0) // Skip objective function row - this also handles the case

where this partial matrix only contains the objective function, in which

case SIMPLEX_MBOX_UNBOUNDED will be returned by SPE 0

i = 1;

// We discovered a little too late that this part of the code is a little

outdated - we are testing the inverse of the ratio that is described in

the report, and therefore we must look for the largest ratio rather than

the smallest. It is more cumbersome, but entirely equivalent to what is

described in the report.

for (; i < tableau.getRowLimit(); ++i) {

float ratio;

if (tableau(i, 0) == 0) {

if (tableau(i, entering) == 0)

ratio = 0;

else if (tableau(i, entering) < 0)

ratio = INFINITY;
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else
ratio = -INFINITY;

}

else
ratio = -tableau(i, entering) / tableau(i, 0);

if (ratio <= 0) continue;
if (localLeaving == -1 || ratio > largestRatio.floatValue) {

largestRatio.floatValue = ratio;

localLeaving = i;

}

}

//comm2

if (localLeaving == -1) {

spu_write_out_mbox(SIMPLEX_MBOX_UNBOUNDED);

spu_write_out_mbox((uint)-1);

}

else {

spu_write_out_mbox(largestRatio.uintValue);

spu_write_out_mbox((uint)localLeaving);

}

uint instruction = spu_read_in_mbox(); //comm3

if (instruction == SIMPLEX_MBOX_UNBOUNDED)

return UNBOUNDED;

if (instruction == SIMPLEX_MBOX_LEAVING_IS_HERE) {

//comm4 - pivot->ppu

pivotRow = &tableau(localLeaving, 0);

spu_mfcdma32((void *)pivotRow, (uint)ppuPivotRow, tableau.getPhysicalCols

() * sizeof(float), tagId, MFC_PUT_CMD);

(void)spu_mfcstat(MFC_TAG_UPDATE_ALL);
spu_write_out_mbox(0U); //sync

}

else if (instruction == SIMPLEX_MBOX_LEAVING_IS_ELSEWHERE) {

//comm5 - ppu->pivot

pivotRow = incomingPivotRowBuffer;

spu_read_in_mbox(); //sync

spu_mfcdma32((void *)pivotRow, (uint)ppuPivotRow, tableau.getPhysicalCols

() * sizeof(float), tagId, MFC_GET_CMD);

(void)spu_mfcstat(MFC_TAG_UPDATE_ALL);
}

else {

printf("Illegal instruction\n");

return FAILURE;

}
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pivot(tableau, (float *)pivotRow, instruction ==

SIMPLEX_MBOX_LEAVING_IS_HERE ? localLeaving : -1, entering);

return SUBOPTIMAL;

}

spu/spu.cpp

Driver code for the SPE — transfers the initial tableau to the SPE, initiates the iterations, and
transfers the final tableau back to the PPE.

#define SPE_CODE

#include <spu_intrinsics.h>

#include <spu_mfcio.h>

#include <libmisc.h>

#include <stdio.h>

# include "../types.h"

#include "PartialMatrix.h"

#include "SpuTableauSimplex.h"

#define MAX_DMA_SIZE 16384

volatile ParameterContext context ALIGNED_QUAD;

void safeDMA(volatile float * localStoreAddress, unsigned int effectiveAddress

, unsigned int size, unsigned int tagId, unsigned int command) {

int remainingSize = size;

while (remainingSize > 0) {

spu_mfcdma32(localStoreAddress, effectiveAddress, (remainingSize >

MAX_DMA_SIZE ? MAX_DMA_SIZE : remainingSize), tagId, command);

remainingSize -= MAX_DMA_SIZE;

effectiveAddress += MAX_DMA_SIZE;

localStoreAddress += MAX_DMA_SIZE / sizeof(float);
(void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

}

}

int main(unsigned long long spuId __attribute__ ((unused)), unsigned long long
parameter) {

uint tagId;

if ((tagId = mfc_tag_reserve()) == MFC_TAG_INVALID) {

printf("ERROR (%llx): unable to reserve a tag\n", spuId);

return 1;

}

spu_writech(MFC_WrTagMask, -1);
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// Fetch the context and wait

spu_mfcdma32((void *)&context, (uint)parameter, sizeof(ParameterContext),
tagId, MFC_GET_CMD);

(void)spu_mfcstat(MFC_TAG_UPDATE_ALL);

int submatrixLength = context.numContainedRows * context.physicalCols;

PartialMatrix matrix(context.rows, context.cols, context.physicalCols,

context.startingRow, context.numContainedRows);

safeDMA(matrix.getData(), (uint)(context.dataOrigin + context.startingRow *
context.physicalCols), submatrixLength * sizeof(float), tagId,

MFC_GETB_CMD); // MFC_GETB_CMD can be used for a barrier get, which will

wait until previous puts have completed - http://publib.boulder.ibm.com

/infocenter/systems/scope/syssw/index.jsp?topic=/eiccj/tutorial/

cbet_3optimz.html

while (SpuTableauSimplex::iterate(matrix, context.ppuPivotRow, tagId,

context.spuIndex) == SUBOPTIMAL);

safeDMA(matrix.getData(), (uint)(context.dataOrigin + context.startingRow *
context.physicalCols), submatrixLength * sizeof(float), tagId,

MFC_PUT_CMD);

return 0;

}

types.h

Some structs, defines and enums that are needed by several of the other files.

#ifndef TYPES_H

#define TYPES_H

#define VECTOR_WIDTH 4

#define ALIGN_CACHE_WIDTH 128

#define ALIGN_CACHE_LOG2 7

#define ALIGN_QUAD_WIDTH 16

#define ALIGN_QUAD_LOG2 4

#define ALIGNED_CACHE __attribute__ ((aligned(ALIGN_CACHE_WIDTH)))

#define ALIGNED_QUAD __attribute__ ((aligned(ALIGN_QUAD_WIDTH)))

#define ROUND_UP_MULTIPLE(x, m) (((x) + (m) - 1) / (m) * (m))

#define PADDING(actualSize, alignmentWidth) char padding[ROUND_UP_MULTIPLE(

actualSize, alignmentWidth) - (actualSize)] // Adds a char array to the

end of a struct in order to make the struct take up a certain number of

bytes - the first parameter is the combined size of the other struct

memebers, and the second parameter is the byte boundary on which the

struct size should be divisible.
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// Sentinel values used when an SPE wants to notify the PPE that it did not

find a good leaving or entering variable, and when the PPE wants to let

the SPEs know who should perform the pivot. All of these are IEEE 754

quiet NaNs, which means that they can’t accidentally be interpreted as (or

collide with) valid floating point numbers.

#define SIMPLEX_MBOX_OPTIMAL 0xffffffff

#define SIMPLEX_MBOX_UNBOUNDED 0xfffffffe

#define SIMPLEX_MBOX_LEAVING_IS_HERE 0xfffffffd

#define SIMPLEX_MBOX_LEAVING_IS_ELSEWHERE 0xfffffffc

//#define INFINITY (__builtin_inff())

#ifndef INFINITY

#define INFINITY 3.4E38f

#endif

typedef unsigned int uint;

struct ParameterContext {

int rows;

int cols;

int physicalCols;

int startingRow;

int numContainedRows;

int spuIndex;

float * dataOrigin;

float * ppuPivotRow;

PADDING(6 * sizeof(int) + 2 * sizeof(float*), ALIGN_QUAD_WIDTH);

};

// For interpreting a 32 bit pattern in different ways.

union Value32 {

uint uintValue;

int intValue;

float floatValue;

};

enum SimplexResult {

SUBOPTIMAL,

OPTIMAL,

UNBOUNDED,

CYCLING,

FAILURE

};

#endif
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main.cpp

Driver code — initiates input reading, starts the SPE threads, and communicates with the threads.

#define PPE_CODE

#include "Matrix.h"

#include "types.h"

#include "timer.h"

#include "mps.h"

#include <libspe2.h>

#include <libmisc.h>

#include <pthread.h>

#include <iostream>

#include <fstream>

using namespace std;

#define MAX_SPE_THREADS 8

extern spe_program_handle_t speProgramHandle; // Must match the name given in

the SPE makefile

struct PpuThreadData {

spe_context_ptr_t speContext;

pthread_t pthread;

void * argument;

};

SimplexResult simplexIteration(vector<int> & basic, vector<int> & nonbasic,

int numSpeThreads, spe_context_ptr_t speContexts[]);

void * ppuPthreadFunction(void * argument) {

PpuThreadData * data = (PpuThreadData *)argument;

unsigned int entry = SPE_DEFAULT_ENTRY;

if (spe_context_run(data->speContext, &entry, 0, data->argument, NULL, NULL)

< 0) {

perror("Failed running context");

exit(1);

}

pthread_exit(NULL);

}

int main(int argc, char * argv[]) {

int numSpeThreads;

PpuThreadData data[MAX_SPE_THREADS];

ParameterContext contexts[MAX_SPE_THREADS] ALIGNED_QUAD;

spe_context_ptr_t speContexts[MAX_SPE_THREADS];
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if (argc < 2) {

cout << "Must take MPS file name as parameter; the second argument is

optional and specifies the number of SPEs" << endl;

return 1;

}

ifstream infile(argv[1]);

vector<vector<float> > parsedTableau = parse(infile);

int rows = parsedTableau.size();

int cols = parsedTableau[0].size();

Matrix matrix(rows, cols);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

matrix(r, c) = parsedTableau[r][c];

}

if (r > 0 && matrix(r, 0) < 0) {

cout << "This prototype does only handle Phase II; must be run on

problems that are initially feasible (the entire right hand side

must be nonnegative)" << endl;

return 1;

}

}

volatile float * pivotRow = (volatile float *)malloc_align(matrix.

getPhysicalCols() * sizeof(float), ALIGN_QUAD_LOG2);

unsigned long long startTime = rdtsc();

int n = cols - 1;

int m = rows - 1;

vector<int> basic, nonbasic;

// Nonbasic variables are labeled 1 .. n

for (int i = 1; i <= n; ++i)

nonbasic.push_back(i);

// Basic variables are labeled n+1 .. n+m

for (int i = n + 1; i <= n + m; ++i)

basic.push_back(i);

// Determine how many SPE threads we want

if (argc >= 3) {

numSpeThreads = atoi(argv[2]);

}

else {

numSpeThreads = spe_cpu_info_get(SPE_COUNT_USABLE_SPES, -1);

}

if (numSpeThreads < 1)

numSpeThreads = 1;

if (numSpeThreads > MAX_SPE_THREADS)

numSpeThreads = MAX_SPE_THREADS;



