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Chapter 1

Introduction

Hyperspectral imaging is a technique where images are taken and each pixel represents the whole visible
spectrum instead of intensity values for red, green and blue. Hyperspectral imaging is widely used for
remote sensing, and various techniques have been developed for information extraction. Hyperspectral
imaging has also recently been adopted for diagnostic purposes in imaging of skin.

Human skin is a large structure covering the entire human body. Skin is subdivided into three layers,
epidermis, dermis and hypodermis [12]. The epidermis protects the skin against water loss and disease-
causing organisms, and is a dynamic structure which will protect itself when a�ected by external stimuli
[12]. For instance, it will produce melanin to protect itself against UV-radiation, providing a tan [12].
Dermis consists mainly of connective tissue and blood vessels supplying nourishment to the skin [12].
Hypodermis contains fat cells [12]. Light can penetrate through mainly the �rst two of these layers and
be re�ected back. The amount of light re�ected back at di�erent wavelengths will reveal information
about the structures and properties in the di�erent layers.

A hyperspectral image of a skin sample will therefore contain important information about di�erent
materials at di�erent depths. This information can be extracted, and used for various purposes in
medicine, in particular by medical doctors with limited time for each patient, provided the information
extraction procedure is fast. The hyperspectral community will use various spectral unmixing algorithms
for matching di�erent absorption spectras against the hyperspectral pixels, but in the case of skin,
wavelength-dependent scattering and di�erent penetration depths have been a problem.

Light transport models may describe the light transport through layered models approximating human
skin. Scattering can be eliminated through inversion of these models. This inverse-modelling needs to be
fast with little to no waiting time, and deliver its results as fast as the hyperspectral camera can process
its surroundings. There are mainly two methods for doing forward-modelling of light transport.

Monte Carlo methods for calculating light transport are regarded to be a more accurate solutions to the
Boltzmann transport equation than approximations like the di�usion approximation. In particular is
MCML (Monte Carlo for Multi-Layered media) [45] widely regarded to be the so-called gold standard in
the biomedical optics-�eld. The MCML package is freely available on the Internet [2], which might be
part of the reson for its wide regard. However, Monte Carlo simulations are slow, since only one photon
packet at a time can be simulated. Typically, the number of photon packets need to be in the order of
magnitude of 30000 for the results to be accurate. A calculation time of 20 minutes will be typical for
the full visible spectrum, from 400 nm to 800 nm with a spectral resolution of 160 wavelengths. Without
any parallellization, the running time is unlikely to be reduced with newer processors, as the processor
producers seem to focus on increasing the number of cores rather than the processing capabilities of each
core.

Given the di�use re�ectance spectrum from a skin sample, the properties resulting in this particular
di�use re�ection spectrum cannot be directly determined. As the Monte Carlo method is a black box
forward model where the processes determining the �nal results are rather unknown, the properties may
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be determined only through iteration. This will mean many slow evaluations of the same Monte Carlo
routine.

However, recent developments show that the computation time of the Monte Carlo model can drastically
be reduced through the use of GPUs. CPU parallellization without using supercomputers will not
decrease the computation time signi�cantly. The normal number of cores ranges from 2 to 5 on a
normal CPU, which will only double the speed, and even with clever CPU scheduling, it will only take
it so far. Asymptotically, it will be the same. 200 minutes is no better than 2000 minutes in terms of
patient care. However, where a normal CPU is not optimized for this kind of task, a GPU (graphical
processing unit) will be optimized for parallellization. GPU-MCML is a General Public License-licensed
GPU-implementation of MCML freely available on the Internet [1].

Another method is to use the di�usion theory, which is an approximation. It has however successfully
been used by many di�erent researchers [41, 36, 29, 28, 24, 23], also for inverse modelling. The di�usion
theory has an analytical solution to the problem, evaluateable using simple arithmetics.

This project will try to implement an inverse model based on the GPU-MCML program and evaluate its
feasibility in terms of running time. This project will also implement an inverse model for hyperspectral
images by use of the di�usion model and GPU parallellization, striving for real-time performance. The
implementation should output results as fast as the camera can output its data. The motivation for this
is providing a diagnostic instrument for use by doctors and the like, who will be able to scan skin using
the hyperspectral camera and get easily understandable images of the di�erent properties as inverse-
modelled by the inverse model. The inverse model, earlier employed by Randeberg and others (see for
example [28]), will be evaluated in each step.

This report will �rst go through GPU programming theory and theory related to photon transport in
tissue. The theoretical foundations of Monte Carlo and the di�usion model are presented. The report
will then move on to a presentation of the GPU-implementations of Monte Carlo and the di�usion
model and go through the inversion steps of a di�use re�ectance spectrum. After this, the results will be
presented, with benchmarking of some of the steps in the inversion strategy, comparisons of GPU-MCML
and di�usion theory and benchmarking of GPU-MCML and the GPU-implementation of the di�usion
model in terms of inversions.
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Chapter 2

Theory and background

2.1 GPU-architecture

The problem of rendering and displaying graphics is in its nature a problem which, if to be done e�ciently,
requires parallelization and hyperthreading [42]. Due to this fact, Graphics Unit Processors (GPUs) are
designed to handle multiple calculations at the same time, not only by employing multiple processor cores
but also by enabling the di�erent cores to process multiple threads at the same time. GPUs can also be
put to use to other, parallellizable problems than graphics rendering. This was very di�cult to do until
the di�erent GPU manufacturers recently released frameworks for enabling more easy programming of
the devices. NVIDIA has a framework called CUDA, which essentially is C with some extensions and
requirements to think low-level [4]. The GPU architecture as exposed by the CUDA framework will be
presented, and some major optimization possibilities will be pointed out.

The GPU is very speci�cally targeted towards employing the same processor instructions on di�erent
datasets, as opposed to the CPU (Central Processing Unit), which will be designed to be more multi-
purpose and handle a wide array of di�erent tasks [4]. More speci�cally will each processing core on the
GPU be able to handle 32 threads at once - provided that all the 32 threads do the same calculations and
operations in the same sequence, only on di�erent data. This puts some limits on which problems can
be parallellized well by the GPU. For optimal parallellization, they need to follow the SIMD-principle
- Single Instruction. All the threads need to be completely independent, since the GPU will try to run
a di�erent thread if one of the threads stall or lag behind. The handling of 32 threads at once for one
instruction is referred to as a warp [4]. CUDA will organize its threads in blocks, as shown in �gure
2.1. The blocks are distributed over the available GPU multiprocessors, as is shown in �gure 2.2. Each
multiprocessor will run the threads of its assigned block until completion, in warps of 32 threads each
[4]. A neccessary requirement for maximum multiprocessor utilization is to have a number of threads
per block divisible by 32. The blocks will be organized in a larger grid. Both the blocks and the grid
can be one- or two-dimensional, but this has no performance bene�ts and is just for convenience when
accessing any array data [4].

Each thread will run its own instance of a kernel [4]. This is a C-like function with some CUDA
extensions, compiled for the GPU processor. The kernel is instanziated for a grid of blocks, and each
thread in each block of threads will process the instructions in the kernel, on di�erent data accessed by
using thread- and block indices. Should any of the threads try to process di�erent instructions, the warp
will break down and the multiprocessor will run the threads sequentially instead of in parallell in groups
of 32. Such divergence should be avoided [4].

Additionally, there are some memory requirements [3]. Each multiprocessor has a cache that may load
a given amount of bytes. When one thread tries to read, say, two bytes from memory, the cache will
typically also load the subsequent bytes from memory in one chunk as far as there is space left in the
cache. If the threads in a warp all need data from subsequent memory locations, they will bene�t from
the same chunk of cache instead of ordering new cache reads. On the other hand, if they do not need
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Figure 2.1: The relation between CUDA blocks, the grid and each thread. The �gure is taken from [4].

data from subsequent memory locations or if the needed memory is not properly aligned with the cache
reading lines, the warps will break down since sequential cache reads need to be made [3]. When memory
reads can be done in parallell, they are called coalesced [4].

GPUs have di�erent kinds of memory [4]. The GPU has some DRAM, called global memory, and some
multiprocessor-associated caches and shared memory. Compared to the last two, the DRAM is very
slow and transfers to and from this will likely be the largest bottleneck in the entire CUDA-enabled
application [3]. Kernels can de�ne local variables which will be local only to the thread, but these will
be put in the scarce shared memory, which is distributed evenly amongst all the threads in the block.
This may put an upper limit on the allowable number of threads per block, depending on the amount of
local variables [4].

If any threads are to update the same memory location at the same time, there will be additional concerns
about ensuring that the threads wait in turn. This will introduce additional latency [4].
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Figure 2.2: Distribution of blocks over the multiprocessors. Here, they are called streaming multiproces-

sors. The �gure is taken from [4].

2.2 Absorption and scattering mechanisms of photons in human

tissue

Photon scattering will happen if photons encounter materials with di�erent refraction indices than the
rest of tissue, for example collagen �bres or red blood cells.

Single-scattering theory is assumed to be valid. The scattering from a single particle can be described
by its scattering cross section, σs, meant to denote the amount of power scattered in all directions [17].
If the mean distance between scattering particles is greater than both scatterer size and the wavelength,
the scattering events can be considered independent and single-scattering theory can be assumed [46]. In
case of a homogenous medium, the scattering can be described by its scattering coe�cient, µs = σs ·Ns,
where Ns is the number density of scatterers. Cells are the largest structures in tissue, 10 microns in size
[46], the packing of which will greatly depend on the cellular soup in question, but biological materials
are in general assumed to be sparsely distributed materials for simplicity. Rayleigh and Mie theories
can give measures of the scattering cross section [46]. Rayleigh theory can be applied if the particles are
much smaller than the wavelength, and Mie theory will be valid regardless of the particle size [46].

The energy of a photon may be absorbed by a particle and re-emitted as a new photon, or in part cause
the particle to enter a vibrational state. This process can similarly be described by an absorption cross
section σa and an absorption coe�cient µa, but with no reservations about sparse distributions [46].
If the medium in question is a non-scattering medium, the transmittance through the medium can be
expressed as

T (x) = e−µax, (2.1)

but this will generally not be valid if the medium is a scattering medium. Absorbing materials will
generally be referred to as chromophores throughout this report.

When the light undergoes many scattering events, it will lose coherence and polarization can be neglected.
Taking the above properties into account and accounting for all scattering and absorption losses, the
situation may be summed up in the Boltzmann equation for photon transport, alternatively known as
the radiative transfer equation. Its derivation can be found in [46], only the time-independent result will
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be presented here:

ŝ · ∇L(~r, ŝ) = µs ·
∫
4π

L(~r, ŝ′)p(ŝ′ · ŝ)dΩ′ − µtL(~r, ŝ) + S(~r, ŝ) (2.2)

The radiance L is the energy �ow per unit normal area per unit solid angle directed in direction ŝ at the
position ~r. The probability of scattering in the direction ŝ′ when the photon originally had the direction
ŝ is described by p, the phase function. The extinction coe�cient µt is equal to µa + µs, and the last
term, S, is the source term.

The left-hand side is loss due to divergence of the beam. The integration involving L and p is the main
scattering term, wherein photons are scattered in some direction as according to the phase function. The
extinction coe�cient µt is loss due to extinction, and the source term represents new photons entering
the position ~r in the direction ŝ.

The Henyey-Greenstein phase function is often used for biological materials to describe the phase function
p. This was originally used by Henyey and Greenstein [16] to describe di�use radiation in galaxies, but
was found by Jacques et al. [33] to be a good �t also for the angular dependence of the scattering in
biological tissues, at least at the wavelength 632 nm. This phase function is given as

p(ŝ′ · ŝ) = p(cos θ) =
1− g2

2(1 + g2 − 2g cos θ)3/2
. (2.3)

θ is the angle between the original photon direction and the scattered photon direction, while g is the
anisotropy factor, de�ned as

g =

∫
cos θp(cos θ)d(cos θ), (2.4)

i.e. the average of the cosine of the scattering angle. Using the Henyey-Greenstein phase function
for tissue is widely accepted to be correct and has never been cause for much scrutiny. Criticism was
attempted by Binzoni et al. [8], but it turned out they were mistaken in their approach [7].

The two most popular solutions to (2.2) are Monte Carlo and di�usion theory. Monte Carlo will rely on
the phase function, while whether or not it will be used in the di�usion model depends on the chosen
source function. Both solutions will in any case involve g.

2.3 Monte Carlo

The derivation of the Monte Carlo program is best described by referring to other sources like Wang et
al. [45] and [46], but it will be summarized.

In essence, a Monte Carlo-implementation of (2.2) will involve tracking each photon packet and account-
ing for absorption and scattering losses as according to the mechanisms described by equation (2.2). Any
new photon directions are decided by picking random numbers following the probability distribution in
(2.3). A �gure displaying the program �ow for the Monte Carlo package MCML is shown in �gure 2.3.
The step size is represented by s. This is sampled from a random distribution which describes the likeli-
hood of encountering an absorption or scattering event, hence the logarithm of an uniformly distributed
number ξ between 0 and 1. Fresnel's equations will be used to describe the re�ection and transmission
if the particles hit the boundary between two layers. Otherwise, they are moved as according to the
step size. The weight of the photon packet is reduced as according to absorption and back-scattering
determined by µt, and the new scattering direction is determined by sampling a random variable from
(2.3). The program moves on to the next photon if the photon weight is zero. If the photon weight only
is small, the photon will go through a russian roulette deciding whether it will live or be taken out of the
simulation. The roulette is a part of the program because following photons with small weights yields
little interest and should be terminated as early as possible. The most of the photons are eliminated
from the simulation once the photon weight becomes small, and the roulette keeps a few of them alive.
This ensures energy conservation, compensating for the energy lost.
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If the photons come back up through the �rst layer, they are registered in a re�ection array. If they are
absorbed, they are registered in an absorption array. If they end up at the other side of the simulated
slab, they are registered in a transmission array. At the end of the day, these arrays are summed up to
yield di�use re�ectance, absorbance and transmittance of the simulated light.
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Figure 2.3: The program �ow in MCML. Reproduced in Inkscape from Wang et al. [45].
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2.4 Di�usion model

Equation (2.2) can be integrated over all solid angles in order to yield a continuity equation which may
used later on. The integrated L in the phase function integral will be independent of Ω since it will
become the isotropic φ after integration, and the phase function will be integrated away to 1 as φ can
be taken outside of the integral [14]:

∇~j(~r) = −µaφ(~r) + q(~r) (2.5)

The integrated L and Lŝ have respectively been replaced by the �uence rate φ and the di�use photon
�ux vector ~j, while the integrated source function S is has been replaced by q [41].

Equation (2.2) has no analytical solutions, but approximations can be made. The radiance L can be
assumed to be almost isotropic if µs is much larger than µa, and the radiance can then be written as the
�rst two terms of a Legendre polynomial expansion [41]:

L =
φ

4π
+

3

4π
~j · ŝ. (2.6)

The �rst term represents the isotropic part while the second term is the deviation from isotropy in the
direction given by the unit directional vector ŝ [41]. One main assumption is that the deviation from
isotropy is not too large, or else higher order terms would have to be included. The photon �ux j should
therefore not be too large when compared to φ.

If this is inserted into (2.2), the resulting equation multiplied by ŝ and integrated over all solid angles
will be [14]

~j(~r) = −D∇φ(~r, t), (2.7)

where D is de�ned as 1
3[(1−g)µs+µa]

. This is Fick's law [14], hence "di�usion" in "di�usion model". The

source term disappears from (2.2) when multiplied by ŝ and integrated over all solid angles if it is assumed
to be isotropic, which is why it no longer is a part of the equation.

Equations (2.7) and (2.5) can be combined to yield [41]

∇2φ− φ

δ2
= − q

D
, (2.8)

where δ =
√

1
Dµa

, also known as the optical penetration depth. This equation can be applied for each

layer in the skin model, each with its own depth-varying source function. The solution will depend on
some boundary conditions at the skin-air surface:

When L from earlier on is integrated over half the solid angle, the result is the irradiance E, the power
passing through an unit area. Integrating (2.6) results in [41]

E =
φ

4
± j

2
. (2.9)

The plus or minus sign depends on whether the photon �ux ~j is pointing along or opposite of the surface
normal for the surface over which the irradiance is passing through. This can be used for constructing
boundary conditions between di�erently scattering layers, since the irradiance must be the same on both
sides of the layer boundary [41]:

φ1
4

+
j1
2

=
φ2
4

+
j2
2

(2.10)

φ1
4
− j1

2
=
φ1
4

+
j1
2

(2.11)

j1 and φ1 are the �ux and �uence rate in layer 1, and j2 and φ2 the �ux and �uence rate in layer 2. The
irradiance should be continuous regardless of which way the surface normal is pointing, which is why
there are two boundary conditions, one for the case where the surface normal has the same direction as
~j, and one for the case where the surface normal points in the opposite direction.
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The start boundary condition coupling everything together is the boundary condition at the air-skin
interface. By integrating the Fresnel re�ection coe�cient over all angles of incidence, an Rφ and Rj
can be found [14]. The re�ected part of the irradiance at the air-skin interface must be related to the
irradiation propagating back into the skin by [41]

Rφ
φ

4
−Rj

j

2
=
φ

4
+
j

2
(2.12)

This can be summed up in a boundary condition j = Aφ, where A depends on Rφ and Rj . By using the
formulas for R present in [14], A can be calculated to be 0.14 for n = 1.4.