112 APPENDIX A. CODE

if (numSpeThreads > matrix.getRows())

numSpeThreads = matrix.getRows();

cout << "Using " << numSpeThreads << " SPEs" << endl;

// Create and start SPE threads

for (int i = 0; i < numSpeThreads; ++i) {

contexts[i].rows = matrix.getRows();

contexts[i].cols = matrix.getCols();

contexts[i].physicalCols = matrix.getPhysicalCols();

contexts[i].startingRow = matrix.getRows() / numSpeThreads * i;

if (i == numSpeThreads - 1)

contexts[i].numContainedRows = matrix.getRows() - contexts[i].

startingRow;

else
contexts[i].numContainedRows = matrix.getRows() / numSpeThreads;

contexts[i].spuIndex = i;

contexts[i].dataOrigin = (float *)matrix.getData(); // Removing ’volatile’

ness is ok here, since this pointer will just be used by the SPU to

indicate the MFC target

contexts[i].ppuPivotRow = (float *)pivotRow;

if ((data[i].speContext = spe_context_create(0, NULL)) == NULL) {

perror("Failed creating context");

exit(1);

}

if (spe_program_load(data[i].speContext, &speProgramHandle)) {

perror("Failed loading program");

exit(1);

}

speContexts[i] = data[i].speContext;

data[i].argument = &contexts[i];

if (pthread_create(&data[i].pthread, NULL, &ppuPthreadFunction, &data[i]))

{

perror("Failed creating thread");

return 1;

}

}

int numIterations = 0;

while (simplexIteration(basic, nonbasic, numSpeThreads, speContexts) ==

SUBOPTIMAL) {

// cout << "Done with iteration " << ++numIterations << endl;

}

// Uncomment this if you want the list of basic/nonbasic variables to be

printed

/*
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cout << "Basic:";

for (uint i = 0; i < basic.size(); ++i)

cout << " " << basic[i];

cout << "\nNonbasic:";

for (uint i = 0; i < nonbasic.size(); ++i)

cout << " " << nonbasic[i];

cout << endl;

*/

// Wait for SPEs to terminate

for (int i = 0; i < numSpeThreads; ++i) {

if (pthread_join(data[i].pthread, NULL)) {

perror("Failed joining thread");

exit(1);

}

if (spe_context_destroy(data[i].speContext) != 0) {

perror("Failed destroying context");

exit(1);

}

}

cout << "The optimal solution is " << matrix(0, 0) << endl;

cout << "Elapsed time (minus input parsing): " << rdtsc() - startTime <<

endl;

return 0;

}

// For explanation of communication tags, see spu/SpuTableauSimplex.cpp

SimplexResult simplexIteration(vector<int> & basic, vector<int> & nonbasic,

int numSpeThreads, spe_context_ptr_t speContexts[]) {

//comm0

while (!spe_out_mbox_status(speContexts[0]));

uint entering;

spe_out_mbox_read(speContexts[0], &entering, 1);

//comm1

for (int i = 1; i < numSpeThreads; ++i) {

spe_in_mbox_write(speContexts[i], &entering, 1, SPE_MBOX_ALL_BLOCKING); //

entering may be SIMPLEX_MBOX_OPTIMAL, in which case SPE code will

terminate

}

if (entering == SIMPLEX_MBOX_OPTIMAL) {

return OPTIMAL;

}
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//comm2

// The case where the first SPE only contains the objective function will

not cause problems. That SPE will report SIMPLEX_MBOX_UNBOUNDED since it

doesn’t find a leaving variable, so it will be ignored unless no other

SPEs find a leaving variable - in which case the entire problem is

unbounded.

while (!spe_out_mbox_status(speContexts[0]));

float maxLeavingValue = 0; // Initialise with arbitrary value to get rid of

warning

int maxLeavingSpu = -1;

int maxLeavingIndex = -1;

for (int i = 0; i < numSpeThreads; ++i) {

Value32 leavingValue, leavingIndex;

while (!spe_out_mbox_status(speContexts[i]));

spe_out_mbox_read(speContexts[i], &leavingValue.uintValue, 1);

while (!spe_out_mbox_status(speContexts[i]));

spe_out_mbox_read(speContexts[i], &leavingIndex.uintValue, 1);

//cout << i << " reports " << leavingValue.floatValue << endl;

if (leavingValue.uintValue != SIMPLEX_MBOX_UNBOUNDED && (maxLeavingSpu ==

-1 || leavingValue.floatValue > maxLeavingValue)) {

maxLeavingValue = leavingValue.floatValue;

maxLeavingIndex = leavingIndex.intValue;

maxLeavingSpu = i;

}

}

//comm3

for (int i = 0; i < numSpeThreads; ++i) {

uint instruction;

if (maxLeavingSpu == -1)

instruction = SIMPLEX_MBOX_UNBOUNDED;

else if (maxLeavingSpu == i)

instruction = SIMPLEX_MBOX_LEAVING_IS_HERE;

else
instruction = SIMPLEX_MBOX_LEAVING_IS_ELSEWHERE;

spe_in_mbox_write(speContexts[i], &instruction, 1, SPE_MBOX_ALL_BLOCKING);

}

if (maxLeavingSpu == -1) {

cout << "Unbounded" << endl;

return UNBOUNDED; //TODO: cleanup

}

// cout << "Pivoting: variable in row " << maxLeavingIndex << " (in SPU " <<

maxLeavingSpu << ") leaves, variable in column " << entering << " enters"

<< endl;

//comm4 - sync
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uint dummySyncValue;

while (!spe_out_mbox_status(speContexts[maxLeavingSpu]));

spe_out_mbox_read(speContexts[maxLeavingSpu], &dummySyncValue, 1);

//comm5

for (int i = 0; i < numSpeThreads; ++i) {

if (maxLeavingSpu != i) {

spe_in_mbox_write(speContexts[i], &dummySyncValue, 1,

SPE_MBOX_ALL_BLOCKING);

}

}

// Swap basic and nonbasic variables

int tmp = basic[maxLeavingIndex - 1];

basic[maxLeavingIndex - 1] = nonbasic[entering - 1];

nonbasic[entering - 1] = tmp;

return SUBOPTIMAL;

}

Makefiles

Makefile for SPE code (located in the spe folder):

# Target

PROGRAM_spu := speProgramHandle # Must match the name of the

spe_program_handle_t in main.cpp

LIBRARY_embed := matrix_spu.a

IMPORTS = -lmisc

# buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

Makefile for PPE code:

# Subdirectories

DIRS := spu
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# Target

PROGRAM_ppu := standard_simplex_parallel_float_simd

# Local Defines

INCLUDE := -I .

INSTALL_DIR = /tmp

INSTALL_FILES = $(PROGRAM_ppu)

IMPORTS = spu/matrix_spu.a -lspe2 -lpthread -lmisc

CPPFLAGS_gcc = -DTYPE=float -DVOLATILE_DATA

# buildutils/make.footer

ifdef CELL_TOP

include $(CELL_TOP)/buildutils/make.footer

else
include ../../../../buildutils/make.footer

endif

A.3 (RP) ASYNPLEX, C# prototype

Note that this program does not include an MPS parser; it only accepts input in the format de-
scribed in (TODO: ).

AsynplexProcess.cs

Base class for the four process types.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Runtime.CompilerServices;

namespace CS_asynplex {

abstract class AsynplexProcess {

public string name { get; private set; }

public AsynplexProcess(string name) {

this.name = name;

}
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protected void print(string message) {

lock (Communication.printLock) {

Console.WriteLine("{0}: {1}", name, message);

}

}

protected void send(string receiver, string tag, object payload) {

Communication.send(new Message(name, receiver, tag, payload));

}

protected Message receive() {

return Communication.receive(name);

}

protected Message receive(string sender) {

return Communication.receive(name, sender);

}

protected Message receive(string sender, string tag) {

return Communication.receive(name, sender, tag);

}

public abstract void run();

}

}

BasisChangeProcess.cs

ASYNPLEX basis change manager.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Diagnostics;

namespace CS_asynplex {

class BasisChangeProcess : AsynplexProcess {

int kb;

public BasisChangeProcess()

: base("R") {

}

public override void run() {

Message message;
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kb = 0;

while (!Program.Finished) {

while ((message = receive()) == null) {

if (Program.Finished)

return;
}

Debug.Assert(message.tag == "I5->R1");

int ki = (int)message.payload;
string output = message.sender + " offers chuzr on basis " + ki + "...

";

if (ki == kb) {

send(message.sender, "R2->I6", true);
++kb;

output += "accepted";

}

else {

send(message.sender, "R3->I6", false);
output += "refused";

}

print(output);

}

}

}

}

ColumnSelectionProcess.cs

ASYNPLEX column selection manager.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Diagnostics;

namespace CS_asynplex {

enum VariableStatus {

BASIC,

UNSELECTED,

SELECTED,

REJECTED

}

class VariableInfo {

public VariableStatus status;

public int basisWhereStatusChanged;
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public VariableInfo(VariableStatus status) {

this.status = status;

this.basisWhereStatusChanged = -1;

}

}

class QueuedVariableRequest {

public int unattractiveVariable;

public int basis;

public string processName;

public string tagToSend;

}

class ColumnSelectionProcess : AsynplexProcess {

//List<bool> selected = new List<bool>();

List<VariableInfo> variables = new List<VariableInfo>();

Queue<int> attractive = new Queue<int>();
Queue<QueuedVariableRequest> queuedVariableRequests = new Queue<

QueuedVariableRequest>();

int m;

int n;

int kc;

public ColumnSelectionProcess(int m, int n)

: base("C") {

this.m = m;

this.n = n;

this.kc = 0;

this.variables.Add(null); // 1-based array; index 0 not used - TODO:

This might not be the case in Phase I in Vanderbei?

for (int i = 0; i < n; ++i) // nonbasic

this.variables.Add(new VariableInfo(VariableStatus.UNSELECTED));

for (int i = 0; i < m; ++i) // basic

this.variables.Add(new VariableInfo(VariableStatus.BASIC));

}

private void installAttractiveCandidates(Message message) {

AttractiveCandidatesMessage msg = (AttractiveCandidatesMessage)message.

payload; // assumed to be sorted by attractiveness. index 0 is ki

Debug.Assert(msg.attractiveVariables.Length >= 1);

print("received " + msg.attractiveVariables.Length + " candidates from "

+ message.sender + ", which is at basis " + msg.basisNumber + ";

currently at basis " + kc);

if (msg.basisNumber > kc) {

int installCount = 0;

attractive = new Queue<int>();
foreach (int cand in msg.attractiveVariables) {
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if (!((variables[cand].status == VariableStatus.SELECTED ||

variables[cand].status == VariableStatus.REJECTED) && variables[

cand].basisWhereStatusChanged >= msg.basisNumber)) {

++installCount;

attractive.Enqueue(cand);

variables[cand].status = VariableStatus.UNSELECTED;

variables[cand].basisWhereStatusChanged = msg.basisNumber;