The criterion that the �ux should be much smaller than the �uence rate is therefore ful�lled only to a
limited degree at the skin surface [41], but it can be argued that it still will work nicely out [41].

One important concern is the source function. If isotropic source functions throughout the layers is
assumed, it may be expressed, for a two-layer model, as [41]

q1 = P0µs,1(1− g1)e−µt,1x (2.13)

for 0 ≤ x ≤ d1, and
q2 = P0µs,2(1− g2)e−µt,1d1e−µt,2(x−d1 (2.14)

for d2 ≤ x ≤ ∞. µs(1 − g) is often abbreviated as µ′s, the reduced scattering coe�cient. After enough
scattering events and little to no absorption, this will be the e�ective scattering coe�cient and can in
such cases be used instead of the actual scattering coe�cient. Indices 1 and 2 refer to the upper skin
layer and the lower skin layer, respectively. P0 is the incident intensity after specular re�ection at the
air-skin surface. The solution to (2.8) may now be found for each layer by inserting the source functions
and applying the boundary conditions. The solution to φ will not be presented here, but is displayed in
[41].

The di�use re�ection coe�cient will be expressed by

γ =
j(x = 0)

P0
(2.15)

The solution for γ using the isotropic source function is in its entirety presented in [41]. This is used in the
implementation of the di�usion model on the GPU, since it is an analytic expression and di�erentiable.
The MATLAB implementation of the di�usion model implemented by Spott, Randeberg and others will
use inversion of matrices presented in [34], which while instructive and more manageable, will not be
optimal in a GPU implementation, as will be seen.

There are also alternatives to using the isotropic source functions. One alternative is the Delta Eddington
source function, presented by Spott and Svaasand [35]. The di�usion approximation is to neglect the
higher orders of non-isotropy, which when µs is no longer much larger than µa will no longer be valid.
The Delta-Eddington source functions seek to remedy this by keeping some of its non-isotropy. It is
derived using the Henyey-Greenstein phase function, shown in [35]. It is also shown to have better
correspondence with MCML [35].

Implementation-wise, the analytic function for γ derived using this source function is not as available as
for the isotropic case, and only the isotropic variant of the di�usion model was implemented on the GPU
for this project. However, Delta-Eddington was still tested against GPU-MCML for di�erent parameters,
as will be seen. Delta-Eddington will deposit its photon deeper into the tissue. When the absorption
becomes too strong, it is thought that Delta-Eddington will break down, and it will be more fair to use
the isotropic variant for all cases.

2.5 Skin model

The two-layer skin model employed is described by Spott et al. [34], Randeberg et al. [28, 21] and
Svaasand et al. [41], but will be summed up here.
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Two or three-layered skin models are usually deemed su�cient, even if the skin models used for simulating
di�use re�ectance might sometimes have as many as seven layers [5]. Due to errors in the simulation
methods and many shortcuts in the description of the scattering and absorption mechanisms, the extra
amount of layers will only cause uneccessary complications and not extra realism. Two layers were used
throughout this project report for simplicity. The two layers in question are epidermis and dermis, and
in case of a three-layer model, dermis is subdivided into two new layers. Hypodermis is never taken into
account as photons scattered back from such depths is negligible [21].

In reality, both epidermis and dermis will be sub-divided into di�erent layers with di�erent properties,
but as an approximation, these properties are assumed uniformly distributed in each layer. Each layer is
�at and uniform, but the epidermis will in reality reach partially into the dermis through the papillae. A
small fraction of blood, 0.02%, is therefore included in the epidermis even if epidermis does not contain
blood. See �gure 2.4.

Figure 2.4: Two-layer skin model. The papillae is shown as the dotted line. The papillae are not present
in the model, but are accounted for through the small amount of blood in the epidermis.

2.5.1 Scattering

Scattering will predominantly rise from the presence of collagen �bers in the skin, which will induce both
Rayleigh and Mie scattering. The wavelength dependency was found by Saidi et al. [31] to be

µ′s,t = CMie(1− 1.745 · 10−3λ+ 9.843 · 10−7) + CRayleighλ
−4. (2.16)

This is the reduced scattering coe�cient. CMie and CRayleigh are some constants. In order to get the
non-reduced scattering coe�cient, one will have to divide the Mie-part of the scattering by 1− g and the
Rayleigh-part by 1.0, since Rayleigh scattering is isotropic and will not be reduced when considering the
e�ective scattering coe�cient. The anisotropy factor was for skin found by van Gemert et al. [43] to be

g = 0.62 · 29 + 10−5λ. (2.17)

Age-dependencies of CMie and CRayleigh are determined by Saidi et al. [31] for newborns. The reported
curves were extrapolated into adulthood by Randeberg and the values respectively found to be 10500 m−1

and 1.05·1014 nm4m−1. Newer versions of this scattering function exist, but they were not implemented
for this project.
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There will also be scattering from red blood cells, as presented by Ishimaru [17]. The scattering coe�cient
may be written as [17, 40, 39]

µs,b = σs,b
H(1−H)(1.4−H)

ve

(
685

λ

)0.37

. (2.18)

The scattering cross section σs,b was reported by [17] to be 55.09 · 10−12. The volume of the red blood
cells, ve, is claimed to be 1.26·10−16 m2 by Spott et al. [36]. H is the haematocrit, the fraction of red
blood cells to the total volume of blood. The haematocrit will be 40-52% for males and 38-48% for
females [30]. Blood is sometimes reported to have a speci�c gb, but for fairness, the g in (2.17) is used
for everything throughout this project. Besides, as will be seen, the Monte Carlo simulations will have
no way of di�erentiating between di�erent gs. The blood scattering will also be incorrect for bruises or
higher blood concentrations, since there will be di�erent packing of the red blood cells. Using the exact,
correctly reduced version of (2.18) will matter less.

The total scattering coe�cient for each layer will be

µs,e = Beµs,b + (1−Beµs,t) (2.19)

µs,d = Bdµs,b + (1−Bdµs,t). (2.20)

Bd and Be are the blood volume fractions (BVF) for dermis and epidermis respectively. Bd will later be
referred to as the BVF.

2.5.2 Absorption

Absorption in skin happens mainly due to deoxygenated hemoglobin, oxygenated hemoglobin, methe-
moglobin, melanin, bilirubin, betacarotene and water. Throughout this project report, methemoglobin,
bilirubin and betacarotene are not included in the simulations or used at all since the constituent-
separating part of the inverse chain was not �nished.

The presence of the absorption spectrum in the visible of each possible constituent will still be mentioned.
Bilirubin absorption is strong from 400 nm to 520 nm and resides in the dermis. Betacarotene absorption
is strong from 400 nm to about 520 nm and resides in the fatty parts of the dermis and in stratum
corneum, the outer-most part of the epidermis. It will however, once included, be included in the dermis
only since the stratum corneum is too thin to be implemented in the di�usion model. Water has a very
low absorption in the visible parts of the spectrum and can mostly be neglected.

Zijlstra [50] will report absorption spectra for both deoxy and oxy hemoglobin which are thought to be
accurate, but these were not used since they are only available from 450 to 800 nm. Instead, values
measured by Thorsten Spott some time in the past were used, and are displayed in �gure 2.5. The ratio
of oxy hemoglobin to deoxy hemoglobin is called the oxygen saturation and will be denoted as O. The
absorption of blood will be written as

µa,b = µa,Hb · (1−O) + µa,HbO2 ·O. (2.21)

An isosbestic point is where the absorption coe�cients of deoxygenated and oxygenated hemoglobin are
the same. The total absorption coe�cient of blood will here depend only on the total fraction of blood
to the rest of the constituents.

Melanin is the main absorber in epidermis. The melanin content will be quanti�ed by the melanin
absorption coe�cient at 694 nm. Some will report melanin contents by using fractions, but since the
melanin will not be evenly distributed, going from fractions to the actual melanin absorption will be
di�cult. Instead, the melanin absorption at 694 nm is by itself used to indicate the amount of melanin
present in the epidermis. Sun-protected european skin will, for example, have a melanin absorption
coe�cient at 694 nm in the range of 280 to 325 m−1 [41]. The wavelength dependence of melanin
absorption in skin was investigated by [47], and again observed by Spott et al. [36] to be

µa,m = µa,m,694 ·
(

694

λ

)3.46

. (2.22)
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Figure 2.5: Absorption spectra for deoxy and oxy hemoglobin, measured by Thorsten Spott.

In addition, a constant background absorption of µa,o = 25 m−1 will be assumed, as Spott et al. [36]
did. Later developments has some wavelength-dependence incorporated in this factor, but this was not
implemented for this project report.

The absorption properties of each layer can be summed up as

µa,e = µa,b ·Be + µa,m + µa,o · (1−Be) (2.23)

µa,d = µa,b ·Bd + µa,o · (1−Bd) (2.24)

Other chromophores will be located in dermis.

2.6 Iteration methods

Monte Carlo is a black box, and iteration can only be done in a less optimal way. Intuitively, the di�use
re�ectance will be lowered when the absorption is heightened, and this represents the entire philosophy
behind the iteration strategy employed. The absorption is changed in a way that should lower or heighten
the di�use re�ectance towards the desired value, and once the calculated di�use re�ectance jumps over
the desired value, the algorithm will jump back and reduce the step length and continue until some kind
of convergence.

For the di�usion model iterations, the analytical derivative is available and used in Newton's method.
This is given as [26]

xn = xn−1 −
f(xn−1)

f ′(xn−1)
. (2.25)

Newton's method can have some convergence problems if the estimate xn is far from the true value x or
when f(x) has a very strange behavior or local maximums or minimums, and special care might possibly
have to be taken depending on the problem [26].
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Chapter 3

Method

The inversion method, GPU-MCML and the implementation of the di�usion model inverse chain for
hyperspectral images is presented. First, the GPU-MCML framework developed by Alerstam et al. [5]
is presented, along with the modi�cations. Then the modi�cations made to MCML are summed up, and
then GPU-DM, the inverse chain implemented on the GPU is presented by going through the philosophy
behind, the optimizations and the program �ow.

After the simulation methods have been presented, the inversion strategy is presented by explaining the
philosophy and the unknown parameters needing determination. The parameters are the blood volume
fraction, the melanin content and the dermal absorption for each wavelength. There exists several
methods for determining the former two parameters, and several of these are presented.

3.1 GPU-MCML

Several attempts at developing an inverse Monte Carlo model has been attempted [49, 48, 32, 25, 15,
13, 9, 6], but none of these rely on the Monte Carlo model directly, they all rely either on scaling
pre-simulated results, on look-up tables or on empirical models.

Monte Carlo is too slow for anything else. Either, one will need to make the Monte Carlo method faster,
or one will need to employ di�erent and faster, but allegedly less accurate models like the di�usion
model. Iterating the Monte Carlo model directly has proved less than feasible in the past. The approach
of [49, 48, 32, 25, 15, 13, 9, 6] has also been to assume all parameters unknown, and de�ne a scheme
where the model needs to be iterated with respect to more parameters than one, increasing the required
computation time. Regardless, even with only one parameter, iterating the original Monte Carlo model
is not feasible. One simulation will take 20 minutes, one iteration will never be enough. A hundred
iterations is more likely, increasing the computation time to 2000 minutes.

Parallelizations of Monte Carlo simulations on GPUs have previously been worked on by various research
groups. The main motivation for parallelization on GPUs is that each photon package can be simulated
independently. The work done on each photon package will be very similar, and this behaviour is ideal
for GPU parallelization. A description of the implementation used in this project report can be found in
Alerstam et al. [5]. They have also identi�ed the main bottleneck of this Monte Carlo approach, which
is writing to the absorption array. As photons are terminated throughout the simulation, their weights
will be recorded in a large absorption array which will be shared for all the threads. The large absorption
array has to be saved in the slowest memory block, the global device memory. Access will be slow.

The threads cannot write to the same array positions at the same time, which they will do if two photons
are absorbed at the same position. One thread at a time can write to it and the rest have to be stalled.
Since the global memory is rather slow, this will be slow, and although the problem is easily parallelizable
and the GPU is more than up for the processing task itself, the memory writes will slow down the whole
thing. The solution Alerstam et al. [5] proposes and implements, is to allocate some of the faster registers
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to the most frequently written parts of the array close to the source, or dropping the absorption array
altogether if only the re�ectance or transmittance is desired.

As only the re�ectance will be measured, only the re�ectance will be needed in the simulations, and this
solution can be employed in order to maximize the processing speeds. Memory writes will happen only
to the re�ection array. Unfortunately, it is on the other hand di�cult to do this in a coalesced way.

The internals of GPU-MCML were not tampered much with. The main()-function was rewritten to a
general function called run_gpumcml(), callable from other C-functions. It was rewritten to accept a
struct describing the optical properties of the layers instead of reading them from a �le. This was done
by "hacking" the �le-reading function to read its properties from this struct instead of from a �le.

Some bottlenecks in the initialization was also removed by reading the random seeds used for the random
number generator from �le only once at the �rst wavelength. An inverse model was created as according
to the inverse strategy and black box iteration.

3.2 MCML

MCML was compared against GPU-MCML. Also in this case, the function reading in the input �les was
"hacked" to accept the same struct as the one used by GPU-MCML, and the main function was altered
to loop through the whole wavelength range instead of looking at one �le only. Others have created
PERL-scripts for preparing input �les for the whole spectral range, but the author of this project report
found changing the functions to do what he wanted easier and less time-consuming.

3.3 Camera and computer hardwaree

The hyperspectral camera the programs will be developed for is a HySpex VINIR-1600 camera, developed
and manufactured by Norsk Elektro Optikk. This is a line scanning camera using a push-broom technique.
Including autofocusing, the camera will use 30 ms per line. Each line consist of 1600 pixels and 160
wavelengths (bands). Camera data is transferred over the TCP/IP-protocol.

The GPU programs were tested using an NVIDIA Quadro FX 3700M graphics card. It has a lower-end
GPU with 16 multiprocessors and compute capability 1.1. Low compute capability means care needs to
be taken in optimizing memory access. It will also lack important features present in newer GPUs, and
application runtimes are expected to decrease for GPUs with a higher compute capability.

3.4 GPU-DM

The di�usion model has an analytical expression that may be evaluated e�ciently using few processor
instructions, as opposed to GPU-MCML, which will have to be evaluated sequentially for each wave-
length and iteration due to the fact that all GPU processing capabilities already is handling the photon
simulations for one wavelength at a time. The aim is to implement the di�usion model as an inverse
model on the GPU and process the full line of hyperspectral data at a time within the time limits de�ned
by the streaming capabilities of the hyperspectral camera.

This is a parallellizable problem. Once the epidermal absorption and the blood volume fraction are
estimated, all parameters except for the dermal absorption will be known. The dermal absorption
coe�cients can independently be derived from each wavelength and each pixel with no interference or
crosstalk whatsoever. All wavelengths and pixels will be independent, and the inversion of these can
evenly be distributed amongst the multiprocessors on the GPU.

The threads cannot do a complete iteration of the di�usion model with respect to the input re�ectance
by themselves. This will cause the di�erent threads to do di�erent calculations. As mentioned in earlier
sections, threads cannot be divergent, or the warps will break down. Iterating in this way, while possibly
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ending some iterations earlier and making room for new pixels and wavelengths, will minimize GPU
performance.

However, the forward model can be implemented in a GPU-friendly way. Assuming all known parameters
have been calculated for each pixel, the forward model can be run for all pixels and wavelengths in an
independent and deterministic way which will cause maximum parallellization to occur. Then, again
inpendently and deterministically for all pixels and wavelengths, the output re�ectance and hyperspectral
intensity can be compared and the next dermal absorption may be calculated. The process may then be
repeated until convergence across all pixels and wavelengths.

The chosen iteration method was Newton's method, because of the availability of the derivative of the
di�usion model, its fast convergence, simplicity and deterministic behavior, ideal for GPU parallellization.
The re�ectance will also be an optimal function for Newton's method. Once close to the target, Newton's
method will be fast to converge, but if the curve that Newton's method will be iterated with respect to has
local maxima or minima, it may instead choose to diverge [26]. This is not the case with the re�ectance
as a function of the dermal absorption, it will be well-behaved. The derivative of the di�use re�ectance
with respect to the dermal absorption coe�cient is too complicated for proving the monotonicity of the
di�use re�ectance with respect to the dermal absorption coe�cient, although any plot will show that it
is well-behaved and will drop o� in a monotonic way, as shown in �gure 3.1.
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Figure 3.1: Simulated re�ectance as a function of the dermal absorption coe�cient with µa,mel,694 = 250,
o = 0.8 and bvf = 0.01 at λ = 500 nm.