}

else {

print("rejected x" + cand + " because it got " + variables[cand].

status + " at basis " + variables[cand].

basisWhereStatusChanged);

}

}

print("Installed " + installCount + " candidates");

kc = msg.basisNumber;

}

}

private void waitForAndInstallAttractiveCandidates() {

Message message;

while ((message = receive("I*", "I9->C2")) == null) ;

installAttractiveCandidates(message);

}

public override void run() {

Message message;

//waitForAndInstallAttractiveCandidates();

while (!Program.Finished) {

while (queuedVariableRequests.Count > 0 && attractive.Count > 0) {

if (Program.Finished)

return;
int var = attractive.Dequeue();

QueuedVariableRequest req = queuedVariableRequests.Dequeue();

Debug.Assert(variables[var].status == VariableStatus.UNSELECTED);

variables[var].status = VariableStatus.SELECTED;

variables[var].basisWhereStatusChanged = kc;

print("x" + var + " gets SELECTED (C5) at basis " + kc);

send(req.processName, req.tagToSend, var);

}

while ((message = receive()) == null) {

if (Program.Finished)

return;
}

Debug.Assert(message.sender[0] == ’I’);

if (message.tag == "I8->C1") {

int[] enteringLeavingBasis = (int[])message.payload;
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variables[enteringLeavingBasis[0]].status = VariableStatus.BASIC;

variables[enteringLeavingBasis[0]].basisWhereStatusChanged =

enteringLeavingBasis[2];

variables[enteringLeavingBasis[1]].status = VariableStatus.

UNSELECTED;

variables[enteringLeavingBasis[1]].basisWhereStatusChanged =

enteringLeavingBasis[2];

print("x" + enteringLeavingBasis[1] + " left basis " +

enteringLeavingBasis[2] + " (by " + message.sender + ") and got

unselected");

}

else if (message.tag == "I9->C2") {

installAttractiveCandidates(message);

//queuedVariableRequests.Enqueue(new QueuedVariableRequest() {

processName = message.sender, tagToSend = "C3->I11" });

int var = attractive.Dequeue();

Debug.Assert(variables[var].status == VariableStatus.UNSELECTED);

variables[var].status = VariableStatus.SELECTED;

variables[var].basisWhereStatusChanged = kc;

print("x" + var + " gets SELECTED (C3) at basis " + kc);

send(message.sender, "C3->I11", var);

}

else if (message.tag == "I4->C4") {

int[] rejectedAndBasis = (int[])message.payload;
if (rejectedAndBasis[0] != -1) {

variables[rejectedAndBasis[0]].status = VariableStatus.REJECTED;

variables[rejectedAndBasis[0]].basisWhereStatusChanged =

rejectedAndBasis[1];

print("x" + rejectedAndBasis[0] + " gets REJECTED (C5) at basis "

+ rejectedAndBasis[1]);

}

queuedVariableRequests.Enqueue(new QueuedVariableRequest() {

processName = message.sender, tagToSend = "C5->I11" });

}

else {

Debug.Assert(false, "C: Unexpected tag ’" + message.tag + "’");

}

}

}

}

}

Communication.cs

A simple message passing system.

using System;
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using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Runtime.CompilerServices;

namespace CS_asynplex

{

class Message {

public string sender { get; private set; }

public string receiver { get; private set; }

public string tag { get; private set; }

public object payload { get; private set; }

public Message(string sender, string receiver, string tag, object payload)

{

this.sender = sender;

this.receiver = receiver;

this.tag = tag;

this.payload = payload;

}

}

class Communication

{

static List<Message> messages = new List<Message>();

static bool printSends = true;
static bool printReceives = true;
static object messageLock = new object();
public static readonly object printLock = new object();

public static void send(Message message) {

lock (messageLock) {

messages.Add(message);

}

if (printSends) {

lock (printLock) {

Console.ForegroundColor = ConsoleColor.DarkGray;

Console.WriteLine("COMM: {0} sends to {1} (tag: ’{2}’, msg type:

{3}) (queue: {4})", message.sender, message.receiver, message.

tag, message.payload == null ? "(null)" : message.payload.

GetType().ToString(), messages.Count);

Console.ForegroundColor = ConsoleColor.Gray;

}

}

}
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public static Message receive(string receiver) {

return receive(receiver, null, null);
}

public static Message receive(string receiver, string sender) {

return receive(receiver, sender, null);
}

public static Message receive(string receiver, string sender, string tag)

{

lock (messageLock) {

for (int i = 0; i < messages.Count; ++i) {

if (messages[i].receiver == receiver && (sender == null || messages[

i].sender == sender || (sender == "I*" && messages[i].sender[0]

== ’I’)) && (tag == null || messages[i].tag == tag)) {

Message message = messages[i];

messages.RemoveAt(i);

if (printReceives) {

lock (printLock) {

Console.ForegroundColor = ConsoleColor.DarkGray;

Console.WriteLine("COMM: {0} receives from {1} (tag: ’{2}’,

msg type: {3}) (queue: {4})", message.receiver, message.

sender, message.tag, message.payload == null ? "(null)" :

message.payload.GetType().ToString(), messages.Count);

Console.ForegroundColor = ConsoleColor.Gray;

}

}

return message;

}

}

}

return null;
}

public static void printMessages() {

lock (messageLock) {

lock (printLock) {

Console.Write("Remaining messages (some messages may subsequently be

read before all threads terminate):");

foreach (Message msg in messages) {

Console.Write(" " + msg.tag);

}

Console.WriteLine();

}

}

}
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}

}

InversionProcess.cs

ASYNPLEX invert processor.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Diagnostics;

using System.Threading;

namespace CS_asynplex {

class InverseMatrixMessage {

public int basisNumber;

public Matrix inverse;

}

class InversionProcess : AsynplexProcess {

private Matrix B, N;

int numIterationProcs;

int lastReinversionBasis = 0;

int basisNumber = 0;

public InversionProcess(Matrix N, int numIterationProcs)

: base("V") {

this.N = new Matrix(N);

this.B = new Matrix(N.Rows, N.Rows, true, "B");

this.numIterationProcs = numIterationProcs;

}

public override void run() {

Message message;

while (!Program.Finished) {

// V1 <- I8

while ((message = receive()) != null || basisNumber ==

lastReinversionBasis) {

if (Program.Finished)

return;
if (message == null) {

Thread.Sleep(10);

continue;
}

Debug.Assert(message.tag == "I8->V1");
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int[] swap = (int[])message.payload;
int entering = swap[0];

int leaving = swap[1];

Matrix tempCol = B.getColumn(leaving);

B.setColumn(leaving, N.getColumn(entering));

N.setColumn(entering, tempCol);

++basisNumber;

print(message.sender + " says to let " + leaving + " leave and " +

entering + " enter; now at basis " + basisNumber);

}

if (Program.Finished)

return;

print("Calculating inverse for basis " + basisNumber);

Matrix BInverse = B.invert();

lastReinversionBasis = basisNumber;

//Thread.Sleep(8000);//TODO:remove

print("Done with inverse for basis " + basisNumber);

// V2 -> I1

for (int i = 0; i < numIterationProcs; ++i) {

//TODO: Must also tell what basis this is for

InverseMatrixMessage invMsg = new InverseMatrixMessage();

invMsg.basisNumber = basisNumber;

invMsg.inverse = BInverse;

send("I" + i, "V2->I1", invMsg);

}

}

}

}

}

IterationProcess.cs

ASYNPLEX iteration process.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Diagnostics;

using System.Threading;

namespace CS_asynplex {

struct AttractiveCandidate {

public float reducedCost;

public int index;
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public int column;

}

class AttractiveCandidatesMessage {

public int basisNumber;

public int[] attractiveVariables;

}

class BasisChangeMessage {

public int enteringVar;

public int leavingVar;

public Matrix stepDirection;

public float stepLength;

}

class IterationProcess : AsynplexProcess, IComparer<AttractiveCandidate> {

int processIndex;

int numIterationProcesses;

int m, n;

int ki;

int currentEtaBasis = 0;

const int reinversionPeriod = 5;

Matrix N, B, originalBInverse;

Matrix cNonbasic;

Matrix cBasic;

Matrix basicValues;

Matrix origRhs;

int[] nonbasicVars;

int[] basicVars;

bool[] basicStatus;

int[] position;

PrintControl printControl;

const float EPS = 0.0000005f;

List<Matrix> etaFile = new List<Matrix>();

public void swap(ref int a, ref int b) {

int temp = a;

a = b;

b = temp;

}

public IterationProcess(int processIndex, int numIterationProcesses, int m

, int n, Matrix N, Matrix basicValues, Matrix cNonbasic)

: base("I" + processIndex) {

this.processIndex = processIndex;

this.numIterationProcesses = numIterationProcesses;

this.m = m;
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this.n = n;

this.N = new Matrix(N);

this.cNonbasic = new Matrix(cNonbasic);

this.origRhs = new Matrix(basicValues);

this.basicValues = new Matrix(basicValues);

this.B = new Matrix(N.Rows, N.Rows, true, "B");

this.originalBInverse = new Matrix(N.Rows, N.Rows, true, "BˆI");

this.cBasic = new Matrix(m, 1, "cBasic");

this.nonbasicVars = new int[n];
this.basicVars = new int[m];
this.basicStatus = new bool[m + n + 1]; //1-indexed

this.position = new int[m + n + 1]; //1-indexed

for (int i = 1; i <= n; ++i) {

this.nonbasicVars[i - 1] = i;

this.basicStatus[i] = false;
this.position[i] = i - 1;

}

for (int i = n + 1; i <= n + m; ++i) {

this.basicVars[i - n - 1] = i;

this.basicStatus[i] = true;
this.position[i] = i - n - 1;

}

printControl = new PrintControl() { iterationCount = false,
objectiveValue = true, pivotResults = true };

}

private static bool equalsEpsilon(float a, float b) {

return Math.Abs(a - b) < EPS;

}

public int Compare(AttractiveCandidate a, AttractiveCandidate b) {

if (equalsEpsilon(a.reducedCost, b.reducedCost))

return a.index.CompareTo(b.index);

return b.reducedCost.CompareTo(a.reducedCost);

}

private void BTRAN_calcPiTranspose(out Matrix piTranspose) {

piTranspose = cBasic.transpose() * calcBInverseFromEtaFile(); // \piˆT

piTranspose.Name = "piˆT";

if (printControl.piTranspose) piTranspose.print();

}

private void PRICE_calcReducedCosts(Matrix piTranspose, out Matrix

reducedCosts) {
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reducedCosts = cNonbasic.transpose() - piTranspose * N; // \hat{c}_NˆT

reducedCosts.Name = "reduced costs";

if (printControl.reducedCosts) reducedCosts.print();

}

private void CHUZC_findAttractiveEntering(Matrix reducedCosts, out int
enteringCol, out int enteringVar, out List<AttractiveCandidate>

attractive) {

attractive = new List<AttractiveCandidate>();

for (int c = 0; c < reducedCosts.Cols; ++c) {

if (reducedCosts[0, c] > 0) {

attractive.Add(new AttractiveCandidate() { reducedCost =

reducedCosts[0, c], index = nonbasicVars[c], column = c });

}

}

attractive.Sort(this);

if (printControl.pivotDecisions) {

string output = "attractive candidates:";

foreach (AttractiveCandidate cand in attractive) {

output += " x" + cand.index + "(" + cand.reducedCost + ")";

}

print(output);

}

if (attractive.Count == 0) {

print("Optimal");

enteringCol = -1;

enteringVar = -1;

return;
}

else if (attractive.Count <= processIndex) {

enteringCol = -1;

enteringVar = -1;

//throw new NotImplementedException();

//TODO: What to do here?