There are some problems with this approach. Some of the pixels and wavelengths will converge much
faster and waste GPU processing power on what essentially will be a busy wait, if they have an initial
dermal absorption coe�cient closer to the true value than the others. If a pre-determined amount of
iterations across all wavelengths and pixels is to be done, some of the values will therefore be more
accurate than the others. Keeping track of the error is not desirable due to the fact that making the
threads write to a common error variable will cause them to stall each other for sanity, causing too much
lag. There will be less control over the error and convergence rates. However, the model is in itself
inaccurate, and matching the model exactly against the measured re�ectance might not have any merit.
Elsewise, as argued above, Newton's method should always converge, and due to Newton's method's
quadratic converging abilities [26], it will converge fast. It will be seen that 10-20 iterations should be
more than good enough for a good estimate, no matter the starting point.
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Checking convergence would also not be a good measure overall for the whole image. It will not be
possible to let the image consist only of skin. Anything else than skin, like clothing or bedsheets, cannot
be matched by the di�usion model when the input parameters are for skin only. If the image largely
consists of everything else than skin and the erroneous model �t somehow converges faster than the
actual skin �t, it might give a false positive regarding the convergence. Trying to separate out the skin
in the image will take too much time, it will be more e�cient to just inverse model the whole thing in
one go and worry about model �ts later on.

The system can at most manage the number of iterations achieved within the deadline as de�ned by
the hyperspectral camera. By measuring the time taken for the calculation of one re�ectance for all
pixels and wavelengths and one iteration of Newton's method, this number of possible iterations can be
decided in advance. The system may also continuously measure the relative time until deadline before
each iteration and stop its iterations well within the deadline. In any case, the accuracy will then be
determined by the power of the GPU, and with Newton's method's converging abilities in mind, this will
in most cases be enough. In addition, since a new line of data is not ready at once, �nishing early has
no bene�ts.

With the philosophy of the inverse model straightened out, the details are now presented.

The line data from the hyperspectral camera will be one-dimensional and have the structure shown
in �gure 3.2. The array will be divided into the wavelength bands, and the sub-table within each

Band 1

...
0 1 2 3 n-1

Band 2

...
n n+1 n+2 n+3 2n-1

Band m

...
mn 2mn -1

...

Figure 3.2: Illustration showing the distribution of bands and pixels within the one-dimensional data
array arriving from the hyperspectral camera. Array indices are shown on top of the tables.

wavelength band will consist of the intensity values at each pixel. The formula for accessing pixel p at
wavelength band b in an image with n pixels and m wavelengths, zero-indexation for both pixels, arrays
and wavelengths provided, will be

index(p, b) = p+ b · n. (3.1)

One main concern is how to distribute the pixels and wavelengths so that there always will be 32
re�ectance values per multiprocessor, and how to ensure coalesced memory read/writes. There are many
solutions to this, all involving how the the line data array should be accessed from each thread. The
camera streams frames of 1600 pixels x 160 wavelengths, and 160 and 1600 are both multiples of 32,
which places some constraints on how the bands and pixels may be distributed among blocks and threads.
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The solution employed is illustrated in �gure 3.3. The pixels in one band is distributed across the blocks
in one grid row. This ensures that subsequent threads in one block also access subsequent columns in the
data array, ensuring coalesced memory access. One band is associated with the blocks in one grid row,

Figure 3.3: The distribution of pixels and bands across CUDA threads, blocks and grids. "160" in
each block is meant to denote "160 threads". The blocks are one-dimensional, while the grid is two-
dimensional.

with increasing wavelengths along the y-axis of the block grid. The blocks will each have 160 threads.
The re�ectance calculation requires a high amount of registers, and with the number of registers being
a scarce resource, it was not possible to heighten the number of threads per block without causing the
kernels to crash. 160 was also chosen because the number of pixels, 1600, will be divisible by 160. The
number of threads per block will have to be modi�ed if the number of pixels per line should change. The
number of bands is of no concern.

The arrays had to be padded when the line data was transferred to the GPU and other arrays for
optical properties were created. The starting address for the memory access had to be a multiple of
128, because of alignment issues with the cache lines [4]. With the above approach, this will in principle
automatically be ful�lled, since all arrays in the implementation consist of the datatype �oat. Each �oat
is 4 bytes. The �rst block will therefore access a range of 640 bytes. The next block will access the �rst
byte after these �rst 640 bytes, and since 640 bytes is a multiple of 128, memory alignment is ensured.
But as mentioned above, the camera speci�cations might be subject to change, and the chosen number
of threads per block might not be optimal. Padding of the arrays by inserting some bytes after each
block of memory corresponding to each block of threads to ensure memory alignment is therefore done
by using cudaMallocPitch(). This will ensure that memory accesses still will coalesce if the number
of bytes per block somehow is not a multiple of 128. It was pure chance that 160 would be a multiple of
32, 160 · 4 a multiple of 128 and 1600 a multiple of 160, and a di�erent camera will not have the same
fortunate properties.

Floating point numbers consisting of 4 bytes is also not an universal, platform-independent matter.

The program �ow of the entire inverse simulation chain is shown in �gures 3.4 and 3.5. The functions
have been designed to be called from any framework providing hyperspectral data. Common to all
frameworks is that they all will require an instance of the data structure GPUDMArrays, which is
de�ned in gpudm.h and is a simple struct containing �oat-arrays that will be allocated in the GPU,
along with some other useful variables describing properties concerning both camera and array structure.
The arrays are allocated as pointers to some memory reference, and the functions instansiating the
GPUDMArrays instance need not be CUDA-aware. All CUDA-awareness is contained and isolated
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Figure 3.4: Program �ow for GPU-DM in relation to a framework. Some framework will have to initialize
the arrays using gpuallocate(), and it will have to continually input new linedata into gpuprocess-
ing(), which will handle the rest.

within the �le de�ning the GPU-DM-functions.

3.4.1 Allocation step

The CUDA functions for allocating memory in the GPU global memory, cudaMalloc(), cudaMal-
locPitch() and the like, are slow. The arrays needed for a complete iteration can hence not be allocated
in the DRAM once every line arrives since this would produce an overhead larger than the deadline of
30 ms. This is therefore done in an initialization step, and the arrays will be reused. Some other arrays
like calibration arrays and wavelength arrays are needed by gpuallocate().

Two arrays for containment of hyperspectral data is allocated by gpuallocate(). One is for processing,
and one is for bu�ering the next linedata.

The arrays containing the skin properties, which will be di�erent for each pixel, are contained in arrays
of the same size and structure as the hyperspectral line data. This will be a waste of memory since
di�erent wavelengths associated with the same pixel will have the same skin input properties. This was
done because the skin properties would then have the same access pattern as the line data, which is
optimal. As an alternative, one could have placed the skin properties in smaller arrays, but the memory
access pattern would slow down the application. A solution would be to load the skin properties into a
shared memory variable across the threads in the block, but this would require one thread to load the
value and the rest to stall, most assuredly resulting in divergence and breakdown of GPU warps. With
160 wavelengths, 1600 pixels and 5 input parameters, this will in total be a memory waste of about 5
megabytes, but considering the major speedup of at least 32x, it is a small sacri�ce to make.

The optical properties are contained in arrays of the same sizes, but this will be more natural since each
wavelength and each pixel will contain di�erent optical properties.

3.4.2 Continuous processing step

The data array containing the next line, a data array for bringing back the previous µa,d and the data
structure containing the GPU-arrays is input to gpuprocessing().

If this linedata is the �rst data line, gpuprocessing() will only transfer it to the DRAM.
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Figure 3.5: Program �ow for gpuprocessing(). The memory transfers will be run concurrently with
the processing part if possible.

If the linedata is not the �rst dataline, it will transfer it to the DRAM but additionally start processing
the last linedata, transferred to the GPU the last time gpuprocessing() was called. By pagelocking
the linedata to physical memory, some GPUs will be able to concurrently run kernels in addition to
transferring data from the host to the GPU DRAM. Memory transferral between the host and the GPU
can be slow, and concurrent memory transfer is desired. If this is not the second time gpuprocessing() is
run, it will also transfer the previously calculated absorption coe�cient back to the host, also concurrently
if possible.

The function will move on to the processing once the memory transfer stage is initialized. The kernels
are launched for each pixel and wavelength, in order:

1. calibrate() - Will divide all hyperspectral data by some calibration array

2. calcMelaninBvfOxy() - Will or should calculate epidermal melanin absorption, an initial esti-
mate for the blood volume fraction and the oxygen saturation, as will be discussed.

3. calcSkinData() - Uses the initial estimates to calculate g, µa, µs for each layer, pixel and wave-
length.

4. Re�IsoL2() - Calculates the simulated re�ectance and its derivative.

5. nextMuad() - Using Newton's method, this function calculates the next µa,d using the derivative
and re�ectance calculated in Re�IsoL2.
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All the kernels are heavily optimized except for calcMelaninBvfOxy(), in part because it never was
implemented. One possible implementation is to select a few wavelengths and use these in relation to
each other, which will cause the kernel to employ di�erent memory access patterns than the rest and not
achieve coalesced memory access. This kernel is likely to be a bottleneck.

Major optimizations that have been employed is �rst and foremost coalesced reads, but also trying to
minimize as much global memory access as possible. If the same global memory position is needed more
than once, its value is read into a local variable.

The optical properties will only be calculated once by calcSkinData(), but it is likely that minimizing
calculations will result in lower throughput because of far more global memory reads. There were not
enough registers available on each multiprocessor for testing whether or not the processing speed could
heighten for Re�IsoL2() if it could calculate its own optical properties instead of having to read them
from global memory.

The input data are in multiple, separate arrays. Navigating in the parameter list of each kernel function
can be di�cult. This was done because the data cannot be input as a struct to the GPU, as it will be
very di�cult to ensure correct memory alignment and coalesced memory access. The GPUDMArrays
struct cannot be input to the GPU directly either. Only the �oat-arrays contained within the struct are
allocated on the GPU, while the struct itself is a host memory allocated struct. The GPU will not know
how to handle it.

The model will assume that the epidermal depth de is known. This is therefore de�ned as a global
constant which will be compiled to appear in the GPU's fast, constant memory. The same goes for A
and 1

3 , a common number.

The simplicity of the function calls and required data structure should enable GPU-DM to be integrated
into any framework supplying hyperspectral line data. Speed concerns made the application less �exible,
and when the time comes to implement the three-layer skin model or enable the model to handle other
materials than skin, major changes will have to be done. Still, the changes will be within the general
philosophy.

3.5 Inversion strategy

The inversion scheme employed for both models is based on previous inversion strategies applied on the
di�usion model [36, 21, 28].

In order to make the optimization as simple as possible, it is desired to keep the number of possible
parameters low. With the two-layer skin model, there will some unknown parameters:

� Melanin absorption in epidermis

� Oxygen saturation in the blood

� Blood volume fraction in dermis

� Depth of the layers

� Additional chromophores

The scattering coe�cients are largely known and dependent on the blood volume fraction and are not
mentioned as an unknown parameter.

Within the two-layer model, the depth of dermis is irrelevant as the dermis is semi-in�nite. The depth
of epidermis can be assumed to be known. Within the model presented by Randeberg et al. [28], it was
set between 100 and 200 microns. In this model, 100 microns will be used.

Only the melanin absorption will be unknown in epidermis, since the blood volume fraction here is a
skin model quirk and known beforehand. The arti�cial blood volume fraction in epidermis is so low that
it is unlikely the oxygen saturation here does matter much. Thus, provided the scattering functions can
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be trusted, the unknown parameters will be the blood volume fraction in dermis, as it is needed for the
scattering functions, the associated oxygen saturation and any additional chromophores.

Except for the blood volume fraction, all of these parameters can be summed up as the dermal absorption
coe�cient. If the melanin content and the blood volume fraction are known, the dermal absorption
coe�cient will for each wavelength remain the single unknown parameter that can be inverted from the
spectrum by iteration of the forward model. The constituents of the skin can be recognized by �tting
the di�erent absorption spectras against the acquired dermal absorption spectrum. Discrepancies and
maladjusted �tting can be controlled and evaluated at leisure.

It might also be neccessary to somehow determine the oxygen saturation beforehand, in case forward
simulations need to be done in order to obtain the epidermal melanin absorption. Oxygen saturation
will then also be an unknown parameter requiring determination before inverting µa,d.

A di�erent inversion strategy is to assume all parameters unknown and �t them all at once, but this was
not used since all chromophores will have to be accounted for beforehand. This approach is also less
feasible in a GPU approach, since its increased complexity will cause the approach to be less deterministic.

3.5.1 Melanin absorption and blood volume fraction

The main iteration is done with respect to the absorption coe�cient in dermis, and the absorption in
epidermis will therefore have to be estimated in advance by using a di�erent philosophy. Each re�ectance
value represents one equation with two unknowns if both the epidermal and dermal absorption coe�cients
are unknown, and will represent an under-determined system. Methods determining the epidermal
absorption coe�cient will have to use the general shape of the re�ectance spectrum and be restrained
by the shape of the epidermal absorption curve.

The main cromophore in epidermis is assumed to be melanin, and melanin has, as shown in equation
2.22, a simple shape which should have a recognizable impact on the di�use re�ectance spectrum. The
whole di�use re�ectance will tend to be more steep when more melanin is present. There are some
established methods for estimating the melanin absorption in this way. It will later be seen that some
of these needed scrutiny, which is why several of them are presented here.

It turns out the result of heightened deoxy hemoglobin is interconnected with the result of heightened
melanin absorption, and methods for determining this are therefore presented alongside with the melanin
methods.

Dawson's indices have previously been used by Randeberg et al. for the melanin determining stage of
the inverse chain.

Dawson's indices

One of the methods for determining melanin was introduced already in 1980 by Dawson et al. [10],
and the most of the later methods are variations thereof. Dawson bases himself on some skin modelling
theory where the logarithm of the inverse re�ectance (LIR) can be written as the sum of the absorption
and scattering coe�cient of each layer of the skin. Dawson claims that the slope of the logarithm of the
inverse re�ectance from around 600 to 700 nm is proportional to the melanin content of the skin, and he
develops a melanin index based on this slope. In a similar way, he also develops an erythema index for
quantifying the blood content in skin. The melanin index is given as

MI = (−(log(R(645))+log(R(650))+log(R(655)))+(log(R(695))+log(R(700))+log(R(705)))+α) ·100,
(3.2)

where α was chosen by Dawson to be 0.015 in order to have only non-negativeMI-values. The erythema
index is similarly de�ned as the area under the LIR-spectrum around 510 to 610 nm, resulting in

EI = (− log(R(560))− 1.5(log(R(543)) + log(R(576)))− 2.0(log(R(510)) + log(R(610)))) · 100. (3.3)

25



Dawson veri�es the linearity of the melanin index by testing it on some individuals with a variety of
skin colors. He also uses the erythema index on the same individuals, and observing that the erythema
index is correlated to the skin colour, the erythema index is corrected by adding the melanin index to the
erythema index by the neccessary amount to make the erythema index constant for all the individuals,
assuming they all will have the same blood content in the skin:

EIc = EI · (1 + γ ·MI) (3.4)

Dawson sets the γ value to be 0.04 based on his subjects.

Kollias' slope-based methods

This project report will assemble di�erent slope-based methods under the common name "Kollias' slope-
based methods", even if Kollias is not the �rst author on some of the later articles concerning the topic
matter.

Kollias and Baqer [19, 20] presented a method where the melanin content is quanti�ed by �tting a
straight line from 630 nm to 720 nm and taking the slope to be the melanin content. This is in theory
and practice very similar to what Dawson et al. [10] proposed, except for using more wavelengths.

Stamatas and Kollias [37] will take the linear �t to be the melanin contribution to the di�use re�ectance
spectrum, and remove the melanin contribution by subtraction. Then, they �nd estimates for the blood
contribution to the spectrum by �tting the blood absorption spectra to the corrected LIR-spectrum.

Stamatas et al. [38] additionally aim to correct the slope-based melanin by removing the deoxy hemoglobin
contribution obtained by the previous algorithm.

Stamatas' and Kollias' method summed up:

1. Convert the di�use re�ectance spectrum to LIR

2. Fit a straight line from 630 nm to 700 nm

3. Assume the straight line to be the melanin contribution to LIR, subtract it from the LIR to obtain
spectrum without melanin

4. Assume the LIR to represent absorption and �t the oxy-hemoglobin and deoxy-hemoglobin absorp-
tion spectra to the corrected LIR to obtain an estimate of the apparent fractions

5. Multiply the deoxy hemoglobin absorption spectrum by the obtained deoxy fraction, subtract it
from the previously �tted, straight line. Assume the slope of this to be an index for the melanin
content.

A variant of this, not mentioned in Kollias' and Stamatas' articles, would be to continue correcting the
spectras with the newer melanin line and then newer blood fractions until some kind of convergence. Or
in other words, continue executing steps 4. and 5.

The oxy and deoxy spectra �ts [oxy] and [deoxy] can be used as a blood volume fraction index by taking
[BVF] = [oxy] + [deoxy], and oxygen saturation can be estimated using [oxy]/([oxy]+[deoxy]).

Iterative method

A di�erent method, not found in any articles, could be to do iterations at the isosbestic points of the
blood spectra. Ignoring possible methemoglobin interference, the isosbestic points at 548, 569 and 585
nm should give re�ectance values only a�ected by the melanin content and the blood volume fraction
without any concerns about the distribution of deoxy- and oxy hemoglobin. One would only have to
�t the melanin absorption and blood volume fraction until the simulated re�ectance �ts the measured
re�ectance at these two points.
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Other methods

There exists other attempts to quantify the melanin content in some way, but the most will either
assume the apparent absorption spectrum to be representative of the actual absorption spectrum [22],
not be feasible in a simple hyperspectral image scan due to requiring blood-less spectra to be obtained
by applying pressure to the skin [11] or need wavelengths outside of the possible wavelength range in the
instrument [44], or similar methods discarded for similar reasons.

Summary

Some methods for quantifying the melanin absorption has been presented. Except for the iterative
method, the results of these are claimed to be only proportional to the melanin absorption and not equal
to. The articles presenting them do not bridge the gap between their melanin quanti�cation results and
the actual melanin absorption or fraction.

One method is to iterate the melanin absorption with respect to the result of one of these methods, as is
done by Norvang et al. [23]. Some variation of this is attempted. It will later be seen that the results of
the methods for quantifying melanin content and blood volume fraction are correlated, and the chosen
method was to iterate both the blood volume fraction and the melanin content sequentially.

3.5.2 Oxygen saturation

If there is need for forward simulations before the epidermal absorption coe�cient is determined, not
only the blood volume fraction and melanin content will be needed, but also the oxygen saturation.

Randeberg et al. [27] proposed a formula for calculating the oxygen saturation directly from the re-
�ectance spectrum. It is described to be a very rough approximation, but su�cient for relative mea-
surements. The question is whether this formula can be used to �nd the estimate of the blood oxygen
saturation which is needed. The formula is based on a di�erent formula given in the paper by Spott et
al. found in [36], which again is based on a formula given in Ishimaru [17], chapter 3-5-2. Randeberg's
formula is given as

oxy =
µHb(λ1)− µHb(λ2) · R(λ2)

R(λ1)

µHb(λ1)− µHbO2(λ1)
, (3.5)

where R is the measured di�use re�ectance.

3.5.3 MCA

Given a measured absorption spectrum for a mixture of materials, and knowing the absorption spectra
for each di�erent material, the concentration of each material in the mixture can be derived using
multicomponent analysis (MCA).

The total absorption for each wavelength can be assumed to be a linear combination of each absorption
coe�cient:

µa(λ) =
∑
i

µai · ci, (3.6)

where ci is the unknown concentration of component i and µai is the known absorption coe�cient for
the same component. Choosing a set of wavelengths, this will form a set of linear equations. It can be
assumed that the total µa(λ) will contain some noise, which will make us unable to solve this exactly.
Linear least squares can be used to �nd the best �t of each absorption coe�cient [18]. Linear least
squares will however lay no restraints on the non-negativity of the coe�cients.

MCA will not be used in this project report, but some mentions are made of �tting of absorption spectra
against the wavelength-dependent dermal absorption coe�cient and is therefore mentioned as a possible
method for doing so. It is unlikely that MCA will be used later on, as better spectral unmixing algorithms
designed for hyperspectral images can be employed.
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Chapter 4

Results and discussion

Real time inverse modelling of hyperspectral images is a sorely needed tool if hyperspectral imaging ever
should become a feasible diagnostic tool in medicine. Di�erent methods have been evaluated. First,
some spectra used for benchmarking the inverse method will be presented. The forward models are then
evaluated, followed by an evaluation of the inverse modelling times for the Monte Carlo-based inversion
program and the hyperspectral, di�usion-model inversion tool, and lastly an evaluation of the �rst step
in the inverse chain.

4.1 Spectra

The inverse models were benchmarked against a select few spectras, since it would be easier to test the
inversion strategy if all possible errors that might rise due to using hyperspectral data were eliminated.
These are displayed in �gures 4.1, 4.2, 4.3. These were collected by my supervisor from her own skin and
one of her PhD-students using a spectroscope. Figures 4.1 and 4.2 are spectras with a low epidermal
melanin absorption, probably in the range 190 to 250 m−1. Figure 4.2 has a low oxygen saturation,
evident from the lack of features in the 550 nm-region.
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Figure 4.1: Measured di�use re�ectance spectrum from a light-skinned individual.
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Figure 4.2: Measured di�use re�ectance spectrum from a light-skinned individual. Low oxygen saturation
is evident.
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Figure 4.3: Measured di�use re�ectance spectrum from a dark-skinned individual.
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4.2 Forward models

The GPU-MCML forward model was tested against the di�usion model forward model for di�erent
parameters and di�erent source functions in the di�usion model. Results are plotted in �gures 4.5, 4.6,
4.8 and 4.7. The results show that overall, the correspondence is good, but will be worse when the
absorption is higher, as expected. The results are also similar to the results found by Randeberg et al.
[28], namely that the error between the isotropic di�usion model and Monte Carlo will be shaped like
the blood spectrum and the error can be expected to be scaled away by scaling the blood absorption
spectrum by the neccessary amount.

Results from GPU-MCML is also plotted alongside with results from the more traditional MCML [45]
for the same input parameters in �gure 4.4. Results are the same.
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Figure 4.4: Comparison of MCML and GPU-MCML for oxy = 0.8, BVF = 0.05, µa,m,694 = 250.

Figures 4.5 and 4.6 both have a low absorption, and especially Delta-Eddington has a good corresponence.

On the other hand, �gure 4.8, with its high blood concentration and �gure 4.7, with its high melanin
absorption, display a worse correspondence. It can be noted that Delta-Eddington is a worse �t than
the isotropic variant above 600 nm, where the scattering is larger than the absorption and the di�usion
model overall should be a better �t. Delta-Eddington "breaks down".

The scattering function in the simulations has one small error: the Rayleigh part of the scattering is
assumed to have the same anisotropy factor g as the Mie part. The Rayleigh scattering is in reality
isotropic, and should have an anisotropy factor equal to 0. If this is implemented for the di�usion model
and MCML, the result shown in �gure 4.9 will happen.

The result is worse and has a larger discrepancy between GPU-MCML and the di�usion model than
the simulations done for the same input parameters in �g. 4.6. Even the error for the Delta-Eddington
source function is now blood absorption spectrum shaped.

The reason for this is likely the way the di�usion model and GPU-MCML treats the g-factor. The
di�usion model handles the reduced and normal scattering coe�cient separatedly and will be able to
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di�erentiate between the Rayleigh scattering and the correctly reduced Rayleigh scattering, i.e. the exact
same coe�cient. MCML, on the other hand, uses the non-reduced µs, with the Rayleigh-part set to the
correct value, but uses the same g, which will not di�erentiate between the Rayleigh and non-Rayleigh
parts of the compund expression. The end result will be an MCML which treats the Rayleigh-part as
non-isotropic and a di�usion model handling it isotropically, explaining the large discrepancy.

The Rayleigh scattering has therefore been handled in the same way in both GPU-MCML and the
di�usion model by pretending it has the same g as the rest of the scattering mechanisms. Strictly
speaking, it will not be correct, but MCML and the di�usion model will at least agree on a common
ground. On the other hand, because of this, MCML will be slightly less correct than the di�usion model
since the di�usion model has the potential of handling the g correctly. Mixing gs from di�erent scattering
mechanisms purely by altering g seems largely unde�ned. Mixing it by using the volume fractions will
not be correct. The summed reduced scattering coe�cients using di�erent gs will not agree with the
value obtained by multiplying the non-reduced, combined scattering coe�cient by a g combined in this
way, and combining the gs in a way which does not violate this has no guarantee of actually being the
correct g, even if the reduced scattering coe�cients will be correct.

Conclusions are, with some reservations, that the di�usion model largely should be good enough for
implementing an inverse model.
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Figure 4.5: Comparison of GPU-MCML and di�usion model for oxy = 0.4, BVF = 0.01, µa,m,694 = 250
m−1.
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Figure 4.6: Comparison of GPU-MCML and di�usion model for oxy = 0.8, BVF = 0.01, µa,m,694 = 250
m−1.
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Figure 4.7: Comparison of GPU-MCML and di�usion model for oxy = 0.8, BVF = 0.01, µa,m,694 = 700
m−1.
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Figure 4.8: Comparison of GPU-MCML and di�usion model for oxy = 0.8, BVF = 0.05, µa,m,694 = 250
m−1.
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Figure 4.9: Comparison of GPU-MCML and di�usion model for oxy = 0.8, BVF = 0.01, µa,m,694 = 250
m−1, with gray set to 0.
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4.3 Benchmarking of the inverse models

Both a forward and an inverse model has been implemented for GPU-MCML, though lacking a concrete
method for determining µa,m,694, as will be discussed later. The forward model was benchmarked against
the di�usion model above. Mainly the computation times will be benchmarked here and not the end
results.

The GPU-MCML inverse model will need everything from 3 to 8 minutes for 160 wavelenghts in the
range of 400 to 800 nm, depending on the number of photons used for each simulation. As the time taken
to inverse model a single spectrum, this method is not feasible for a larger hyperspectral image, even if
it allegedly gives more correct results as a more accurate solution to Boltzmann's transport equation.

The forward model will be slightly faster, everything from 20 to 40 seconds. This will be more useful
for benchmarking the di�usion model. Results output from the di�usion model may be tested against
GPU-MCML faster than what MCML would ever achieve. With a newer computer, MCML was able to
�nish forward-modelling the whole spectrum only after 20 minutes. Can GPU-MCML be optimized? A
plot of the running times versus wavelengths for a typical situation is shown in �gure 4.10. The running
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Figure 4.10: The running time for GPU-MCML as a function of wavelength, oxy = 0.8, BVF = 0.01,
µa,m,694 = 250.

times will be dependent on the absorption-scattering ratio due to how GPU-MCML is implemented.
This will pose some problems for an inverse modelling situation since each forward simulation will be
dependent on how high we set our absorption, reducing the predicability of the running time. In any case,
it can be seen in �gure 4.10 that the running times mostly follow the shape of the re�ectance spectrum,
except for some areas where it constantly lies at 100 ms. This should be evidence of a bottleneck for each
simulation which might be eliminated. When adapting the GPU-MCML code for spectras, the internal
code was largely left untouched and mainly the input functions were hacked to accept internal data
structures instead of input �les. As will be demonstrated with GPU-DM, memory allocation is a point
in GPU-based code which will use a large amount of time, and pro�ling of GPU-MCML using NVIDIA
Visual Pro�ler will show that the memory allocation step will use about 50 ms of the total running time.
The same array sizes are likely to be allocated every time a simulation is run, and the total running time
may be reduced by allocating memory only once.
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Yet, as all GPU parallellization capabilities are focused on simulating the results for one wavelength
only, and GPUs have limitied capabilities for running more than one stream at a time, all wavelengths
have no other choice but to be simulated sequentially. If an instantaneous Monte Carlo simulation of the
full spectrum is desired, the single simulation will have to be optimized dramatically, which at least is
not possible on the lower-end GPU which was used for testing. Reducing the running time by 50 ms for
each wavelength will not help in the long run. It might be possible to reduce the running time enough
on future GPU architectures, but there will be years and years before GPU-MCML is fast enough for
inversion of 1600 pixels sequentially without employing 1600 di�erent GPUs. Additionally, when that
time comes, the hyperspectral camera speci�cations are likely to have changed and will give the results
far faster than one line at a time. The real time requirements will change.

Today, GPU-MCML simply is not feasible for a real time inversion system for hyperspectral imaging,
and is likely to never be. The small accuracy pay-o� will not satisfy the price of long simulation times.

The di�usion model, on the other hand, has proven to be feasible as a real time inverse model for
hyperspectral cameras even on a lower-end GPU. Table 4.1 shows the running times of each step in the
process. The GPU allocation step is the most time-consuming step, and will only be done once at the

Table 4.1: Running times of GPU-DM

Function Running time
(ms)

gpuallocate() 117.0
Memory transactions 2.220
calibrate() 0.073
calcMelaninBvfOxy() ????
calcSkinData() 0.308
Re�IsoL2() 0.410
nextMuad() 0.120

beginning of the program initialization. The memory transactions, the calibration and the calculations
of the skin data will only be done once for each line scan, a total of 2.1 ms at the beginning of the
runtime and 0.5 ms at the end. The memory transactions may also, on a better GPU, be parallellized
with the kernel functions. It is as of yet unknown how much time the melanin step will take. It depends
on how e�ciently the memory access may be implemented, and how much inverse simulating that has to
be done. Anything less than 2, maybe 4 ms, can at best be estimated, and 2 ms extra time is gained if
the memory transactions become concurrent. Low multiprocessor occupancy is sported by Re�IsoL2(),
which, if somehow heightened, might reduce its running time even more. This is mainly due to a low
number of threads per block, which could not be increased because Re�IsoL2() needs a large amount
of registers per thread. The number of registers may be lowered, but the same calculations will then
have to be done multiple times. Latency hidden away by a higher multiprocessor occupation will be
re-introduced as added calculation latency.

The remaining time until deadline will be between 25 and 22 ms. Assuming some extra overhead
between each line, the results should be prepared within 20 ms. With 0.53 ms per iteration, 37 iterations
of Newton's method can be performed within the deadline.

Is this enough? The convergence status after 15 iterations is seen in �gure 4.11. With the worst start
estimate for µa,d, it will converge within these iterations. Having µa,d start at 1.0 for all wavelengths is
very arti�cial, a far better approximation always will be the start estimate. The method should therefore
be expected to converge much faster than within 15 iterations. While the outlook is good, there is one
problem. If there is something wrong with the spectrum, like noise, the spectrum might in places lie so
low that the method needs to set a negative dermal absorption since the epidermal absorption is high
enough that the dermal absorption will have to compensate. In that case, the forward model might fail,
the derivative will fail and the method determining the next µa,d will fail. A check for negativity has
been built into the Newton step, which will set the dermal absorption to 1.0. This is no better than just
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Figure 4.11: The convergence of GPU-DM using µa,m,694 = 250, oxy = 0.6, bvf = 0.05 and a very bad
start estimate for µa,d, µa,d = 1.0.

outputting NaN-values, but at least the values are real. Noise removal will have to remove such noise
before inverse modelling is attempted.

The GPU-DM inverse modelling of the spectrum in �gure 4.1 is compared against the GPU-MCML-
result in �gure 4.12. They are not the same, as can be expected since the source function in use was the
isotropic one and not Delta-Eddington, but the result is not that bad. Both GPU-MCML and GPU-DM
agree on a common shape of the dermal absorption spectrum. When spectral unmixing some time in
the future is implemented, it is likely to output the same results since the general shapes are the same.

There are however no guarantees that the running time of each step will always stay the same. No hard
real time functionality is implemented in the CUDA framework, and it is unknown how the GPU will
schedule di�erent processes competing for GPU time. If some framework for instance tries to process
data on the GPU from two di�erent threads, the GPU might decide to follow some �rst come, �rst served-
principle, and even if the calculation of re�ectance values still is fast, the time between two re�ectance
value calculations will be longer since it has to wait for some other calculation to �nish �rst. If the
GPU is used for display management, this can cause additional interference. The framework handling
the hyperspectral data will have to implement some mutual exclusion for the GPU resource, and the
functionality supposed to handle the data in real time will have to be given higher preference.

In any case, it is not crucial that the hyperspectral processing meets the hard deadline of 30 ms, and
interference might be acceptable.

40



450 500 550 600 650 700 750 800
0

1

2

3

4

5
·103

Wavelength (nm)

A
b
so
rp
ti
o
n
(m
−
1
)

DM (isotropic)
GPU-MCML

Figure 4.12: Derived µa,d from the spectrum in �gure 4.1 by using GPU-MCML and the di�usion model.
The same initial estimate, µm = 250 m−1, o = 0.6, bvf = 0.01.

4.4 Melanin and blood volume fraction

The part of the inverse chain needing the most scrutiny was the epidermal absorption-determining stage.
The methods presented for estimating the melanin content and blood volume fraction have earlier been
used, both as a part of an inverse chain and especially for quantifying relative di�erences. There are some
known cross-talk problems in these methods, less apparent when used for quantifying relative di�erences.
When used as a part of an inverse model requiring absolute measures of each parameter, these problems
caused the end result to be wrong, and the melanin quantifying methods were therefore investigated and
tested in detail. The investigation of Dawson's indices, Kollias' slope-based method will be presented
along with a presentation of the problem.

4.4.1 Dawson's indices

Using forward-simulations, di�erent blood volume fractions and melanin absorptions were input into the
model and Dawson's erythema and melanin indices were calculated for each di�use re�ectance result.
Dawson's erythema index as a function of the blood volume fraction for di�erent oxygen saturations and
melanin absorptions is shown in �gure 4.13, and Dawson's melanin index as a function of the melanin
content for varying oxygen saturations and blood volume fractions is shown in �gure 4.14.

The erythema index is not linear with the blood volume fraction. In addition, the maximum and
minimum possible erythema indices for each blood volume fraction are not equal. One erythema index
will answer to various blood volume fractions, not ensuring a one-to-one relation.

The melanin index is, on the other hand, more or less linear, but also here is there some di�erence
between the maximum and minimum possible melanin index for one speci�c input melanin absorption.

There reason for this is explained and investigated using actual human tissue by Stamatas and Kollias [37].
The melanin content is estimated from a wavelength interval in which the deoxy hemoglobin absorption
is not equal to zero, namely around 620 to 700 nm. The deoxy hemoglobin absorpion curve exhibits
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Figure 4.13: Dawson's corrected erythema index as a function of the blood volume fraction, simulated by
varying µa,m,694 between 100 and 1000 m−1 and the oxygen saturation between 0.5 and 0.8, and picking
the highest and lowest resulting erythema index. Simulated using GPU-MCML.

traits very similar to the melanin absorption curve, they both slope downwards, as shown in �gure 4.15.
Such methods will mis-interpret the presence of the deoxy hemoglobin absorption as the presence of
strong melanin absorption when the melanin content is su�ciently low. Stamatas and Kollias showed
that color space methods similar to the melanin index used to quantify melanin content would claim a
higher melanin content when increasing the deoxy hemoglobin content by trapping blood by applying
pressure.