}

else {

enteringCol = attractive[processIndex].column;

enteringVar = attractive[processIndex].index;

}

if (printControl.pivotResults) print("Entering variable: x" +

enteringVar + " (column " + enteringCol + ")");

}

private void CHUZR_chooseLeaving(Matrix stepDirection, out int leavingRow,
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out int leavingVar, out float stepLength) {

leavingRow = -1; // p

float largestRatio = 0; // step length (\alpha)

for (int r = 0; r < basicValues.Rows; ++r) {

float ratio;

if (stepDirection[r, 0] == 0 && basicValues[r, 0] == 0)

ratio = 0;

else
ratio = stepDirection[r, 0] / basicValues[r, 0];

if (ratio > 0 && (leavingRow == -1 || ratio > largestRatio || (ratio

== largestRatio && basicVars[r] < basicVars[leavingRow]))) {

if (printControl.pivotDecisions) print("Choosing " + (r+1) + " over

" + (leavingRow+1) + " to leave; ratio is " + ratio);

leavingRow = r;

largestRatio = ratio;

}

}

if (leavingRow == -1) {

print("Unbounded");

leavingVar = -1;

stepLength = float.PositiveInfinity;
return;

}

stepLength = 1 / largestRatio;

leavingVar = basicVars[leavingRow];

if (printControl.pivotResults) print("Leaving variable: x" + leavingVar

+ " (row " + leavingRow + ")");

if (printControl.stepLength) print("Step length: " + stepLength);

}

private Matrix calcBInverseFromEtaFile() {

Matrix result = originalBInverse;

foreach (Matrix eta in etaFile) {

result = eta * result;

}

if (etaFile.Count > 0 && printControl.inverseDiscrepancy) {

float max = 0;

Matrix discrepancy = result - B.invert();

for (int r = 0; r < discrepancy.Rows; ++r) {

for (int c = 0; c < discrepancy.Cols; ++c) {

float absVal = Math.Abs(discrepancy[r, c]);

if (absVal > max)

max = absVal;

}

}

Console.WriteLine("Largest discrepancy: {0}", max);

}
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return result;

}

private void UPDATE_BASIS(int enteringCol, int leavingRow, Matrix

stepDirection) {

Matrix tempM = N.getColumn(enteringCol);

N.setColumn(enteringCol, B.getColumn(leavingRow));

B.setColumn(leavingRow, tempM);

float dxi = stepDirection[leavingRow, 0];

if (dxi == 0) throw new Exception();

Matrix etaMatrix = new Matrix(B.Rows, B.Cols, true, "Eta" + etaFile.

Count);

for (int r = 0; r < etaMatrix.Rows; ++r) {

if (r == leavingRow)

etaMatrix[r, leavingRow] = 1 / dxi;

else
etaMatrix[r, leavingRow] = -stepDirection[r, 0] / dxi;

}

etaFile.Add(etaMatrix);

if (printControl.etaFileSize) Console.WriteLine("{0} eta matrices",

etaFile.Count);

int enteringVar = nonbasicVars[enteringCol];

int leavingVar = basicVars[leavingRow];

float tempF = cNonbasic[enteringCol, 0];

cNonbasic[enteringCol, 0] = cBasic[leavingRow, 0];

cBasic[leavingRow, 0] = tempF;

int tempI = nonbasicVars[enteringCol];

nonbasicVars[enteringCol] = basicVars[leavingRow];

basicVars[leavingRow] = tempI;

basicStatus[enteringVar] = true;
basicStatus[leavingVar] = false;
tempI = position[enteringVar];

position[enteringVar] = position[leavingVar];

position[leavingVar] = tempI;

if (printControl.variableLists) {

Console.Write("Basic: ");

for (int i = 0; i < m; ++i)

Console.Write(basicVars[i] + " ");

Console.Write("\nNonbasic: ");

for (int i = 0; i < n; ++i)

Console.Write(nonbasicVars[i] + " ");
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Console.WriteLine();

}

if (printControl.iterationCount) print("\nCompleted iteration " + ki);

if (printControl.iterationSeparator) print("\n\n");

}

private void UPRHS(int leavingRow, float stepLength, Matrix stepDirection)

{

basicValues -= stepLength * stepDirection;

basicValues[leavingRow, 0] = stepLength;

//basicValues = calcBInverseFromEtaFile() * origRhs;

//basicValues.Name = "b";

if (printControl.objectiveValue) {

Matrix objectiveValue = cBasic.transpose() * basicValues;

Debug.Assert(objectiveValue[0, 0] >= 0);

print("Objective value: " + objectiveValue[0, 0]);

}

}

private void applyIncomingBasisChanges() {

Message message;

while ((message = receive("I*", "I7->I2I3I10")) != null) {

Debug.Assert(message.tag == "I7->I2I3I10");

BasisChangeMessage msg = (BasisChangeMessage)message.payload;

UPDATE_BASIS(position[msg.enteringVar], position[msg.leavingVar], msg.

stepDirection);

UPRHS(position[msg.leavingVar], msg.stepLength, msg.stepDirection);

++ki;

}

}

public override void run() {

Message message;

ki = 0;

Matrix piTranspose;

BTRAN_calcPiTranspose(out piTranspose);

Matrix reducedCosts;

PRICE_calcReducedCosts(piTranspose, out reducedCosts);

int enteringCol, enteringVar;

List<AttractiveCandidate> attractive;

CHUZC_findAttractiveEntering(reducedCosts, out enteringCol, out
enteringVar, out attractive);

while (!Program.Finished) {
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while ((message = receive("V")) != null) {

Debug.Assert(message.tag == "V2->I1");

InverseMatrixMessage invMsg = (InverseMatrixMessage)message.payload;

if (invMsg.basisNumber <= currentEtaBasis) { // Skip outdated

matrices

print("Got outdated BˆI for basis " + invMsg.basisNumber + ";

currently at basis " + currentEtaBasis + " / " + ki);

continue;
}

if (invMsg.basisNumber > ki) {

print("Got too new BˆI for basis " + invMsg.basisNumber + ";

currently at basis " + currentEtaBasis + " / " + ki);

continue;
}

originalBInverse = invMsg.inverse;

int removeCount = invMsg.basisNumber - currentEtaBasis;

Debug.Assert(etaFile.Count >= removeCount);

etaFile.RemoveRange(0, removeCount);

currentEtaBasis += removeCount;

print("Got new BˆI for basis " + currentEtaBasis + "; eta file size

is " + etaFile.Count);

}

applyIncomingBasisChanges();

//FTRAN

Matrix stepDirection = null;
if (enteringCol != -1) {

stepDirection = calcBInverseFromEtaFile() * N.getColumn(enteringCol)

; // \hat{a}_q

stepDirection.Name = "step direction";

if (printControl.stepDirection) stepDirection.print();

}

bool keepGoing;

do {

keepGoing = false;
applyIncomingBasisChanges();

//FTRAN

if (enteringCol != -1) {

stepDirection = calcBInverseFromEtaFile() * N.getColumn(

enteringCol); // \hat{a}_q

stepDirection.Name = "step direction";

if (printControl.stepDirection) stepDirection.print();

}

Debug.Assert((enteringVar == -1 && enteringCol == -1) || enteringCol
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== position[enteringVar]);

if (enteringVar == -1 || basicStatus[enteringVar] || reducedCosts[0,

enteringCol] < 0) { //TODO: The pseudocode uses < - why perform

a zero-advance pivot?

send("C", "I4->C4", new int[]{enteringVar, ki});

}

else {

send("R", "I5->R1", ki);

while ((message = receive("R")) == null) {

if (Program.Finished)

return;
Thread.Sleep(10);

}

Debug.Assert(message.tag == "R2->I6" || message.tag == "R3->I6");

bool accepted = (bool)message.payload;
if (accepted) {

int leavingRow, leavingVar;

float stepLength;

CHUZR_chooseLeaving(stepDirection, out leavingRow, out
leavingVar, out stepLength);

if (leavingRow == -1) {

Console.WriteLine("Unbounded");

Program.Finished = true;
Console.ReadLine();

return;
}

for (int i = 0; i < numIterationProcesses; ++i) {

if (i == processIndex) continue;
BasisChangeMessage basisChangeMessage = new BasisChangeMessage

() {enteringVar = enteringVar, leavingVar = leavingVar,

stepDirection = stepDirection, stepLength = stepLength};

send("I" + i, "I7->I2I3I10", basisChangeMessage);

}

send("V", "I8->V1", new int[] { enteringCol, leavingRow, });

send("C", "I8->C1", new int[] { enteringVar, leavingVar, ki });

UPDATE_BASIS(enteringCol, leavingRow, stepDirection);

UPRHS(leavingRow, stepLength, stepDirection);

++ki;

BTRAN_calcPiTranspose(out piTranspose);

PRICE_calcReducedCosts(piTranspose, out reducedCosts);

CHUZC_findAttractiveEntering(reducedCosts, out enteringCol, out
enteringVar, out attractive);

if (attractive.Count == 0) {

Console.WriteLine("Optimal");

Program.Finished = true;
Communication.printMessages();

Console.ReadLine();
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return;
}

AttractiveCandidatesMessage msg = new
AttractiveCandidatesMessage();

msg.basisNumber = ki;

msg.attractiveVariables = new int[attractive.Count];
for (int i = 0; i < attractive.Count; ++i) {

msg.attractiveVariables[i] = attractive[i].index;

print(attractive[i].index + " is attractive");