4.4.2 Kollias' indices

Where Dawson tried to correct his erythema index for the melanin content, but not the other way
around, Stamatas et al. [38] presented a modi�cation of Kollias' method where also the melanin content
is corrected for the presence of blood.

Figure 4.17 displays the highest possible and lowest possible corrected melanin slope corresponding
to a speci�c input melanin content. The relationship between the melanin content and the melanin
slope is linear, as it was with Dawson's method. The di�erence between the maximum and minimum
quanti�cation value is also similar. The same melanin slope will correspond to many di�erent melanin
contents, as Dawson's index did.

In detail will �gure 4.16 show how the corrected melanin slope varies with the oxygen saturation. The
behavior in �g. 4.17 showed how a higher melanin content corresponded to a more negative slope. Fig.
4.16 shows that a lower oxygen saturation, that is, a higher deoxy hemoglobin content, will vary the
melanin slope in the same way, resulting in cross-talk.

An iterative method where the blood coe�cients and melanin slope are continually corrected against
each other was also presented, and the result of this is shown in �gure 4.18. The results do not deviate
much from the results gained from doing only one correction, in fact, the deviations are more or less
random.

Kollias' deoxy hemoglobin �t is plotted for di�erent input melanin contents in �gure 4.19. The melanin
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Figure 4.14: Dawson's melanin index as a function of the melanin absorption, simulated by varying the
BVF between 0.0005 and 0.005 and the oxygen saturation between 0.5 and 0.8, and picking the highest
and lowest resulting melanin index. Simulated using GPU-MCML.

slope was correlated with the deoxy hemoglobin amount. Similar behavior for the Kollias' deoxy
hemoglobin �t is not as evident. Where the lines should be straight, they do however slope with the
melanin content.

The �tted oxy and deoxy hemoglobin parameters are summed, and the possible minimum and maximum
of these are plotted as a function of blood volume fraction in �gure 4.20.

The behavior is very similar to what was shown for Dawson's erythema index in �gure 4.13. The
relationship between what should quantify the blood volume fraction and the input blood volume fraction
is not linear, but sports something more similar to a logarithmic function. In addition, the same is seen
here as for the rest of the indices, there is a di�erence between the largest and smallest possible index.

The general behavior for Stamatas' and Kollias' methods is very similar to Dawsons indices when tested
using the same simulation methods, they both display similar crosstalk. Still, compared to Dawson's
indices, the errors are less. The range of melanin absorption parameters that correspond to the same
melanin index is less in Kollias' case than in Dawson's case, a range of 500 m−1 compared to a range of
700 m−1.

Using Stamatas' and Kollias' method as a part of the inverse chain was investigated. This was done
by iterating the melanin content and blood volume fraction seqentially as according to Stamatas' and
Kollias' corrected melanin slope and blood parameter �ts. An initial attempt, as shown in �gure 4.21,
will show that the method is able to converge towards the right order of magnitude of µa,m,694 for a
simulated spectrum. It is also able to converge towards the right orders of magnitude when applied
on the spectrum in �gure 4.1, as shown in �gure 4.22. However, the method gives a too-high estimate
of the melanin content when the presence of deoxy hemoglobin becomes too strong, as shown in �gure
4.23 when applying the method on the spectrum in �gure 4.2. The spectrum is from skin that has a
low oxygen saturation and will be a perfect example of the problems presented by Stamatas and Kollias
[37]. Even if the blood volume fraction and the melanin absorption coe�cient at 694 nm are iterated
simultaneously, they will not converge towards the correct values. The spectrum in �gure 4.2 is from
a very light-skinned individual, around 200 m−1, and the result from the iteration, around 1000 m−1,
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Figure 4.15: The absorption coe�cients of deoxy hemoglobin and melanin. The deoxy absorption co-
e�cient is multiplied by 0.05, while µa,m,694 = 150 m−1. The melanin absorption coe�cient is plotted
using (2.22), while the blood absorption data is measured by Thorsten Spott.

corresponds to dark skin, which is not correct.

The problem can in detail be illustrated by plotting the measured spectrum together with the spectrum
obtained by estimating µa,m,694 and the BVF, as shown in �gure 4.24. The simulation matches the
measurement along the slope in the correct area, but di�ers too much from the measured spectrum
elsewhere. The fact that the simulated spectrum lies below the measured spectrum in several places
will also pose a problem, since later µa,d �tting will have too lower the dermal absorption coe�cient. It
might not be possible to do so while keeping the dermal absorption coe�cient non-negative.

This initial attempt at using Kollias' and Stamatas' methods shows that the cross-talk problem is too
strong for a simple iteration strategy. Response in one variable will cause response in a di�erent part
of the spectrum where the other variable is estimated, and the end result is a complex problem not
easily solved, especially not by a simple iteration strategy. On the other hand, the measures of melanin
and blood volume fraction are designed to be decorrelated, and implementing a convoluted scheme for
iteration to correct for this behavior will be very ad-hoc. Something should instead be done to remedy
the behavior itself.

Stamatas and Kollias seemed to have success with their method, although by quantifying relative dif-
ferences. The methods were in this report mainly benchmarked using simulations. The discrepancies in
this report could be due to simulation errors in these. The skin model is a very simple two-layer model
which only approximates real skin. The scattering functions are approximations, the input absorption
spectra are not measured in vivo. While Monte Carlo widely is regarded to be true and accurate, there
are still some assumptions made that might be faulty.

However, as real skin is more complex, there are far more complex and convoluted processes behind the
di�usively re�ected light than what the simulations can achieve. If the methods have problems in simple
situations, there is no reason they should fare any better in a more complex one.

The main problem in trying to correct the blood quanti�cation with the melanin estimate and vice versa
is how both methods rely on some extended Beer's law scheme in order to make the LIR-spectrum a valid
approximation to the absorption. When light penetrates the tissue and is di�usively re�ected back after
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Figure 4.16: Kollias' corrected melanin slope for constant melanin content and di�erent oxygen satura-
tions. Simulated using GPU-MCML and BVF = 0.05.

undergoing absorption, it will in part display mechanisms similar to Beer's law, but the amount of light
coming back is also dependent on scattering. The light will penetrate di�erent depths in non-homogenous
tissue, bringing back di�erent information depending on the wavelength. Comparing di�erent LIR-values
at di�erent wavelengths, like correcting the spectrum around the 550 nm area for an melanin absorption
found in the 600-700 nm area, will be di�cult.

An example can be seen in �gure 4.25, where the un�tness can be observed by trying to �t the blood
absorption coe�cients to the melanin-corrected spectrum. The estimate could have become better if we
alongside the blood spectras also tried to �t a constant factor as shown in �gure 4.26, but it will not.
The scattering variation is too strong.

The main problem with the cross-talk itself is how the methods rely on the spectrum from 600 to 700 nm.
The thought has all along been that the blood absorption spectrum is low enough that the spectrum
mainly would be a�ected by melanin, and it can clearly be seen in �gure 4.3 compared to �gure 4.1
that higher melanin content will cause the whole di�use re�ectance spectrum to slope more downwards.
As demonstrated, however, melanin is not alone. When the general absorption is low enough that the
scattering is dominating, the back-re�ected light will come from greater depths and be a�ected by far
more than just the shape of the melanin curve in epidermis.

This report will reach no speci�c conclusions other than the fact that the methods, as of today, are not
su�cient. They are su�cient for relative measurements, but not for any absolute measurements of the
melanin content or blood volume fraction. Work will still have to be done in order to �nd a method which
should fare better for absolute measurements. A part of the problem is the large penetration depth, and
estimating the melanin content at more shallow penetration depths can be one possible solution, as is
done by Verkruysse et al. [44], perhaps in combination with the other methods.

Figure 4.27 shows that it will be important to �nd a near exact method. If the initial µa,m,694 is varied
in steps of 50 m−1 within the allowable range for a light-skinned individual, the derived end result for µd
will vary too much. For some of these derived dermal absorption coe�cients, the dermal chromophore
absorption spectra may be �tted only when one at the same time �ts the melanin curve to the result,
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Figure 4.17: Kollias' melanin slopes as a function of the melanin absorption coe�cient, the maximum
and minimum slope taken from a set of oxygen saturations (0.5 and 0.8) and blood volume fractions
(0.0005 and 0.005). Simulated using GPU-MCML.

which just shows that the melanin has not completely been separated from the rest and the model �t will
try to compensate for the lacking melanin absorption by increasing the dermal absorption coe�cient.
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Figure 4.18: Kollias' corrected melanin slope as a function of melanin absorption for a set of di�erent
skin parameters, using Stamatas' proposed method and an iteration-based variant. Simulated using
GPU-MCML.

100 200 300 400 500 600 700 800 900 1,000

5.5

6

6.5

7

7.5

8

8.5

·10−6

Melanin absorption coe�cient at 694 nm (m−1)

K
o
ll
ia
s'
d
eo
x
y
in
d
ex

BVF = 0.05
BVF = 0.01

Figure 4.19: Kollias' deoxy �t for di�erent µa,m,694 for an oxygen saturation of 20%. Simulated using
GPU-MCML.
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Figure 4.20: Kollias' BVF index as a function of the blood volume fraction, simulated by varying µa,m,694
between 100 and 1000 m−1 and the oxygen saturation between 0.5 and 0.8, and picking the highest and
lowest resulting BVF index. Simulated using GPU-MCML.
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Figure 4.21: Convergence of iteration using Kollias' slopes for a simulated spectrum using µa,m,694 = 250
m−1, oxy = 0.5, BVF = 0.02. Both simulation and iteration using GPU-MCML.
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Figure 4.22: Convergence of µa,m,694 and BVF using sequential iteration based on Kollias' methods for
the spectrum in �g. 4.1. Iterated using GPU-MCML.
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Figure 4.23: Convergence of µa,m,694 and BVF using sequential iteration based on Kollias' methods for
the spectrum in �g. 4.2. Iterated using GPU-MCML.
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Figure 4.24: Delta-Eddington di�usion model-simulation of the parameter �t from �g. 4.23 along with
the spectrum from �g. 4.2.

400 450 500 550 600 650 700 750 800
0

0.5

1

1.5

2

2.5

3

Wavelength (nm)

A
rb
it
ra
ry

u
n
it
s

Corrected LIR-spectrum
Blood spectrum �t

Figure 4.25: The melanin-corrected LIR values plotted alongside the blood spectrum �t.
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Figure 4.26: The melanin-corrected LIR values, also corrected with a constant factor, plotted alongside
the blood spectrum �t.
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Figure 4.27: Derived µd with di�erent initial µa,m,694 for the spectrum in �g. 4.1.
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4.4.3 Subsequential model �tting

Posed by the cross-talk problems of Kollias and Dawson, a di�erent method was investigated, where
the melanin absorption and blood volume fraction are in turn iterated with respect to two isosbestic
points. Comparing a simulation of the µa,m,694-�t against the spectrum in �gure 4.1 will result in a
simulated spectrum that almost has a constant di�erence to the measured spectrum (see �gure 4.28).
If one tries to completely bridge the gap between the simulated spectrum and the measured spectrum,
either the blood volume fraction or the melanin absorption will be over-estimated in order to provide a
high enough absorption to completely bridge the gap, and at the next point, one of the other parameters
will be under-estimated in order to correct for an over-estimated absorption at the next point.
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Figure 4.28: Delta Eddington di�usion model-simulation of the parameter �t from �g. 4.22 along with
the spectrum from �g. 4.1.

This method should therefore fail, but the use of isosbestic points should be investigated further, in
combination with the idea of using more shallow penetration depths.

4.5 Oxygen saturation

The formula in equation (3.5) was used on the Delta-Eddington di�usion model to calculate the apparent
oxygen saturation for a range of input oxygen saturations in order to benchmark the method. Results are
shown in �gure 4.29. It is claimed [21] that the (660, 817) combination will reach greater depths in the skin
and give an oxygen saturation larger than the one obtained while using the (540,548) combination, since
the blood at the super�cial depths is less oxygen-rich. The simulations will show an oxygen saturation
that sports this behaviour and has values in the range that the blood should have at these two di�erent
depths, but the formula gives this range of oxygen saturation values regardless of the input oxygen
saturation. Plus, this behaviour should not be present in the simulations as it represents a homogenous
medium with the exact same oxygen saturation at all layers of the skin.

Judging purely from this, the oxygen saturation formula should not be trusted for absolute measurements.
For the Kollias simulations, the oxygen saturation was estimated using Kollias' indices.
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Figure 4.29: Results from the modi�ed Ishimaru formula simulated using Delta-Eddington di�usion
model for a range of input oxygen saturations. µa,m,694 = 300 m−1, BVF = 0.01.

The corresponding, simulated spectra are in part shown in �gure 4.30.

Ishimaru's original formula [17], upon which Randeberg's formula is based, is speci�cally designed for
measuring the blood oxygen saturation for a purely absorbing, hemolyzed solution of blood. A blood
solution is hemolyzed when the erythrocyte membranes are ruptured and the blood solution reduced to
a purely absorbing medium. When posed by the absorption through such a blood solution, the formula
will output the correct values, less so when scattering also is taken into account. Spott's adoption
[36] uses the derived dermal absorption coe�cients for skin after an inversion in place of Ishimaru's
absorption values, which eliminates the scattering. Any additional wavelength-varying absorption at
the wavelengths in question can be a problem since Ishimaru's formula needs an exact measure of the
combined blood absorption coe�cient multiplied by some constant, or else it will not work. Spott is
able to solve this by scaling the dermal absorption coe�cient to �t the blood absorption spectrum, in
addition to the fact that he is estimating the oxygen saturation in a part of the spectrum less dependent
on other chromophores than blood.

As earlier mentioned, it can be argued that the inverse of the di�use re�ectance can be estimated to
be the absorption spectrum multiplied with some constants, which is the whole basis for Randeberg's
formula. Now, the spectrum will be dominated by both an extra, wavelength-dependent absorption from
melanin and a wavelength-dependent scattering. If the wavelength-dependence is strong, the formula
should be less likely to output the correct values since it will interfere with the extraction of the oxygen
saturation from the compound absorption.

However, in the 660 to 817-range, both the melanin absorption and the scattering is only slowly varying,
and this combination of wavelengths should have yielded better results. As seen in �gure 4.29, it is
almost constant. The reasons for this are unknown, although some other strange behavior has also been
spotted for the simulations. For instance, the erythema indices for both Dawson's and Kollias' cases
were following some logarithmic function instead of being linear with respect to the input parameters.
The method cannot completely be discarded even if the simulations show it to give less likely results,
the simulations will have to be investigated in more detail �rst.
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Figure 4.30: Simulations using the Delta-Eddington di�usion model for a range of input oxygen satura-
tions. µa,m,694 = 300 m−1, BVF = 0.01.
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Chapter 5

Conclusion and further work

An existing GPU-implementation of Monte Carlo simulation of light transport in multi-layered tissue
has successfully been altered to output the re�ectance for the whole wavelength range in the visible
spectrum within 40 seconds, as compared to the traditional MCML package, which will use 20 minutes
with considerably fewer photons per simulation. An inverse model has also successfully been implemented
using GPU-MCML, but was considered too slow for real-time use. The running time of the forward model
will however be su�cient, and can be used for benchmarking of other results. Some future work here
could be to provide some GUI or at least streamline the code a bit more.

The traditional methods for evaluating the melanin content of human skin was evaluated and found
insu�cient, and a major part of the future work will have to be to �nd a better solution to this problem.
Some ideas have been proposed which will be looked into. There is also hyperspectral data available of
skin with both di�erent blood volume fractions and di�erent melanin contents present in the same patch
of skin, for which any new methods may be benchmarked.

A GPU-implementation of an inverse model using the analytical di�usion theory has been implemented
and found to output a �nished result well within the deadlines de�ned by the hyperspectral camera
hardware. As the lowest of the low-end GPUs were used, this is likely to perform even better as the
GPU in use is replaced by one with the latest compute capabilities. The inverse chain does theoretically
work, and has been proven to work on single spectras. The hyperspectral images are however quite noisy,
and some algorithm for good noise removal on a per-line basis is needed before the inverse chain can
be tested on real hyperspectral data. There exists good noise removal tools for hyperspectral images,
but these are best applied on full images and not lines. Delta-Eddington should be implemented for the
inverse chain, as should the three-layer model. The scattering functions should be updated with newer
�ndings, as should the rest of the model.

The hyperspectral images must be calibrated. The hyperspectral camera itself will provide automatic
radiometric calibration, but the spectras will also have to be calibrated against and corrected for non-
uniformity of the light source. A calibration slab will always be inserted in the start of each hyperspectral
scan. Detecting this slab correctly and integrating over its interiors before starting the inverse processing
will have to be done in a stable and fast way within some time limits. Results from real time robotics
and computer vision may probably be used.

Spectral unmixing will have to be implemented for the result from the inverse chain, where the absorption
spectrum of each cromophore is �tted against the output dermal absorption coe�cient, and the results
must be checked. It is likely that the spectras cannot be �t all at once throughout the whole wavelength
range, since the penetration depths will vary with the absorption coe�cient, and the absorption coe�cient
will represent properties gained from di�erent depths. The skin is not homogenous, and the spectras
must therefore be �t within ranges within which the penetration depth is constant.

The inverse chain must also be integrated into some framework. Right now, it is called from a stand-alone
client for the hyperspectral camera which also can be supplied with images from a mock-up server, but
in the end, the inverse chain is supposed to be a part of a larger hyperspectral processing framework
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developed by Forsvarets Forskningsinstitutt. Due to the way the inverse chain is written, this should
however not be very challenging.

The inverse model must also rigorously be tested for stability and whether it will reach its deadlines even
when disturbed by other applications. Timing and actual real time issues have not been addressed in
this project, this project has only ensured the existence of an inverse model fast enough for embedding
in a real time environment.
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Appendix A

Source code

A.1 GPU-DM

A TCP/IP-client was also developed by assembling code parts from examples provided by Norsk Elektro
Optikk, but this was not included since the calibration step was not resolved, only simpli�ed pseudo-code
using some prototypes is displayed.

File A.1: GPU�DM/gpudm.h

1 #ifndef GPUDM_H_DEFINED

2 #define GPUDM_H_DEFINED

3

4

5 //for quick access and better control of the arrays allocated in the GPU and

containing the optical properties

6 // references to all the GPU arrays

7 typedef struct{

8 // epidermis

9 f loat *muae;

10 f loat *muse;

11

12 // dermis

13 f loat *muad;

14 f loat *musd;

15

16 // iteration arrays

17 f loat *refl;

18 f loat *deriv;

19 f loat *prev_muad; //buffered , previous line of muad

20 f loat *lineData_gpu_1; // linedata 1

21 f loat *lineData_gpu_2; // linedata 2. Will switch between these two

depending on which one is the buffer

22 int currLineData; // contains either 1 or 2, indicating lineData_gpu_1 or 2.

Initially set to 0

23 bool safeToTransferMuad; // whether the prev_muad array contains any data or

not

24

25 // spectras

26 // arrays containing absorption and scattering spectrum values corresponding

to the wavelengths defined in the hyperspectral image header for

different cromophores

27 f loat *muh_oxy;

28 f loat *muh_deoxy;

29 f loat *melanin_base; // contains (695/ lambda)^3.46
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30 f loat *gcol; // anisotropy factor for collagen

31 f loat *musm; // unreduced mie scattering

32 f loat *musr; // unreduced rayleigh scattering coefficient

33 f loat *musb_base; // unreduced blood scattering coefficient

34

35 f loat *oxy;

36 f loat *bvf;

37 f loat *muam694;

38

39 // memory properties

40 size_t pitch;

41 size_t byteWidth;

42 size_t height;

43

44 // camera properties

45 int spectral_size; // number of wavelengths

46 int spatial_size; // number of pixels in one line

47 int threads_per_block; // threads per block

48 f loat *cal_array; // calibration array , containing line_spec .* cal_slab

49 } GPUDMArrays;

50

51 extern "C"

52 void gpuprocessing(GPUDMArrays *a, f loat *nextLineData , f loat *prevMuad);

53

54 extern "C"

55 void gpuallocate(GPUDMArrays *arrays , f loat *wavelengths , f loat *cal , int

spectral_size , int spatial_size);

56

57 extern "C"

58 void gpufree(GPUDMArrays *arrays);

59

60 // pointers to pointers because there is no other way the function will be able

to change the reference of the pointer and allocate memory and keep the

changes outside of scope

61

62 void gpuallocate_prop( int spectral_size , int spatial_size , size_t byteWidth ,

size_t height , size_t *pitch , f loat **muae , f loat **muse , f loat **muad ,

f loat **musd);

63 void gpuallocate_iter( int spectral_size , int spatial_size , size_t byteWidth ,

size_t height , size_t *pitch , f loat **refl , f loat **deriv , f loat **prev_muad ,

f loat **lineData_1 , f loat ** lineData_2);

64 void gpuallocate_spect( f loat *wavelengths , int spectral_size , int spatial_size ,

size_t byteWidth , size_t height , size_t *pitch , f loat **muh_oxy , f loat **

muh_deoxy , f loat ** melanin_base , f loat **gcol , f loat **musm , f loat **musr ,

f loat ** musb_base);

65

66

67 #endif

File A.2: GPU�DM/gpudm_main.cu

1 #include <time.h>

2 #include "cameraHeader.h"

3 #include "muh_blood.h"

4 #include <iostream >

5 #include "gpudm.h"

6 using namespace std;

7

8 //GPU kernels

9 __global__ void calcMelaninBvfOxy( f loat *oxy , f loat *bvf , f loat *muam694 , f loat

*lineData , size_t inputPitch);
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10 __global__ void calcSkinData( f loat *oxy , f loat *bvf , f loat *muam694 , f loat *

muae , f loat *muse , f loat *muad , f loat *musd ,

11 f loat *muh_oxy , f loat *muh_deoxy , f loat *melanin_base , f loat *

musm , f loat *musr , f loat *musb_base , size_t pitch);

12 __global__ void ReflIsoL2( f loat *muae , f loat *muse , f loat *muad , f loat *musd ,

f loat *res , f loat *gcol , f loat *deriv , size_t pitch); //gd and ge are read

in as texture arrays since they do not differ from the standard gcol anyway

13 __global__ void nextMuad( f loat *lineData , f loat *refl , f loat *deriv , f loat *

muad , size_t pitch);

14 __global__ void calibrate( f loat *lineData , f loat *cal , size_t pitch);

15

16 #define div13 1.0f/3.0f

17 #define A 0.14386f

18 #define de 100e -6*1.0f

19

20

21 //takes in the arrays and the next line , which will only be transferred and

processed in the next round

22 void gpuprocessing(GPUDMArrays *a, f loat *nextLineData , f loat *prevMuad){

23 f loat *refl = new f loat [a->spectral_size*a->spatial_size* s izeo f ( f loat )

];

24 // timers for timing the first call to ReflIsoL2

25 cudaEvent_t start , preprocessing , stop;

26 cudaEventCreate (&start);

27 cudaEventCreate (&stop);

28 cudaEventCreate (& preprocessing);

29 i f (a->currLineData == 0){

30 //first line of data , can only be transferred , no processing at this

stage

31 cerr << cudaMemcpy2D(a->lineData_gpu_1 , a->pitch , nextLineData , a->

byteWidth , a->byteWidth , a->height , cudaMemcpyHostToDevice) << endl;

32 a->currLineData = 1;

33 } else {

34 //find out which array is buffered and not

35 f loat *currLineData; // current line to be processed

36 f loat *nextLineData_gpu; // reference to gpu array to which the next

line data should be transferred

37 i f (a->currLineData == 1){

38 a->currLineData = 2;

39 currLineData = a->lineData_gpu_1;

40 nextLineData_gpu = a->lineData_gpu_2;

41 } else i f (a->currLineData == 2) {

42 a->currLineData = 1;

43 currLineData = a->lineData_gpu_2;

44 nextLineData_gpu = a->lineData_gpu_1;

45 } else {

46 a->currLineData = 0; // something went wrong? Try to reset

47 return;

48 }

49 // create streams

50 cudaStream_t transferStream;

51 cudaStream_t processingStream;

52 cudaStreamCreate (& transferStream);

53 cudaStreamCreate (& processingStream);

54

55 // pagelocked memory for async transfer

56 f loat *nextLineData_pagelocked;

57 cerr << cudaMallocHost (& nextLineData_pagelocked , a->byteWidth*a->height

) << endl;

58 cudaMemcpyAsync(nextLineData_pagelocked , nextLineData , a->byteWidth*a->

height , cudaMemcpyHostToHost , transferStream);
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59

60 cudaMemcpy2DAsync(nextLineData_gpu , a->pitch , nextLineData_pagelocked ,

a->byteWidth , a->byteWidth , a->height , cudaMemcpyHostToDevice ,

transferStream);

61

62 f loat *prevMuad_pagelocked;

63 i f (a->safeToTransferMuad){

64 cudaMallocHost (& prevMuad_pagelocked , a->byteWidth*a->height);

65 cudaMemcpy2DAsync(prevMuad_pagelocked , a->byteWidth , a->prev_muad ,

a->pitch , a->byteWidth , a->height , cudaMemcpyDeviceToHost ,

transferStream);

66 }

67

68 f loat deadline = 25.0f;

69

70 //set up thread grid and blocks

71 int block_number_x = a->spatial_size/a->threads_per_block;

72 int block_number_y = a->spectral_size;

73 dim3 dimBlock(a->threads_per_block);

74 dim3 dimGrid(block_number_x , block_number_y);

75

76

77 //block and grid sizes for melanin determination

78 //FIXME: Should be more dynamic and choose the number of

multiprocessors , not 16

79 //since the melanin and bvf determination will do uncoalesced reads

anyway , no purpose in making the block dimension be a multiple of

32...

80 dim3 dimBlockMel (160);

81 dim3 dimGridMel (10);

82

83 size_t inputPitch = a->pitch/ s izeo f ( f loat );

84 // cudaEventRecord(start , 0);

85

86 // divide by reference

87 calibrate <<<dimGrid , dimBlock , 0, processingStream >>>(currLineData , a->

cal_array , inputPitch);

88

89 //can't input the structs into the function since the memory won't be

aligned correctly

90 // calcMelaninBvfOxy <<<dimGridMel , dimBlockMel >>>(a->oxy , a->bvf , a->

muam694 , currLineData , inputPitch);

91 calcMelaninBvfOxy <<<dimGrid , dimBlock >>>(a->oxy , a->bvf , a->muam694 ,

currLineData , inputPitch);

92 calcSkinData <<<dimGrid , dimBlock , 0, processingStream >>>(a->oxy , a->bvf

, a->muam694 , a->muae , a->muse , a->muad , a->musd , a->muh_oxy , a->

muh_deoxy , a->melanin_base , a->musm , a->musr , a->musb_base ,

inputPitch);

93

94

95 // cudaEventRecord(preprocessing , 0);

96

97 //first iteration

98 ReflIsoL2 <<<dimGrid , dimBlock , 0, processingStream >>>(a->muae , a->muse ,

a->muad , a->musd , a->gcol , a->refl , a->deriv , inputPitch);

99 nextMuad <<<dimGrid , dimBlock , 0, processingStream >>>(currLineData , a->

refl , a->deriv , a->muad , inputPitch);

100 // cudaEventRecord(stop , 0);

101 // cudaEventSynchronize(stop);

102

103 f loat preproc_time;
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104 f loat iter_time;

105 cudaEventElapsedTime (& preproc_time , start , preprocessing);

106 cudaEventElapsedTime (&iter_time , preprocessing , stop);

107

108 int num_iterations = 30;//(int)(deadline - preproc_time)/iter_time; //

the number of iterations we have time to do

109

110

111 for ( int i=0; i < num_iterations; i++){

112 ReflIsoL2 <<<dimGrid , dimBlock , 0, processingStream >>>(a->muae , a->

muse , a->muad , a->musd , a->gcol , a->refl , a->deriv , inputPitch);

113 nextMuad <<<dimGrid , dimBlock , 0, processingStream >>>(currLineData ,

a->refl , a->deriv , a->muad , inputPitch);

114 }

115 i f (a->safeToTransferMuad){

116 cerr << cudaMemcpyAsync(prevMuad , prevMuad_pagelocked , a->byteWidth

*a->height , cudaMemcpyHostToHost , transferStream) << endl;

117 }

118

119 cudaDeviceSynchronize ();

120

121 //copy muad to prevmuad so that it may be transferred back to the host

in the next processing step

122 cerr << cudaMemcpy2D(a->prev_muad , a->pitch , a->muad , a->pitch , a->

byteWidth , a->height , cudaMemcpyDeviceToDevice) << endl;

123 a->safeToTransferMuad = true;

124 }

125 }

126

127 //takes in the skin optical properties and outputs the reflectance to res , and

the derivative of the reflectance with respect to muad to deriv

128 // isotropic source function , two -layer model

129 __global__ void ReflIsoL2( f loat *muae , f loat *muse , f loat *muad , f loat *musd ,

f loat *gcol , f loat *res , f loat *deriv , size_t pitch){

130 int ind = (gridDim.x*blockIdx.y + blockIdx.x)*pitch+ threadIdx.x;

131 f loat g = gcol[ind];

132

133 // reduced scattering coefficients

134 f loat musr1 = muse[ind ]*(1.0f-g);

135 f loat musr2 = musd[ind ]*(1.0f-g);

136

137 //move mua into shared memory

138 f loat curr_muae = muae[ind];

139 f loat curr_muad = muad[ind];

140

141 // diffusion constant

142 f loat D1 = fdividef (1.0f,3.0f*(musr1 + curr_muae));

143 f loat D2 = fdividef (1.0f,3.0f*(musr2 + curr_muad));

144

145 f loat musr2dmusr1 = fdividef(musr2 ,musr1); //musr2 divided by musr1 , keep

for derivative calc

146

147

148 // optical penetration depth

149 f loat del1 = sqrtf(fdividef(D1,curr_muae));

150 f loat del2 = sqrtf(fdividef(D2,curr_muad));

151

152 //from Svaasand 1995

153 // calculate the reflectance value

154 f loat sinhval = sinhf(fdividef(de, del1));

155 f loat coshval = coshf(fdividef(de, del1));
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156 f loat fact1 = del1*musr1*A;

157 f loat f1 = (del1*del1*del2*div13 -del1*del1*D2)*coshval +(del1*del1*del1*

fdividef(D2 ,D1)*div13 - del1*del2*D1)*sinhval; // keeping for derivative

calc

158 f loat f2 = 1.0f+fdividef(del2 , D2)*div13; // keeping for derivative calc

159 f loat expval = expf(-fdividef(de,D1)*div13);

160 f loat f3 = (musr2dmusr1*del2*del2*D1*(del1*fdividef(del1 ,D1*D1)*div13*div13

-1.0f)+del1*del1*(D2 -del2*fdividef(del2 ,D2)*div13*div13))*expval; //

keeping for derivative calc

161 f loat f4 = del1*fdividef(del1 ,D1*D1)*div13*div13 - 1.0f; //keep for

derivative calc , f4

162 f loat f5 = fdividef(del2 ,D2)*div13 +1.0f; //keep for derivative calc , f5

163 f loat f6 = D1*del1*(D2+del2*A)*coshval +(D1*D1*del2 + D2*del1*del1*A)*

sinhval; //keep for derivative calc , f6

164 f loat num = fact1 *(f1*f2+f3);

165 f loat denom = f4*f5*f6;

166 res[ind] = fdividef(num , denom);

167

168 // calculate the derivative with respect to muad

169 f loat dD2dmuad = -3.0f*D2*D2;

170 f loat ddel2dmuad = (dD2dmuad*curr_muad -D2)*fdividef (1.0f, curr_muad*

curr_muad)*fdividef (1.0f, 2.0f*del2);

171 f loat df2dmuad = div13 *( ddel2dmuad*D2 - del2*dD2dmuad)*fdividef (1.0f, D2*D2

);

172 deriv[ind] = (fact1 *(( coshval *(del1*del1*div13*ddel2dmuad - del1*del1*

dD2dmuad) + sinhval *(del1*del1*del1*fdividef (1.0f, D1)*div13*dD2dmuad -

del1*D1*ddel2dmuad))*f2 + f1*df2dmuad + expval *( musr2dmusr1 *2.0f*del2*

ddel2dmuad*D1*( fdividef(del1*del1 ,9.0f*D1*D1) -1.0f) + del1*del1*(

dD2dmuad + fdividef (1.0f, 9.0f*curr_muad*curr_muad))))*denom - (f4*(

df2dmuad*f6 + D1*del1*( dD2dmuad + ddel2dmuad*A)*coshval + (D1*D1*

ddel2dmuad + dD2dmuad*del1*del1*A)*sinhval*f5)*num))*fdividef (1.0f,

denom*denom);

173 }

174

175 //for calibration against the reference , _not_ the radiometric calibration

176 __global__ void calibrate( f loat *lineData , f loat *cal , size_t pitch){

177 int ind = (gridDim.x*blockIdx.y + blockIdx.x)*pitch+ threadIdx.x;

178 f loat currCal = cal[ind];

179 f loat currRefl = lineData[ind];

180 lineData[ind] = fdividef(currRefl , currCal);

181 }

182

183 // calculate the next muad based on the simulated reflectance , measured

reflectance and derivative of the simulated reflectance using Newton -Rhapson

184 __global__ void nextMuad( f loat *lineData , f loat *refl , f loat *deriv , f loat *

muad , size_t pitch){

185 int ind = (gridDim.x*blockIdx.y + blockIdx.x)*pitch + threadIdx.x;

186 f loat currMuad = muad[ind];

187 f loat currDeriv = deriv[ind];

188 f loat currLineData = lineData[ind];

189 f loat currRefl = refl[ind];

190

191 // newton 's method

192 currMuad = currMuad - fdividef(currRefl -currLineData , currDeriv);

193

194 // correction in case muad wants to be negative , which we seriously don't

want

195 currMuad = currMuad *(1- signbit(currMuad)) + signbit(currMuad);

196 muad[ind] = currMuad;