}

send("C", "I9->C2", msg);

}

else {

while ((message = receive("I*", "I7->I10")) == null) {

if (Program.Finished)

return;
Thread.Sleep(10);

}

Debug.Assert(message.tag == "I7->I10", "Expected I7->I10, got "

+ message.tag);

throw new NotImplementedException();

//TODO: Apply basis change

++ki;

print("Keep going");

keepGoing = true;
}

}

} while (keepGoing);

while ((message = receive("C")) == null) {

if (Program.Finished)

return;
Thread.Sleep(10);

}

Debug.Assert(message.tag == "C3->I11" || message.tag == "C5->I11");

applyIncomingBasisChanges();

enteringVar = (int)message.payload;
enteringCol = position[enteringVar];

print("got suggested entering variable: x" + enteringVar);

}

}

}

}
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Matrix.cs

A class for representing dense matrices and performing linear algebra operations on them.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace CS_asynplex {

class Matrix {

private int rows;

private int cols;

private float[] data;

private string name;

public int Rows { get { return rows; } }

public int Cols { get { return cols; } }

public string Name { get { return name; } set { name = value; } }

public Matrix(int rows, int cols) {

if (rows <= 0 || cols <= 0)

throw new ArgumentException();

this.rows = rows;

this.cols = cols;

this.data = new float[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this.data[i] = 0;

}

public Matrix(int rows, int cols, string name) : this(rows, cols) {

this.name = name;

}

public Matrix(int rows, int cols, float[] data) {

if (rows <= 0 || cols <= 0)

throw new ArgumentException();

this.rows = rows;

this.cols = cols;

this.data = new float[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this.data[i] = data[i];

}

public Matrix(int rows, int cols, float[] data, string name) : this(rows,
cols, data) {

this.name = name;

}
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public Matrix(int rows, int cols, bool identity) {

if (rows <= 0 || cols <= 0)

throw new ArgumentException();

this.rows = rows;

this.cols = cols;

this.data = new float[rows * cols];

for (int i = 0; i < rows * cols; ++i)

this.data[i] = 0;

if (identity && rows == cols) {

for (int i = 0; i < rows; ++i) {

this[i, i] = 1;

}

}

}

public Matrix(int rows, int cols, bool identity, string name) : this(rows,
cols, identity) {

this.name = name;

}

public Matrix(Matrix source) {

this.rows = source.rows;

this.cols = source.cols;

this.data = new float[source.rows * source.cols];

this.name = source.name;

for (int i = 0; i < source.rows * source.cols; ++i)

this.data[i] = source.data[i];

}

public Matrix copy() {

return new Matrix(rows, cols, data, name);

}

public float this[int r, int c] {

get {

if (r < 0 || c < 0 || r >= rows || c >= cols)

throw new ArgumentException("Index out of range");

return data[r * cols + c];

}

set {

if (r < 0 || c < 0 || r >= rows || c >= cols)

throw new ArgumentException("Index out of range");

data[r * cols + c] = value;

}

}
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public Matrix getColumn(int c) {

if (c < 0 || c >= cols)

throw new ArgumentException();

Matrix column = new Matrix(rows, 1);

for (int r = 0; r < rows; ++r)

column[r, 0] = this[r, c];

return column;

}

public void setColumn(int c, Matrix column) {

if (c < 0 || c >= cols || column.cols != 1 || column.rows != rows)

throw new ArgumentException();

for (int r = 0; r < rows; ++r)

this[r, c] = column[r, 0];

}

public void print() {

Console.Write("=== {0} x {1}", rows, cols);

if (name != null && name != "")

Console.Write(" ({0})", name);

Console.WriteLine(" ===");

for (int r = 0; r < rows; ++r) {

Console.Write(data[r * cols]);

for (int c = 1; c < cols; ++c)

Console.Write(" " + data[r * cols + c]);

Console.WriteLine();

}

Console.WriteLine("======");

}

public static Matrix operator +(Matrix self, Matrix other) {

if (self.rows != other.rows && self.cols != other.cols)

throw new ArgumentException("Matrix sizes are not equal");

Matrix result = new Matrix(self.rows, self.cols);

for (int r = 0; r < self.rows; ++r) {

for (int c = 0; c < self.cols; ++c) {

result[r, c] = self[r, c] + other[r, c];

}

}

return result;

}

public static Matrix operator -(Matrix self, Matrix other) {

if (self.rows != other.rows && self.cols != other.cols)

throw new ArgumentException("Matrix sizes are not equal");

Matrix result = new Matrix(self.rows, self.cols);
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for (int r = 0; r < self.rows; ++r) {

for (int c = 0; c < self.cols; ++c) {

result[r, c] = self[r, c] - other[r, c];

}

}

return result;

}

public static Matrix operator *(Matrix self, Matrix other) {

if (self.cols != other.rows)

throw new ArgumentException("Matrices are not compatible");

Matrix result = new Matrix(self.rows, other.cols);

for (int i = 0; i < self.rows; ++i) {

for (int j = 0; j < other.cols; ++j) {

float sum = 0;

for (int k = 0; k < self.cols; ++k) {

sum += self[i, k] * other[k, j];

}

if (Math.Abs(sum) < 0.00001f)

sum = 0.0f;

result[i, j] = sum;

}

}

return result;

}

public static Matrix operator *(Matrix self, float factor) {

Matrix result = new Matrix(self.rows, self.cols);

for (int r = 0; r < self.rows; ++r) {

for (int c = 0; c < self.cols; ++c) {

result[r, c] = self[r, c] * factor;

}

}

return result;

}

public static Matrix operator *(float factor, Matrix self) {

return self * factor;

}

public Matrix transpose() {

Matrix result = new Matrix(cols, rows);

for (int r = 0; r < rows; ++r) {

for (int c = 0; c < cols; ++c) {

result[c, r] = this[r, c];

}

}
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return result;

}

public void multiplyRow(int row, float factor) {

if (factor == 1) return;
for (int j = 0; j < cols; ++j) {

this[row, j] *= factor;

}

}

public void addRows(int sourceRow, int destinationRow, float factor) {

if (factor == 0) return;
for (int j = 0; j < cols; ++j) {

this[destinationRow, j] += this[sourceRow, j] * factor;

}

}

public void swapRows(int firstRow, int secondRow) {

if (firstRow == secondRow) return;
for (int j = 0; j < cols; ++j) {

float tmp = this[firstRow, j];

this[firstRow, j] = this[secondRow, j];

this[secondRow, j] = tmp;

}

}

public Matrix invert() {

if (rows != cols) throw new ArgumentException("Non-square matrices

cannot be inverted");

Matrix self = copy();

Matrix inverse = new Matrix(rows, cols, true);
for (int rc = 0; rc < cols; ++rc) {

// Locate row with nonzero in this column

int searchRow = rc;

while (searchRow < rows && self[searchRow, rc] == 0)

++searchRow;

if (searchRow == rows)

throw new ArgumentException("Matrix is singular");

// Swap with current row; now the current row has nonzero in this

column

self.swapRows(rc, searchRow);

inverse.swapRows(rc, searchRow);

float factor = 1 / self[rc, rc];

self.multiplyRow(rc, factor);

inverse.multiplyRow(rc, factor);

for (int r = 0; r < rows; ++r) {

if (r == rc) continue;
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float innerFactor = -self[r, rc];

self.addRows(rc, r, innerFactor);

inverse.addRows(rc, r, innerFactor);

}

}

return inverse;

}

}

}

Program.cs

Driver code.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.IO;

using System.Globalization;

using System.Threading;

namespace CS_asynplex {

class PrintControl {

public bool B = false;
public bool N = false;
public bool cBasic = false;
public bool cNonbasic = false;
public bool b = false;
public bool piTranspose = false;
public bool reducedCosts = false;
public bool stepDirection = false;
public bool stepLength = false;
public bool pivotDecisions = false;
public bool pivotResults = false;
public bool variableLists = false;
public bool iterationCount = false;
public bool iterationSeparator = false;
public bool objectiveValue = false;
public bool etaFileSize = false;
public bool inverseDiscrepancy = false;

}

class Program {

const float EPS = 0.0000005f;

private static bool equalsEpsilon(float a, float b) {
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return Math.Abs(a - b) < EPS;

}

private static object finishedLock = new object();
private static bool _finished = false;
public static bool Finished {

get {

lock (finishedLock) {

return _finished;

}

}

set {

lock (finishedLock) {

_finished = value;

}

}

}

static void Main(string[] args) {

StreamReader sr = new StreamReader(args[0]);

string[] items = sr.ReadLine().Split(’ ’);

//Random random = new Random();

int m = int.Parse(items[0]) - 1;

int n = int.Parse(items[1]) - 1;

Matrix N = new Matrix(m, n, "N");

Matrix B = new Matrix(m, m, true, "B");

List<Matrix> etaFile = new List<Matrix>();

Matrix cNonbasic = new Matrix(n, 1, "cNonbasic");

Matrix cBasic = new Matrix(m, 1, "cBasic");

Matrix basicValues = new Matrix(m, 1, "basicValues"); // Starts out as

the b vector; will always equal Bˆ{-1} * b

items = sr.ReadLine().Split(’ ’);

for (int c = 0; c < n; ++c) {

cNonbasic[c, 0] = float.Parse(items[c], CultureInfo.InvariantCulture.

NumberFormat);

}

for (int r = 0; r < m; ++r) {

items = sr.ReadLine().Split(’ ’);

for (int c = 0; c < n; ++c) {

N[r, c] = float.Parse(items[c], CultureInfo.InvariantCulture.