197 }

198
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199 //takes in pre -allocated arrays and the arrays containing the bases of the

different absorption coefficients , fills the skin data arrays with the

optical properties

200 __global__ void calcSkinData( f loat *oxy_arr , f loat *Bd_arr , f loat *muam694_arr ,

f loat *muae , f loat *muse , f loat *muad , f loat *musd ,

201 f loat *muh_oxy , f loat *muh_deoxy , f loat *melanin_base , f loat *

musm , f loat *musr , f loat *musb_base , size_t pitch){

202 //walk down the lines , walk along the blocks , walk along the threads inside

the block

203 int index = (gridDim.x*blockIdx.y + blockIdx.x)*pitch + threadIdx.x;

204

205 // absorption properties

206 f loat H = 0.41;

207 f loat H0 = 0.45;

208 f loat Be = 0.002;

209 f loat oxy = oxy_arr[index];

210 f loat Bd = Bd_arr[index];

211 f loat muam694 = muam694_arr[index ];

212 f loat mua_other = 25; // FIXME

213 f loat muab_blood = (muh_oxy[index]*oxy + muh_deoxy[index ]*(1-oxy))*fdividef

(H,H0);

214 f loat mua_melanin = muam694*melanin_base[index ];

215 muae[index] = mua_melanin + muab_blood*Be + mua_other *(1-Be);

216 muad[index] = muab_blood*Bd + mua_other *(1-Bd);

217

218 // scattering properties

219 f loat c_ray = 1.05 e12;

220 f loat c_mie = 105;

221 f loat must = musm[index]*c_mie *100 + musr[index ]*c_ray *100;

222 f loat musb685 = 55.09e-12;

223 f loat ve = 1.25e-16;

224 f loat musb = musb685*H*(1-H)*(1.4 -H)*fdividef (1.0f,ve)*musb_base[index ];

225 muse[index] = must*(1-Be)+musb*Be;

226 musd[index] = must*(1-Bd)+musb*Bd;

227 }

228

229 __global__ void calcMelaninBvfOxy( f loat *oxy , f loat *bvf , f loat *muam694 , f loat

*lineData , size_t pitch){

230 //int pixel = threadIdx.x + (blockIdx.x * blockDim.x)*pitch;

231 //int index;

232 //for (int i=0; i < 160; i++){

233 // index = (10* pitch)*i + pixel;

234 // oxy[index] = 0.6;

235 // bvf[index] = 0.01;

236 // muam694[index] = 250;

237 //}

238 int index = (gridDim.x*blockIdx.y + blockIdx.x)*pitch + threadIdx.x;

239 oxy[index] = 0.6;

240 bvf[index] = 0.05;

241 muam694[index] = 250;

242 }

243

244

245 // allocate the arrays in the GPU

246 //needs a list of wavelengths and the calibration array in which the elements

are to divide each element in each line data array

247 void gpuallocate(GPUDMArrays *arr , f loat *wavelengths , f loat *cal_array , int

spectral_size , int spatial_size){

248 arr ->currLineData = 0;

249 arr ->safeToTransferMuad = false;
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250 arr ->threads_per_block = 160; // limited by the GPU. FIXME: Should be more

dynamic

251 size_t pitch;

252 size_t byteWidth = arr ->threads_per_block* s izeo f ( f loat );

253 size_t height = spatial_size*spectral_size/arr ->threads_per_block;

254

255 gpuallocate_prop(spectral_size , spatial_size , byteWidth , height , &pitch , &(

arr ->muae), &(arr ->muse), &(arr ->muad), &(arr ->musd));

256 gpuallocate_iter(spectral_size , spatial_size , byteWidth , height , &pitch , &(

arr ->refl), &(arr ->deriv), &(arr ->prev_muad), &(arr ->lineData_gpu_1), &(

arr ->lineData_gpu_2));

257 gpuallocate_spect(wavelengths , spectral_size , spatial_size , byteWidth ,

height , &pitch , &(arr ->muh_oxy), &(arr ->muh_deoxy), &(arr ->melanin_base)

, &(arr ->gcol), &(arr ->musm), &(arr ->musr), &(arr ->musb_base));

258

259 arr ->pitch = pitch;

260 arr ->byteWidth = byteWidth;

261 arr ->height = height;

262 arr ->spectral_size = spectral_size;

263 arr ->spatial_size = spatial_size;

264

265 // calibration array

266 cerr << cudaMallocPitch (&(arr ->cal_array), &pitch , byteWidth , height);

267 cerr << cudaMemcpy2D(arr ->cal_array , pitch , cal_array , byteWidth , byteWidth

, height , cudaMemcpyHostToDevice);

268

269 //oxy , bvf , muam694

270 cerr << cudaMallocPitch (&(arr ->oxy), &pitch , byteWidth , height);

271 cerr << cudaMallocPitch (&(arr ->bvf), &pitch , byteWidth , height);

272 cerr << cudaMallocPitch (&(arr ->muam694), &pitch , byteWidth , height);

273 }

274

275 void gpuallocate_prop( int spectral_size , int spatial_size , size_t byteWidth ,

size_t height , size_t *pitch , f loat **muae , f loat **muse , f loat **muad ,

f loat **musd){

276 // optical properties

277 cerr << cudaMallocPitch(muae , pitch , byteWidth , height);

278 cerr << cudaMallocPitch(muse , pitch , byteWidth , height);

279 cerr << cudaMallocPitch(muad , pitch , byteWidth , height);

280 cerr << cudaMallocPitch(musd , pitch , byteWidth , height);

281 }

282 void gpuallocate_iter( int spectral_size , int spatial_size , size_t byteWidth ,

size_t height , size_t *pitch , f loat **refl , f loat **deriv , f loat **prev_muad

, f loat **lineData_1 , f loat ** lineData_2){

283 // iteration variables

284 cerr << cudaMallocPitch(refl , pitch , byteWidth , height);

285 cerr << cudaMallocPitch(deriv , pitch , byteWidth , height);

286 cerr << cudaMallocPitch(prev_muad , pitch , byteWidth , height);

287 cerr << cudaMallocPitch(lineData_1 , pitch , byteWidth , height) << endl;

288 cerr << cudaMallocPitch(lineData_2 , pitch , byteWidth , height) << endl;

289 }

290 void gpuallocate_spect( f loat *wavelengths , int spectral_size , int spatial_size ,

size_t byteWidth , size_t height , size_t *pitch , f loat **muh_oxy , f loat **

muh_deoxy , f loat ** melanin_base , f loat **gcol , f loat **musm , f loat **musr ,

f loat ** musb_base){

291 size_t arrayByteSize = s izeo f ( f loat )*spatial_size*spectral_size;

292 // wavelength dependencies of scattering and absorption coefficients

293 cerr << cudaMallocPitch(muh_oxy , pitch , byteWidth , height);

294 cerr << cudaMallocPitch(muh_deoxy , pitch , byteWidth , height);

295 cerr << cudaMallocPitch(melanin_base , pitch , byteWidth , height);

296 cerr << cudaMallocPitch(musm , pitch , byteWidth , height);
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297 cerr << cudaMallocPitch(musr , pitch , byteWidth , height);

298 cerr << cudaMallocPitch(musb_base , pitch , byteWidth , height);

299 cerr << cudaMallocPitch(gcol , pitch , byteWidth , height);

300

301 // calculate the spectrum arrays on the host , try to transfer concurrently

by swapping between initiating the cudaMemCpy and doing calculations on

the CPUi

302 f loat *muh_oxy_host = ( f loat *) malloc(arrayByteSize);

303 f loat *muh_deoxy_host = ( f loat *) malloc(arrayByteSize);

304 f loat *melanin_base_host = ( f loat *) malloc(arrayByteSize);

305 f loat *gcol_host = ( f loat *) malloc(arrayByteSize);

306 f loat *musm_host = ( f loat *) malloc(arrayByteSize);

307 f loat *musr_host = ( f loat *) malloc(arrayByteSize);

308 f loat *musb_base_host = ( f loat *) malloc(arrayByteSize);

309

310 // prepare the wavelength dependent parts of the absorption and scattering

coefficients

311 //it might seem inefficient to assign the exact same value to the whole

range of spatial positions for each wavelength , but even if it is all a

memory waste , it will pay off in speed later on because of memory

coalescing in the GPU. Also tried to load it into shared memory across

all the thread blocks , but had to make the threads diverge in order to

do that and would not work well with multiple shared variables

312 //Would be the exact same latency issues. whether 32 threads load 32

different variables in one go and in parallell , or one of the thread

loads the whole thing into the cache and picks one variable and

broadcasts it to the rest will give the exact same latency , plus it will

have to stall threads.

313 f loat lambda;

314 int position;

315 f loat muh_oxy_temp , muh_deoxy_temp , gcol_temp , musm_temp , musr_temp ,

musb_temp , melanin_temp;

316 for ( int i=0; i < spectral_size; i++){

317 lambda = wavelengths[i];

318 muh_oxy_temp = muh_oxy_calc(lambda);

319 muh_deoxy_temp = muh_deoxy_calc(lambda);

320 melanin_temp = pow ((694/ lambda) ,3.46);

321 gcol_temp = 0.62 + lambda *29e-5;

322 musm_temp = (1 -1.745e-3* lambda + 9.843e-7* lambda*lambda)/(1- gcol_host[i

]);

323 musr_temp = pow(lambda , -4);

324 musb_temp = pow ((685/( lambda *1.0)), 0.37);

325 for ( int j=0; j < spatial_size; j++){

326 position = i*spatial_size + j;

327 muh_oxy_host[position] = muh_oxy_temp;

328 muh_deoxy_host[position] = muh_deoxy_temp;

329 melanin_base_host[position] = melanin_temp;

330 gcol_host[position] = gcol_temp;

331 musm_host[position] = musm_temp;

332 musr_host[position] = musr_temp;

333 musb_base_host[position] = musb_temp;

334 }

335 }

336

337 //copy the wavelength dependencies to the GPU device

338 cerr << cudaMemcpy2D (*muh_oxy , *pitch , muh_oxy_host , byteWidth , byteWidth ,

height , cudaMemcpyHostToDevice);

339 cerr << cudaMemcpy2D (*muh_deoxy , *pitch , muh_deoxy_host , byteWidth ,

byteWidth , height , cudaMemcpyHostToDevice);

340 cerr << cudaMemcpy2D (* melanin_base , *pitch , melanin_base_host , byteWidth ,

byteWidth , height , cudaMemcpyHostToDevice);
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341 cerr << cudaMemcpy2D (*musm , *pitch , musm_host , byteWidth , byteWidth , height

, cudaMemcpyHostToDevice);

342 cerr << cudaMemcpy2D (*musr , *pitch , musr_host , byteWidth , byteWidth , height

, cudaMemcpyHostToDevice);

343 cerr << cudaMemcpy2D (*musb_base , *pitch , musb_base_host , byteWidth ,

byteWidth , height , cudaMemcpyHostToDevice);

344 cerr << cudaMemcpy2D (*gcol , *pitch , gcol_host , byteWidth , byteWidth , height

, cudaMemcpyHostToDevice);

345

346 //free arrays that are no longer needed

347 free(muh_oxy_host);

348 free(muh_deoxy_host);

349 free(melanin_base_host);

350 free(musm_host);

351 free(musr_host);

352 free(musb_base_host);

353 free(gcol_host);

354 }

355

356 //free the GPU arrays

357 void gpufree(GPUDMArrays *a){

358 cerr << cudaFree(a->muae);

359 cerr << cudaFree(a->muse);

360 cerr << cudaFree(a->muad);

361 cerr << cudaFree(a->musd);

362 cerr << cudaFree(a->refl);

363 cerr << cudaFree(a->prev_muad);

364 cerr << cudaFree(a->lineData_gpu_1);

365 cerr << cudaFree(a->lineData_gpu_2);

366 cerr << cudaFree(a->muh_oxy);

367 cerr << cudaFree(a->muh_deoxy);

368 cerr << cudaFree(a->melanin_base);

369 cerr << cudaFree(a->gcol);

370 cerr << cudaFree(a->musm);

371 cerr << cudaFree(a->musr);

372 cerr << cudaFree(a->musb_base);

373 }

File A.3: pseudo�framework.c

1 #include "gpudm.h"

2 #include "neccessary_libraries_for_the_pseudocode_to_work.h"

3

4 // global variables

5 RingBuffer buffer; // circular buffer into which data is input and extracted

6 CameraHeader header; // camera header

7 Buffer muads; // buffer for the dermal absorption coefficients

8

9 Semaphore headerWait; // signalling whether the header has arrived

10 Semaphore calWait; // signalling whether the calibration slab has arrived

11 Semaphore lineWait; // signalling a line is ready

12

13 int main(){

14 // initialize both semaphores to 0

15 sem_init(headerWait , 0);

16 sem_init(calWait , 0);

17 sem_init(lineWait , 0);

18

19 // initialize threads

20 init_thread(client_thread);

21 init_thread(inversion_thread);
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22

23 wait_for(client_thread);

24 wait_for(processing_thread);

25

26 return 0;

27 }

28

29 void* client_thread (){

30 TcpConnection conn; // representing the TCP connection

31

32 uint16 *data;

33 receive_header_from_server (& header);

34 sem_post(headerWait); //post the semaphore

35

36 int i=0;

37 int calStop =20; // assume the first 21 lines contain the calibration slab

38

39 while (!conn.timeout ()){

40 i f (i == calStop){

41 sem_post(calWait); //post the semaphore

42 }

43

44 // receive data , push into buffer

45 receive_data_from_server(data);

46 buffer.push(data);

47

48 i f (i > calStop){

49 sem_post(lineWait);

50 }

51 }

52 }

53

54

55 void* inversion_thread (){

56 sem_wait(headerWait); //wait for the header to become ready

57 size_t arraySize = header.spectral_size*header.spatial_size* s izeo f ( f loat );

58

59 sem_wait(calWait); //wait for the calibration slab to have fully entered

the picture

60 f loat *cal = malloc(arraySize);

61 f loat *lineData = malloc(arraySize);

62 f loat *prevMuad = malloc(arraySize);

63

64 extractCalArray(buffer , cal);

65

66 GPUDMArrays a;

67 gpu_allocate (&a, header.wavelengths , cal , header.spectral_size , header.

spatial_size);

68

69 while(true){

70 sem_wait(lineWait);

71 buffer.extractInto(lineData);

72 gpuprocessing(a, lineData , prevMuad);

73 muads.push(prevMuad);

74 }

75 }
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A.2 GPU-MCML

While GPU-DM generally is structured, the extra functions around the GPU-MCML program for in-
verting the melanin contents and so is not. It was not really meant for a production situation. It still
is included. A source �le containing the most important modi�cations to GPU-MCML is also included.
Some other functions were changed somewhat to save the output di�use re�ectance in an input �oat
value instead of to �le, these are not included in the listing.