NumberFormat);

}

basicValues[r, 0] = float.Parse(items[n], CultureInfo.InvariantCulture

.NumberFormat);
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}

sr.Close();

int[] nonbasicVars = new int[n];
int[] basicVars = new int[m];
for (int i = 1; i <= n; ++i)

nonbasicVars[i - 1] = i;

for (int i = n + 1; i <= n + m; ++i)

basicVars[i - n - 1] = i;

bool useAsynplex = true;
if (useAsynplex) {

const int numIterationProcesses = 4;

InversionProcess invertProcessor = new InversionProcess(N,

numIterationProcesses);

BasisChangeProcess basisChangeManager = new BasisChangeProcess();

ColumnSelectionProcess columnSelectionManager = new
ColumnSelectionProcess(m, n);

Thread t;

t = new Thread(invertProcessor.run);

t.Name = "Invert processor";

t.Start();

t = new Thread(basisChangeManager.run);

t.Name = "Basis change manager";

t.Start();

t = new Thread(columnSelectionManager.run);

t.Name = "Column selection manager";

t.Start();

for (int i = 0; i < numIterationProcesses; ++i) {

IterationProcess iter = new IterationProcess(i,

numIterationProcesses, m, n, N, basicValues, cNonbasic);

t = new Thread(iter.run);

t.Name = "Iteration process " + i;

t.Start();

}

return;
}

Matrix originalBInverse = new Matrix(B.Rows, B.Cols, true, "orig BˆI");

PrintControl printControl = new PrintControl() { iterationCount = true,
objectiveValue = true, pivotResults = true};

int iterationCount = 1;

int reinversionPeriod = 5;

while (true) {

if (printControl.B) B.print();

if (printControl.N) N.print();

if (printControl.cBasic) cBasic.print();
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if (printControl.cNonbasic) cNonbasic.print();

if (printControl.b) basicValues.transpose().print();

Matrix bInverse;

while (true) {

try {

if ((iterationCount - 1) % reinversionPeriod == 0) {

originalBInverse = B.invert();

etaFile.Clear();

}

if (printControl.etaFileSize) Console.WriteLine("{0} eta matrices"

, etaFile.Count);

bInverse = originalBInverse;

foreach (Matrix eta in etaFile) {

bInverse = eta * bInverse;

}

if (etaFile.Count > 0 && printControl.inverseDiscrepancy) {

float max = 0;

Matrix discrepancy = bInverse - B.invert();

for (int r = 0; r < discrepancy.Rows; ++r) {

for (int c = 0; c < discrepancy.Cols; ++c) {

float absVal = Math.Abs(discrepancy[r, c]);

if (absVal > max)

max = absVal;

}

}

Console.WriteLine("Largest discrepancy: {0}", max);

}

break;
}

catch (ArgumentException) {

throw;
//Console.WriteLine("reinverting");

//int i = random.Next(0, m), j;

//do {

// j = random.Next(0, m);

//} while (j == i);

//Matrix col = B.getColumn(i);

//B.setColumn(i, B.getColumn(j));

//B.setColumn(j, col);

//continue;

}

}

//BTRAN

Matrix piTranspose = cBasic.transpose() * bInverse; // \piˆT

piTranspose.Name = "piˆT";
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if (printControl.piTranspose) piTranspose.print();

//PRICE

Matrix reducedCosts = cNonbasic.transpose() - piTranspose * N; // \hat

{c}_NˆT

reducedCosts.Name = "reduced costs";

if (printControl.reducedCosts) reducedCosts.print();

if (printControl.objectiveValue) {

Matrix objectiveValue = cBasic.transpose() * basicValues;

Console.WriteLine("Objective value: {0}", objectiveValue[0, 0]);

}

//CHUZC

int enteringCol = -1; // q

for (int c = 0; c < reducedCosts.Cols; ++c) {

if (reducedCosts[0, c] > 0) {

Console.Write(c + " ");

}

if (reducedCosts[0, c] > 0

&& (enteringCol == -1

|| (reducedCosts[0, c] > reducedCosts[0, enteringCol] && !

equalsEpsilon(reducedCosts[0, c], reducedCosts[0,

enteringCol]))

|| (equalsEpsilon(reducedCosts[0, c], reducedCosts[0,

enteringCol]) && nonbasicVars[c] < nonbasicVars[enteringCol

]))) {

if (printControl.pivotDecisions) Console.WriteLine("Choosing {0}

over {1} to enter; reduced cost is {2}", c + 1, enteringCol +

1, reducedCosts[0, c]);

enteringCol = c;

}

}

Console.WriteLine();

if (enteringCol == -1) {

Console.WriteLine("Optimal");

break;
}

int enteringVar = nonbasicVars[enteringCol];

if (printControl.pivotResults) Console.WriteLine("Entering variable: x

{1} (column {0})", enteringCol, enteringVar);

//FTRAN

Matrix stepDirection = bInverse * N.getColumn(enteringCol); // \hat{a}

_q

stepDirection.Name = "step direction";

if (printControl.stepDirection) stepDirection.print();
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//CHUZR

int leavingRow = -1; // p

float largestRatio = 0; // step length (\alpha)

for (int r = 0; r < basicValues.Rows; ++r) {

float ratio;

if (stepDirection[r, 0] == 0 && basicValues[r, 0] == 0)

ratio = 0;

else
ratio = stepDirection[r, 0] / basicValues[r, 0];

if (ratio > 0 && (leavingRow == -1 || ratio > largestRatio || (ratio

== largestRatio && basicVars[r] < basicVars[leavingRow]))) {

if (printControl.pivotDecisions) Console.WriteLine("Choosing {0}

over {1} to leave; ratio is {2}", r + 1, leavingRow + 1, ratio

);

leavingRow = r;

largestRatio = ratio;

}

}

if (leavingRow == -1) {

Console.WriteLine("Unbounded");

break;
}

float stepLength = 1 / largestRatio;

int leavingVar = basicVars[leavingRow];

if (printControl.pivotResults) Console.WriteLine("Leaving variable: x

{1} (row {0})", leavingRow, leavingVar);

if (printControl.stepLength) Console.WriteLine("Step length: {0}",

stepLength);

//UPRHS

basicValues -= stepLength * stepDirection;

basicValues[leavingRow, 0] = stepLength;

basicValues.Name = "b";

//UPDATE (should normally also calculate/update inverse here)

Matrix tempM = N.getColumn(enteringCol);

N.setColumn(enteringCol, B.getColumn(leavingRow));

B.setColumn(leavingRow, tempM);

float dxi = stepDirection[leavingRow, 0];

if (dxi == 0) throw new Exception();

Matrix etaMatrix = new Matrix(B.Rows, B.Cols, true, "Eta" + etaFile.

Count);

for (int r = 0; r < etaMatrix.Rows; ++r) {

if (r == leavingRow)

etaMatrix[r, leavingRow] = 1 / dxi;
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else
etaMatrix[r, leavingRow] = -stepDirection[r, 0] / dxi;

}

etaFile.Add(etaMatrix);

float tempF = cNonbasic[enteringCol, 0];

cNonbasic[enteringCol, 0] = cBasic[leavingRow, 0];

cBasic[leavingRow, 0] = tempF;

int tempI = nonbasicVars[enteringCol];

nonbasicVars[enteringCol] = basicVars[leavingRow];

basicVars[leavingRow] = tempI;

if (printControl.variableLists) {

Console.Write("Basic: ");

for (int i = 0; i < m; ++i)

Console.Write(basicVars[i] + " ");

Console.Write("\nNonbasic: ");

for (int i = 0; i < n; ++i)

Console.Write(nonbasicVars[i] + " ");

Console.WriteLine();

}

if (printControl.iterationCount) Console.WriteLine("\nCompleted

iteration {0}", iterationCount++);

if (printControl.iterationSeparator) Console.WriteLine("\n\n");

}

Console.ReadLine();

}

}

}

A.4 ASYNPLEX for x86, based on Vanderbei

(TODO: Describe each file: purpose, and if we have changed it)

A.5 ASYNPLEX for Cell/BE, based on Vanderbei

(TODO: Describe each file: purpose, and if we have changed it) The complete code base, with
Eclipse project files and all the Vanderbei files that we have not modified, can be found in the
electronic attachment in the thesis submission system DAIM.
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A.6 (RP) Utilities

We could not find any available parsers for the MPS or CPLEX file formats, so we had to write our
own. Other people may find them useful, so we include them here. Common languages of choice
for writing small text manipulation programs are Python and Perl; we selected the former since
we are more familiar with it.

Important note: These parsers are not fully compliant with the MPS and CPLEX file format
specifications. They seem to work with the data sets we have used, but have not been thoroughly
tested beyond that.

(RP) mps.py — MPS file format parser

This parser was written in the early stages of the project, when our standard simplex solver would
simply expect a full tableau as input. The parser first outputs a line containing m (the number of
rows) and n (the number of columns), followed by m lines containing n numbers each. The first
row contains the objective function coefficients, and the leftmost column contains the right hand
sides from the constraints. The tableau body contains the negatives of the original coefficients, as
per our discussion in Section 2.1.2. Equality constraints are split into two less-than constraints.

We later rewrote the parser to C++ (mps.cpp as listed above), so that it could be an integrated
part of our solver.

Note that both this parser and the C++ port are fairly simplistic, and they do not handle the
BOUNDS or RANGES sections. As such, the number of netlib sets on which they (and thereby our
entire standard simplex solver) can be used is reduced to 54 (from a total of 98); see the netlib
README file for information on which sets contain which sections. Also, note that since the
MPS format does not specify the direction of optimisation, and the netlib default seems to be
minimisation, the CPLEX parser will negate the objective function for all maximisation data sets.

#!/usr/bin/python

from sys import stdin

class Row:

label = None

type = None

values = None

index = None

def __init__(self, label, type, index):

self.label = label

self.type = type

self.index = index

self.values = {}

def __str__(self):

return self.label + " (" + self.type + "): " + str(self.values)

lines = []

for line in stdin:
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lines.append(line)

rows = {}

columnLabels = []

columnIndices = {}

i = 0

while i < len(lines):

line = lines[i]

i += 1

if line[0] == ’ ’:

pass
else:

header = line.strip()

if header == "ROWS":

rowIndex = 0

while lines[i][0] == ’ ’:

items = lines[i].split()

row = Row(items[1].strip(), items[0].strip(), rowIndex)

if row.type == "N":

objectiveIndex = rowIndex

rows[row.label] = row

rowIndex += 1

i += 1

tableau = [None] * len(rows)

elif header == "COLUMNS":

columnIndex = -1

while lines[i][0] == ’ ’:

items = lines[i].split()

lim = 2 if len(items) == 5 else 1

columnLabel = items[0].strip()

if not columnIndices.has_key(columnLabel):

columnIndex += 1

columnLabels.append(columnLabel)

columnIndices[columnLabel] = columnIndex

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rows[rowLabel].values[columnLabel] = value

i += 1

for j in xrange(len(tableau)):

tableau[j] = [0] * (len(columnLabels) + 1)

for row in rows.values():

for colLabel in row.values:

tableau[row.index][columnIndices[colLabel]] = row.values[colLabel]

elif header == "RHS":

while lines[i][0] == ’ ’:

items = lines[i].split()
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lim = 2 if len(items) == 5 else 1

for j in xrange(lim):

rowLabel = items[1 + j * 2].strip()

value = float(items[2 + j * 2].strip())

rowIndex = rows[rowLabel].index

tableau[rowIndex][-1] = value

i += 1

for row in rows.values():

tab = tableau[row.index]

if row.type == "G":

for i in xrange(len(tab)):

tab[i] = -tab[i]

elif row.type == "E":

tableau.append([-x for x in tab])

tmp = tableau[objectiveIndex]

tableau[objectiveIndex] = tableau[0]

tableau[0] = tmp

ti = 0

while ti < len(tableau):

nonzero = 0

for x in tableau[ti]:

if x != 0:

nonzero = 1

break
if not nonzero:

tableau.pop(ti)

ti -= 1

ti += 1

print len(tableau), len(tableau[0])

for tab in tableau:

for cell in tab:

print cell,

print

(RP) cplex.py — ILOG CPLEX file format parser

This parser was written in order to convert some sample data sets we received from Miriam AS to
the MPS format. A restriction of the MPS format is that the row and column names are limited in
length. Therefore, our parser will convert any name that is longer than eight characters to a string
that is formed by appending a sequence number (starting at zero) to the string v (a very arbitrary
choice). For instance, the fourth name that is found to be too long will be converted to v3. Further
occurrences of the same name will of course be replaced by the same string. The parser does not,
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however, check for name collisions with variables who actually have that name.
Note that while the CPLEX format allows constraints to be split over multiple lines, this parser

not handle that, so files containing split constraints must be modified by joining such constraints
into one line.

#!/usr/bin/python

from sys import stdin, stderr

class Equation:

comparator = ""

constant = 0

values = {}

name = ""

def __init__(self, comparator, constant, name):

self.comparator = comparator

self.constant = constant

self.values = {}

self.name = name

class Bound:

variable = ""

lower = 0

upper = None

free = False

fixed = False

def __init__(self, variable):

self.variable = variable

variableCodeNames = {}

def truncate(name):

global variableCodeNames

if len(name) <= 8:

return name

else:
if variableCodeNames.has_key(name):

return variableCodeNames[name]

else:
codeName = "v" + str(len(variableCodeNames))

variableCodeNames[name] = codeName

return codeName

def printCodeNames():
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global variableCodeNames

if len(variableCodeNames) > 0:

stderr.write("Some variable names have been changed:\n")

stderr.write("New\tOriginal\n")

for name in variableCodeNames:

stderr.write(variableCodeNames[name] + "\t" + name + "\n")

def expand(string, length):

if len(string) > length:

raise ValueError("string too long")

return string + " " * (length - len(string))

class LP:

pos = 0

lines = []

variables = {}

equations = []

variableList = []

bounds = []

direction = "max"

def __init__(self):

lines = []

variables = {}

equations = []

variableList = []

def printMPS(self):

print "NAME UNKNOWN"

print "ROWS"

for eq in self.equations:

if eq.comparator == "=":

print " E ",

elif eq.comparator[0] == "<":

print " L ",

elif eq.comparator[0] == ">":

print " G ",

elif eq.comparator == "obj":

print " N ",

else:
raise NameError("Illegal comparator: " + eq.comparator)

print expand(truncate(eq.name), 8)

print "COLUMNS"

for var in self.variableList:

for eq in self.equations:

if eq.values.has_key(var):

line = expand(" " + truncate(var), 14) + truncate(eq.name)
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print expand(line, 24) + str(eq.values[var])

print "RHS"

for eq in self.equations:

if eq.constant != 0:

print expand(" B " + truncate(eq.name), 24) + str(eq.

constant)

print "BOUNDS"

for bound in self.bounds:

if bound.free:

print " FR BOUND " + truncate(bound.variable)

elif bound.fixed:

print expand(" FX BOUND " + truncate(bound.variable), 24) + str(

bound.upper)

else:
if bound.lower != 0:

print expand(" LO BOUND " + truncate(bound.variable), 24) + str(

bound.lower)

if bound.upper != None:

print expand(" UP BOUND " + truncate(bound.variable), 24) + str(

bound.upper)

print "ENDATA"

def parseObjective(self):

tokens = self.lines[self.pos]

self.pos += 1

self.parseEquation(tokens, 1)

def parseEquation(self, tokens, isObjective):

if tokens[1] != ’+’ and tokens[1] != ’-’:

tokens.insert(1, ’+’)

if isObjective:

eq = Equation("obj", 0, "OBJ")

else:
eq = Equation(tokens[-2], float(tokens[-1]), tokens[0][:-1])

self.equations.append(eq)

i = 1

limit = len(tokens) - 1 if isObjective else len(tokens) - 3

while i < limit:

if tokens[i] == ’-’:

sign = -1

elif tokens[i] == ’+’:

sign = 1

else:
print "Illegal sign on line", self.pos, ":", tokens

if isObjective and self.direction == "max":

sign *= -1

try:
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value = float(tokens[i + 1])

i += 2

except ValueError:

value = 1

i += 1

name = tokens[i]

self.addVariable(name)

eq.values[name] = sign * value

i += 1

def parseEquations(self):

while 1:

tokens = self.lines[self.pos]

if tokens[0][-1] != ’:’: break
self.pos += 1

self.parseEquation(tokens, 0)

def addVariable(self, name):

if not self.variables.has_key(name):

self.variables[name] = len(self.variables)

self.variableList.append(name)

def parseBounds(self):

while 1:

tokens = self.lines[self.pos]

if len(tokens) == 1: break
self.pos += 1

if len(tokens) == 2 and tokens[1] == "Free":

bound = Bound(tokens[0])

bound.free = True

self.bounds.append(bound)

elif len(tokens) == 3:

bound = Bound(tokens[0])

if tokens[1][0] == "<":

bound.upper = float(tokens[2])

elif tokens[1][0] == ">":

bound.lower = float(tokens[2])

elif tokens[1][0] == "=":

bound.fixed = True

bound.upper = float(tokens[2])

else:
raise NameError("Illegal bound type")

self.bounds.append(bound)

elif len(tokens) == 5:

bound = Bound(tokens[2])

bound.lower = float(tokens[0])

bound.upper = float(tokens[4])
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self.bounds.append(bound)

else:
print "Unrecognised bounds line:", self.pos, ":", tokens

def parse(self):

for line in stdin:

tokens = line.split()

if len(tokens) == 0 or tokens[0] == ’\\’: continue
self.lines.append(tokens)

self.pos = 0

while self.pos < len(self.lines):

if self.lines[self.pos][0] == "Maximize":

self.direction = "max"

self.pos += 1

self.parseObjective()

elif self.lines[self.pos][0] == "Minimize":

self.direction = "min"

self.pos += 1

self.parseObjective()

elif self.lines[self.pos][0] == "Subject":

self.pos += 1

self.parseEquations()

elif self.lines[self.pos][0] == "Bounds":

self.pos += 1

self.parseBounds()

else:
self.pos += 1

lp = LP()

lp.parse()

lp.printMPS()

printCodeNames()



Appendix B
(RP) Data sets

The full netlib collection is freely available online (see Section 2.3.1), so we only produce one
small set here in order to show an example of a file in the MPS format. The answers to all netlib
sets can be found in the netlib README file. We also received four small sets (extracted from a
larger data set) from Miriam AS.

B.1 (RP) Sample netlib data set — afiro.mps

This is the afiro set, in MPS format. It contains 32 variables and 27 constraints, and 88 nonzero
coefficients. The answer, according to the README file, is −4.6475314286 · 102.

***************************

* SET UP THE INITIAL DATA *

***************************
NAME AFIRO

* Problem:

* ********

* An LP, contributed by Michael Saunders.

* Source:

* The NETLIB collection of test problems.

* SIF input: (already in MPS format)

* classification LLR2-AN-32-27

ROWS

E R09

E R10

L X05

L X21

E R12

E R13

L X17

L X18

L X19

155



156 APPENDIX B. (RP) DATA SETS

L X20

E R19

E R20

L X27

L X44

E R22

E R23

L X40

L X41

L X42

L X43

L X45

L X46

L X47

L X48

L X49

L X50

L X51

N COST

COLUMNS

X01 X48 .301 R09 -1.

X01 R10 -1.06 X05 1.

X02 X21 -1. R09 1.

X02 COST -.4

X03 X46 -1. R09 1.

X04 X50 1. R10 1.

X06 X49 .301 R12 -1.

X06 R13 -1.06 X17 1.

X07 X49 .313 R12 -1.

X07 R13 -1.06 X18 1.

X08 X49 .313 R12 -1.

X08 R13 -.96 X19 1.

X09 X49 .326 R12 -1.

X09 R13 -.86 X20 1.

X10 X45 2.364 X17 -1.

X11 X45 2.386 X18 -1.

X12 X45 2.408 X19 -1.

X13 X45 2.429 X20 -1.

X14 X21 1.4 R12 1.

X14 COST -.32

X15 X47 -1. R12 1.

X16 X51 1. R13 1.

X22 X46 .109 R19 -1.

X22 R20 -.43 X27 1.

X23 X44 -1. R19 1.

X23 COST -.6

X24 X48 -1. R19 1.
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X25 X45 -1. R19 1.

X26 X50 1. R20 1.

X28 X47 .109 R22 -.43

X28 R23 1. X40 1.

X29 X47 .108 R22 -.43

X29 R23 1. X41 1.

X30 X47 .108 R22 -.39

X30 R23 1. X42 1.

X31 X47 .107 R22 -.37

X31 R23 1. X43 1.

X32 X45 2.191 X40 -1.

X33 X45 2.219 X41 -1.

X34 X45 2.249 X42 -1.

X35 X45 2.279 X43 -1.

X36 X44 1.4 R23 -1.

X36 COST -.48

X37 X49 -1. R23 1.

X38 X51 1. R22 1.

X39 R23 1. COST 10.

RHS

B X50 310. X51 300.

B X05 80. X17 80.

B X27 500. R23 44.

B X40 500.

ENDATA

B.2 (RP) Data sets provided by Miriam AS

These sets are in the ILOG CPLEX format. Miriam AS also provided us with the answers found
by CPLEX.

dp 0.lp

Answer: 4.20001 · 102.

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0

CapE52: v52_49 - RgCapE52 = 0

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0
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OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 - RgCapS60 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 - RgCapS61 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 - RgCapS62 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 - x546_49 = 0

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

Dem53_49: d53_49 <= 150

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0

SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 200

0 <= v51_49 <= 200

0 <= v52_49 <= 200

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 299.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 120

0 <= RgCapS60 <= 200

0 <= RgCapS61 <= 120

0 <= RgCapS62 <= 120

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

0 <= RgCapD54 <= 200
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End

dp 150.lp

Answer: 1.001 · 100.

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0

CapE52: v52_49 - RgCapE52 = 0

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0

OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 - x546_49 = 0

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

Dem53_49: d53_49 <= 150

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0

SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 100

0 <= v51_49 <= 100



160 APPENDIX B. (RP) DATA SETS

0 <= v52_49 <= 100

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 0.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 1

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

0 <= RgCapD54 <= 200

End

dp 170.lp

Answer: 1.00001 · 102.

Maximize

obj: v89_49 + zMax557 + zMax558 + id105

Subject To

CapE50: v50_49 - RgCapE50 = 0

OutBal50_49: v50_49 - x536_49 = 0

CapE51: v51_49 - RgCapE51 = 0

OutBal51_49: v51_49 - x538_49 = 0

CapE52: v52_49 - RgCapE52 = 0

OutBal52_49: v52_49 - x540_49 - x542_49 = 0

CapS59: v59_49 - RgCapS59 = 0

InBal59_49: x536_49 - v59_49 = 0

OutBal59_49: v59_49 - x548_49 - x550_49 = 0

CapS60: v60_49 - RgCapS60 = 0

InBal60_49: x550_49 - v60_49 + x544_49 = 0

OutBal60_49: v60_49 - x552_49 = 0

CapS61: v61_49 = 0

InBal61_49: x538_49 + x540_49 - v61_49 = 0

OutBal61_49: v61_49 - x554_49 = 0

CapS62: v62_49 = 0

InBal62_49: x542_49 - v62_49 = 0

OutBal62_49: v62_49 - x556_49 = 0

CapI89: v89_49 - RgCapI89 = 0

InBal89_49: x548_49 - x544_49 + x554_49 + x556_49 - v89_49 - x546_49 = 0

NetFlowP89: - v89_49 + vAbs89 >= 0

NetFlowN89: v89_49 + vAbs89 >= 0

CapD53: v53_49 - RgCapD53 = 0

Dem53_49: d53_49 <= 150



B.2. (RP) DATA SETS PROVIDED BY MIRIAM AS 161

Dem53: d53_49 <= 150

InBal53_49: x552_49 - v53_49 = 0

OutBal53_49: - v53_49 + d53_49 = 0

CapD54: v54_49 - RgCapD54 = 0

Dem54_49: d54_49 <= 150

Dem54: d54_49 <= 150

InBal54_49: x546_49 - v54_49 = 0

OutBal54_49: - v54_49 + d54_49 = 0

Max557: - d53_49 - d54_49 + zMax557 = 0

Comp557: Comp557 = 0

SMax558: - v89_49 + zMax558 = 0

Bounds

0 <= v50_49 <= 100

0 <= v51_49 <= 100

0 <= v52_49 <= 100

0 <= v53_49 <= 200

0 <= v54_49 <= 200

zMax557 >= 99.999

Comp557 Free

zMax558 >= -0.001

id105 = 0

0 <= RgCapE50 <= 200

0 <= RgCapE51 <= 200

0 <= RgCapE52 <= 200

0 <= RgCapS59 <= 120

0 <= RgCapS60 <= 200

0 <= RgCapI89 <= 900000000

0 <= RgCapD53 <= 200

0 <= RgCapD54 <= 200

End

gas.lp

Answer: 2.0009824199873 · 101.

Maximize

obj: zMax3873 + 0.000001 tieBreak0 + id214

Subject To

R2_3362: - v3362 + v3362_3371 = 0

R10_3362_3371: - v3362_3371 + x3856_3371 = 0

R2_3364: - v3364 + v3364_3371 = 0

R6_3364_3371: x3856_3371 - v3364_3371 = 0

R18_3856: - x3856 + 10 y3856 >= 0

R21_3856: _inletPressure3364 <= 10000

R25_3364_0: - 1.42072309829124 _inletPressure3364 +

_outletPressure3364 <= 8441.5873846062
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R25_3364_1: - 1.42916309321641 _inletPressure3364 +

_outletPressure3364 <= 8324.69345489257

R25_3364_2: - 1.43813237097197 _inletPressure3364 +

_outletPressure3364 <= 8205.40206074365

R25_3364_3: - 1.4476886789981 _inletPressure3364 +

_outletPressure3364 <= 8083.55913341047

R25_3364_4: - 1.45789899041056 _inletPressure3364 +

_outletPressure3364 <= 7958.99333417841

R25_3364_5: - 1.46884149019766 _inletPressure3364 +

_outletPressure3364 <= 7831.5132116587

R25_3364_6: - 1.48060811048304 _inletPressure3364 +

_outletPressure3364 <= 7700.90372649103

R25_3364_7: - 1.49330780379467 _inletPressure3364 +

_outletPressure3364 <= 7566.9219620533

R11_3364_3371: v3364_3371 - x3858_3371 = 0

R33_3364_3355: - F3364_3355 + F3856_3355 = 0

R35_3364_3355: QDown3364_3355 - QUp3364_3355 = 0

R33_3364_3356: - F3364_3356 + F3856_3356 = 0

R35_3364_3356: QDown3364_3356 - QUp3364_3356 = 0

R33_3364_3357: - F3364_3357 + F3856_3357 = 0

R35_3364_3357: QDown3364_3357 - QUp3364_3357 = 0

R33_3364_3358: - F3364_3358 + F3856_3358 = 0

R35_3364_3358: QDown3364_3358 - QUp3364_3358 = 0

R33_3364_3359: - F3364_3359 + F3856_3359 = 0

R35_3364_3359: QDown3364_3359 - QUp3364_3359 = 0

R33_3364_3360: - F3364_3360 + F3856_3360 = 0

R35_3364_3360: QDown3364_3360 - QUp3364_3360 = 0

R33_3364_3361: - F3364_3361 + F3856_3361 = 0

R35_3364_3361: QDown3364_3361 - QUp3364_3361 = 0

R2_3363: - v3363 + v3363_3371 = 0

R6_3363_3371: x3858_3371 - v3363_3371 = 0

R14_3363: totalDelivery3363_3371 <= 10

R19_3858: - x3858 + 10 y3858 >= 0

R23_3858: _outletPressure3364 >= 14400

R33_3363_3355: - F3363_3355 + F3858_3355 = 0

R33_3363_3356: - F3363_3356 + F3858_3356 = 0

R33_3363_3357: - F3363_3357 + F3858_3357 = 0

R33_3363_3358: - F3363_3358 + F3858_3358 = 0

R33_3363_3359: - F3363_3359 + F3858_3359 = 0

R33_3363_3360: - F3363_3360 + F3858_3360 = 0

R33_3363_3361: - F3363_3361 + F3858_3361 = 0

R12_3363_3371: - v3363_3371 + d3363_3371 = 0

R13_3363_3371: - totalDelivery3363_3371 + d3363_3371 = 0

AggR5_3856: x3856_3371 - x3856 = 0

R36_3856_3355: F3856_3355 = 0

R36_3856_3356: F3856_3356 = 0

R36_3856_3357: F3856_3357 = 0
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R36_3856_3358: F3856_3358 = 0

R36_3856_3359: F3856_3359 = 0

R36_3856_3360: F3856_3360 = 0

R36_3856_3361: F3856_3361 = 0

AggR5_3858: x3858_3371 - x3858 = 0

Max3873: - d3363_3371 + zMax3873 = 0

MaxTieBreak3873: _inletPressure3364 - _outletPressure3364 + tieBreak0 =

0

Bilin3859F3364_33550: F3364_3355 - 10 QUp3364_3355 + slack3859F3364_33550 =

0

Bilin3860F3364_33560: F3364_3356 - 10 QUp3364_3356 + slack3860F3364_33560 =

0

Bilin3861F3364_33570: F3364_3357 - 10 QUp3364_3357 + slack3861F3364_33570 =

0

Bilin3862F3364_33580: F3364_3358 - 10 QUp3364_3358 + slack3862F3364_33580 =

0

Bilin3863F3364_33590: F3364_3359 - 10 QUp3364_3359 + slack3863F3364_33590 =

0

Bilin3864F3364_33600: F3364_3360 - 10 QUp3364_3360 + slack3864F3364_33600 =

0

Bilin3865F3364_33610: F3364_3361 - 10 QUp3364_3361 + slack3865F3364_33610 =

0

Bilin3866F3858_33550: - 10 QDown3364_3355 + F3858_3355 + slack3866F3858_33550

= 0

Bilin3867F3858_33560: - 10 QDown3364_3356 + F3858_3356 + slack3867F3858_33560

= 0

Bilin3868F3858_33570: - 10 QDown3364_3357 + F3858_3357 + slack3868F3858_33570

= 0

Bilin3869F3858_33580: - 10 QDown3364_3358 + F3858_3358 + slack3869F3858_33580

= 0

Bilin3870F3858_33590: - 10 QDown3364_3359 + F3858_3359 + slack3870F3858_33590

= 0

Bilin3871F3858_33600: - 10 QDown3364_3360 + F3858_3360 + slack3871F3858_33600

= 0

Bilin3872F3858_33610: - 10 QDown3364_3361 + F3858_3361 + slack3872F3858_33610

= 0

Bounds

0 <= v3362 <= 10

0 <= v3362_3371 <= 20

0 <= v3364 <= 10

y3856 = 1

0 <= _inletPressure3364 <= 10000

_outletPressure3364 >= 14400

F3364_3355 Free

F3856_3355 Free

QUp3364_3355 = 0

F3364_3356 Free
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F3856_3356 Free

QUp3364_3356 = 0

F3364_3357 Free

F3856_3357 Free

QUp3364_3357 = 0

F3364_3358 Free

F3856_3358 Free

QUp3364_3358 = 0

F3364_3359 Free

F3856_3359 Free

QUp3364_3359 = 0

F3364_3360 Free

F3856_3360 Free

QUp3364_3360 = 0

F3364_3361 Free

F3856_3361 Free

QUp3364_3361 = 0

0 <= v3363 <= 20

0 <= v3363_3371 <= 20

0 <= totalDelivery3363_3371 <= 10

y3858 = 1

F3363_3355 Free

F3858_3355 Free

F3363_3356 Free

F3858_3356 Free

F3363_3357 Free

F3858_3357 Free

F3363_3358 Free

F3858_3358 Free

F3363_3359 Free

F3858_3359 Free

F3363_3360 Free

F3858_3360 Free

F3363_3361 Free

F3858_3361 Free

zMax3873 Free

tieBreak0 Free

slack3859F3364_33550 = 0

slack3860F3364_33560 = 0

slack3861F3364_33570 = 0

slack3862F3364_33580 = 0

slack3863F3364_33590 = 0

slack3864F3364_33600 = 0

slack3865F3364_33610 = 0

slack3866F3858_33550 = 0

slack3867F3858_33560 = 0

slack3868F3858_33570 = 0
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slack3869F3858_33580 = 0

slack3870F3858_33590 = 0

slack3871F3858_33600 = 0

slack3872F3858_33610 = 0

id214 = 0

End
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