File A.4: GPU�MCML/fast�gpumcml/main.cpp

1 #include "gpumcml.h"

2 #include <iostream >

3 #include <fstream >

4 #include <string >

5 #include <vector >

6 #include <string.h>

7 #include <cmath >

8 #include <sstream >

9 #include "opticalprop.h"

10 #include "spectrum.h"

11 #include "erythemalookup.h" // containing very ugly lookup table

12

13 //GNU scientific libraries

14 #include <gsl/gsl_multifit.h>

15 #include <gsl/gsl_vector.h>

16 #include <gsl/gsl_matrix.h>

17 using namespace std;

18

19

20

21 int findIndexMatch(vector <double> wlens , double x){

22 int index = 0;

23 //just linear search , could be optimized with binary search

24 for (unsigned int i=0; i < wlens.size(); i++){

25 i f (wlens[i] > x){

26 index = i-1;

27 break;

28 }

29 }

30 i f (index < 0){

31 index = 0;

32 }

33 return index;

34 }

35

36 void melaninabs_seqiter(double w1 , double w2, double w3 , double w4 , double v1 ,

double v2, double v3 , double v4){

37 GPURunData data;

38 initialize_gpumcml (&data);

39

40 double bvp = 0.03;

41 double muam694 = 100;

42 double oxy = 0.5;

43 SkinStruct skinData;

44 calcSkinData(w1 , oxy , bvp , muam694 , &skinData);

45

46 double simRefl = run_gpumcml(data , skinData);

47 double margin = 0.001;

48

49

50 bool above = simRefl > v1;

71



51

52 double step;

53

54 int numIts = 10;

55 int i=0;

56 double ekstrabs = 0;

57

58

59 int j = 0;

60

61 double difference = margin;

62 while(true){

63 step = 100;

64 i = 0;

65 //med gitt bvp , forsoek tilpasning med muam paa punkt 1

66 calcSkinData(w1 , oxy , bvp , muam694 , &skinData);

67 skinData.muad += ekstrabs;

68

69 simRefl = run_gpumcml(data , skinData);

70 above = simRefl > v1;

71 cout << "melaninit" << endl;

72 while (i < 5){

73 i f (( simRefl) <= v1){

74 muam694 -= step;

75 i f (above){

76 step *= 0.5;

77 }

78 } else {

79 muam694 += step;

80 i f (!above){

81 step *= 0.5;

82 }

83 }

84 cout << muam694 << " " << bvp << " " << simRefl << " " << v1 <<

endl;

85 calcSkinData(w1 , oxy , bvp , muam694 , &skinData);

86 skinData.muad += ekstrabs;

87 simRefl = run_gpumcml(data , skinData);

88

89 i++;

90 }

91

92 calcSkinData(w2 , oxy , bvp , muam694 , &skinData);

93 skinData.muad += ekstrabs;

94

95 simRefl = run_gpumcml(data , skinData);

96 bool above1 = simRefl > v2;

97 bool above2 = simRefl > v3;

98

99

100 step = 0.01;

101 i = 0;

102 //med nyutregnet muam , proev tilpasning paa bvp paa neste punkt

103 cout << "blodit" << endl;

104 while (i < 5){

105 // tilpass paa det foerste punktet

106 i f (( simRefl) <= v2){

107 bvp -= step;

108 i f (above1){

109 step *= 0.5;

110 }
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111 } else {

112 bvp += step;

113 i f (! above1){

114 step *= 0.5;

115 }

116 }

117 i f (bvp < 0){

118 bvp = 0.015;

119 }

120 cout << muam694 << " " << bvp << " " << simRefl << " " << v2 <<

endl;

121

122 calcSkinData(w3 , oxy , bvp , muam694 , &skinData);

123 skinData.muad += ekstrabs;

124 simRefl = run_gpumcml(data , skinData);

125

126

127 // tilpass paa det andre punktet

128 i f (( simRefl) <= v3){

129 bvp -= step;

130 i f (above2){

131 step *= 0.5;

132 }

133 } else {

134 bvp += step;

135 i f (! above2){

136 step *= 0.5;

137 }

138 }

139 cout << muam694 << " " << bvp << " " << simRefl << " " << v3 <<

endl;

140

141 calcSkinData(w2 , oxy , bvp , muam694 , &skinData);

142 skinData.muad += ekstrabs;

143 simRefl = run_gpumcml(data , skinData);

144

145 i++;

146 i f (bvp < 0){

147 bvp = 0.015;

148 }

149 }

150

151 step = 10;

152 i = 0;

153 j++;

154

155 }

156 }

157

158 //a*x + b

159 void linearFit(Spectrum spect , double lowLen , double hiLen , double *a, double *

b){

160 double xyb = 0;

161 double x2b = 0;

162 double xb = 0;

163 double yb = 0;

164 vector <double> wlens = spect.getWlens ();

165 vector <double> vals = spect.getVals ();

166

167 unsigned int i = 0;

168 int n = 0;
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169 //fit a straight line through the available points from 630 to 700 nm

170 while ((wlens[i] <= hiLen) && (i < wlens.size())){

171 i f (wlens[i] >= lowLen){

172 xyb += wlens[i]*vals[i];

173 xb += wlens[i];

174 yb += vals[i];

175 x2b += wlens[i]* wlens[i];

176 n++;

177 }

178 i++;

179 }

180

181 xyb /= n;

182 xb /= n;

183 yb /= n;

184 x2b /= n;

185 *a = (xyb - xb*yb)/(x2b - xb*xb);

186 *b = yb - *a*xb;

187 }

188

189 void kolliasHem(Spectrum logSpect , double mela , double melb , double *oxy ,

double *deoxy){

190 // extract the wavelengths and values in the desired area

191 double lam1 = 560;

192 double lam2 = 580;

193 vector <double> tempWlens = logSpect.getWlens ();

194 vector <double> tempVals = logSpect.getVals ();

195 vector <double> wlens;

196 vector <double> vals;

197 for (unsigned int i=0; i < tempWlens.size(); i++){

198 i f (( tempWlens[i] >= lam1) && (tempWlens[i] <= lam2)){

199 wlens.push_back(tempWlens[i]);

200 vals.push_back(tempVals[i] - mela*tempWlens[i] - melb);

201 }

202 }

203

204 // preparing the matrix and vectors in the fitting y = M*c

205 int param = 2;

206 int obs = wlens.size();

207 gsl_vector *y = gsl_vector_alloc(obs);

208 gsl_vector *c = gsl_vector_alloc(param);

209 gsl_matrix *mat = gsl_matrix_alloc(obs , param);

210 gsl_matrix *cov = gsl_matrix_alloc(param , param);

211 for ( int i = 0; i < obs; i++){

212 gsl_matrix_set(mat , i, 0, muh_oxy(wlens[i]));

213 gsl_matrix_set(mat , i, 1, muh_deoxy(wlens[i]));

214 for ( int j = 2; j < param; j++){

215 gsl_matrix_set(mat , i, j, pow(wlens[i], j-2));

216 }

217 gsl_vector_set(y, i, vals[i]);

218 }

219

220 // setting up the workspace for multiparameter fitting

221 gsl_multifit_linear_workspace *workspace = gsl_multifit_linear_alloc(obs ,

param);

222

223 // performing the fitting itself

224 double chisq = 0;

225 gsl_multifit_linear(mat , y, c, cov , &chisq , workspace);

226

227 *oxy = gsl_vector_get(c,0);

74



228 *deoxy = gsl_vector_get(c,1);

229

230 gsl_multifit_linear_free(workspace);

231

232 gsl_matrix_free(mat);

233 gsl_vector_free(y);

234 gsl_vector_free(c);

235

236 }

237

238 // forbedret kolliasmetode

239 void kollias(Spectrum spect , double *mel , double *oxy , double *deoxy){

240 // logarithmitize

241 vector <double> wlens = spect.getWlens ();

242 vector <double> vals = spect.getVals ();

243 for (unsigned int i=0; i < wlens.size(); i++){

244 vals[i] = -log10(vals[i]);

245 //cout << wlens[i] << " " << vals[i] << endl;

246 }

247 Spectrum logSpect(wlens , vals);

248

249

250 //get linear fit from 630 to 700 nm

251 double b;

252 linearFit(logSpect , 630, 700, mel , &b);

253

254 double prevMel = 200000;

255 double margin = 10e-12;

256 while(abs(*mel - prevMel) >= margin){

257 prevMel = *mel;

258 kolliasHem(logSpect , *mel , b, oxy , deoxy);

259

260 // correct the spectrum for deoxy

261 vector <double> corrVals = vals;

262 for (unsigned int i=0; i < corrVals.size(); i++){

263 corrVals[i] -= *deoxy*muh_deoxy(wlens[i]);

264 //cout << wlens[i] << " " << corrVals[i] << endl;

265 }

266 Spectrum corrLogSpect(wlens , corrVals);

267 linearFit(corrLogSpect ,630 ,700, mel , &b);

268 }

269 }

270

271 // simuler for parametrene og returner kolliasindeksene

272 void simKollias(double oxy , double bvf , double muam694 , double *kolMel , double

*kolOxy , double *kolDeoxy){

273 GPURunData data;

274 initialize_gpumcml (&data);

275 //finn indeksene vi skal oppnaa

276 vector <double> wlens;

277 // kameltopp

278 wlens.push_back (560);

279 wlens.push_back (580);

280

281 // melaninomraade

282 wlens.push_back (630);

283 wlens.push_back (700);

284

285 vector <double> vals;

286 SkinStruct skinData;

287 for (unsigned int i=0; i < wlens.size(); i++){
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288 calcSkinData(wlens[i], oxy , bvf , muam694 , &skinData);

289 vals.push_back(run_gpumcml(data , skinData));

290 }

291 Spectrum spect(wlens , vals);

292 kollias(spect , kolMel , kolOxy , kolDeoxy);

293 }

294

295 void kolliasIterationTest(Spectrum spect , double *outMuam694 , double *outBvf ,

double *outOxy , bool willPrint){

296 double oxyInd;

297 double deoxyInd;

298 double melInd;

299 double oxy = 0.5;

300 // simKollias(oxy , 0.02, 250, &melInd , &oxyInd , &deoxyInd);

301 kollias(spect , &melInd , &oxyInd , &deoxyInd);

302 double eryInd = oxyInd + deoxyInd;

303

304 double bvf = 0.01;

305 double muam694 = -9.8548e+05* melInd -193.87; //from generated lookup table

306 double bvfMax = exp(( eryInd - 3.6231e-05) /5.5528e-06);

307 double bvfMin = exp(( eryInd - 2.7763e-05) /4.0e-06);

308 bvf = (bvfMax + bvfMin)/2;

309 oxy = oxyInd /( oxyInd + deoxyInd);

310 cout << bvf << " " << muam694 << " " << oxy << endl;

311 double currMel;

312 double currOxy;

313 double currDeoxy;

314 double currEry;

315 double margin;

316 int i;

317 bool above;

318 int numIts = 10;

319 int melConvs = 0;

320 int bvfConvs = 0;

321 int convs = 2;

322 while(( melConvs <= convs) && (bvfConvs <= convs)){

323 simKollias(oxy , bvf , muam694 , &currMel , &currOxy , &currDeoxy);

324 double step = 50;

325 i = 0;

326 //med gitt bvp , forsoek tilpasning med muam pa punkt 1

327 margin = 1.0e-6;

328 above = currMel > melInd;

329 bool isConverging = false;

330 while ((abs(currMel - melInd) >= margin) && (i < numIts)){

331 i f (abs(currMel) >= abs(melInd)){

332 muam694 -= step;

333 i f (above){

334 step *= 0.5;

335 isConverging = true;

336 }

337 } else {

338 muam694 += step;

339 i f (!above){

340 step *= 0.5;

341 isConverging = true;

342 }

343 }

344 i f (willPrint){

345 cout << muam694 << " " << bvf << endl;

346 }

347 simKollias(oxy , bvf , muam694 , &currMel , &currOxy , &currDeoxy);
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348 i++;

349 }

350 i f (isConverging){

351 melConvs ++;

352 }

353 simKollias(oxy , bvf , muam694 , &currMel , &currOxy , &currDeoxy);

354 currEry = currOxy + currDeoxy;

355

356 above = currEry > eryInd;

357

358 step = 0.01;

359 margin = 1.0e-8;

360 i = 0;

361 isConverging = false;

362 //med nyutregnet muam , proev tilpasning paa bvp paa neste punkt

363 while ((abs(currEry - eryInd) >= margin) && (i < numIts)){

364 i f (currEry >= eryInd){

365 bvf -= step;

366 i f (!above){

367 step *= 0.5;

368 isConverging = true;

369 }

370 } else {

371 bvf += step;

372 i f (above){

373 step *= 0.5;

374 isConverging = true;

375 }

376 }

377 i f (willPrint){

378 cout << muam694 << " " << bvf << endl;

379 }

380 simKollias(oxy , bvf , muam694 , &currMel , &currOxy , &currDeoxy);

381 currEry = currOxy + currDeoxy;

382 i++;

383 i f (bvf < 0){

384 bvf = 0.015;

385 }

386 i++;

387 }

388 i f (isConverging){

389 bvfConvs ++;

390 }

391 }

392 *outBvf = bvf;

393 *outMuam694 = muam694;

394 *outOxy = oxy;

395 }

396

397 //get out the full absorption spectrum , matching MC reflectance against

measured reflectance. muam694 , oxy assumed known. Assumed that bvp is

approximately correct.

398 void getAbsorptionSpectrum(Spectrum spect , double oxy , double bvp , double

muam694 , bool willPrint , Spectrum *output , vector <double> *weights){

399 vector <double> absWlens;

400 vector <double> absVals;

401

402 vector <double> wlens = spect.getWlens ();

403 vector <double> refl = spect.getVals ();

404 int n = wlens.size();

405 int indexStep = ( int )n/160; //will match against 160 wavelengths
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406 double margin = 0.0005;

407 double prevMuad = 0;

408 GPURunData data;

409 initialize_gpumcml (&data);

410

411 //go through the chosen wavelengths

412 for ( int i=0; i < n; i += indexStep){

413 int startClock = clock();

414 //set up absorption properties for epidermis and scattering properties

for dermis , also approximate absorption properties for dermis

415 SkinStruct skinSetup;

416 calcSkinData(wlens[i], oxy , bvp , muam694 , &skinSetup);

417 double startMuad = skinSetup.muad;

418

419 skinSetup.muad = 0.5*( skinSetup.muad + prevMuad);

420 double step = 10;

421 double currRefl = run_gpumcml(data , skinSetup);

422

423 //for deciding whether we initially started above or below the desired

value

424 bool above = currRefl > refl[i];

425 bool below = !above;

426

427 // iterate

428 while (abs(currRefl - refl[i]) >= margin){

429 i f (currRefl > refl[i]){

430 skinSetup.muad += step;

431 i f (below){

432 step *= 0.5;

433 }

434 } else {

435 skinSetup.muad -= step;

436 i f (above){

437 step *= 0.5;

438 }

439 }

440 currRefl = run_gpumcml(data , skinSetup);

441 }

442 prevMuad = skinSetup.muad;

443 i f (willPrint){

444 cout << wlens[i] << " " << currRefl << " " << skinSetup.muad << " "

<< startMuad << endl;

445 }

446 absWlens.push_back(wlens[i]);

447 absVals.push_back(skinSetup.muad);

448 weights ->push_back(abs((double)clock()-startClock));

449 }

450 output ->setSpect(absWlens , absVals);

451 deinitialize_gpumcml (&data);

452 }

453

454 //do MCA in the absorption spectrum. Input: spekteret , vektor av innlastede

kromoforer

455 void mca(Spectrum spect , vector <Spectrum > cromophores , vector <double> *

concentrations){

456 int obs = spect.getSize (); // number of observations

457 double w = 0; // wavelength of the current observation

458 int n_cro = cromophores.size();

459 int param = n_cro +1;

460

461 gsl_vector *abs = gsl_vector_alloc(obs); //the absorption spectrum to be
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matched

462 gsl_vector *c = gsl_vector_alloc(param); //the concentrations of each

chromophore to be determined

463 gsl_matrix *cromophore_mat = gsl_matrix_alloc(obs , param); //the matrix of

chromophores

464 gsl_matrix *cov = gsl_matrix_alloc(param , param); // covariance matrix

465

466 //set the cromophore matrix and observation matrix

467 for ( int i = 0; i < obs; i++){

468 w = spect.wlenAt(i);

469 gsl_vector_set(abs , i, spect.valAt(i));

470 for ( int j = 0; j < n_cro; j++){

471 gsl_matrix_set(cromophore_mat , i, j, cromophores[j].val(w));

472 }

473 gsl_matrix_set(cromophore_mat , i, n_cro , 1);

474 }

475

476 // setting up the workspace for multiparameter fitting

477 gsl_multifit_linear_workspace *workspace = gsl_multifit_linear_alloc(obs ,

param);

478

479 // performing the fitting itself

480 double chisq = 0;

481 // gsl_multifit_wlinear(cromophore_mat , wei_vec , abs , c, cov , &chisq ,

workspace);

482 gsl_multifit_linear(cromophore_mat , abs , c, cov , &chisq , workspace);

483

484 for ( int i=0; i < param; i++){

485 concentrations ->push_back(gsl_vector_get(c,i));

486 }

487

488 //free memory

489 gsl_multifit_linear_free(workspace);

490 gsl_matrix_free(cromophore_mat);

491 gsl_vector_free(abs);

492 gsl_vector_free(c);

493 }

File A.5: GPU�MCML/fast�gpumcml/opticalprop.c

1 //for generating optical properties

2 #include "math.h"

3 #include "opticalprop.h"

4 #include "muabo.h"

5

6 double muabEff(double r, double muab){

7 return 1/(2*r)*(1-exp(-2*r*muab));

8 }

9

10 // translated directly from that matlab script

11 void calcSkinData( f loat lambda , f loat oxy , f loat Bd , f loat muam694 , SkinStruct

*output){

12 output ->nphotons = 300000;

13 // double oxy = 0.8;

14 f loat H = 0.41;

15 f loat H0 = 0.45;

16 f loat Be = 0.002;

17 // double Bd = 0.01;

18

19 output ->ne = 1.4;

20 output ->nd = 1.4;
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21

22 output ->de = 100e-6;

23 output ->dd = 1;

24 double r1 , r2 , r3, r4;

25 r1 = 10e-6;

26 r2 = 25e-6;

27 r3 = 50e-6;

28 r4 = 100e-6;

29

30

31 // absorption coefficients

32 // double muam694 = 500; // melanin absorption coeff. at 694nm , in [m-1]

33 f loat mua_other = 25; //non -blood , non -melanin absorption

34

35 f loat muab_blood = (muh_oxy(lambda)*oxy+muh_deoxy(lambda)*(1-oxy))*H/H0;

36 // muab_blood = 0.7* muabEff(r1, muab_blood) + 0.24* muabEff(r2, muab_blood) +

0.04* muabEff(r3, muab_blood) + 0.02* muabEff(r4 , muab_blood);

37 f loat muab_melanin = muam694*pow ((694/ lambda) ,3.46);

38

39 output ->muae = (muab_melanin + muab_blood*Be + mua_other *(1-Be));

40 output ->muad = (muab_blood*Bd + mua_other *(1-Bd));

41

42

43 // scattering coefficients

44 ScattCoeffStruct scattering;

45 calcScattCoeff(lambda , H, Be, Bd , &scattering);

46

47 output ->muse = scattering.muse;

48 output ->musd = scattering.musd;

49 output ->ge = scattering.ge;

50 output ->gd = scattering.gd;

51 }

52

53 void calcScattCoeff( f loat lambda , f loat H, f loat Be , f loat Bd , ScattCoeffStruct

*output){

54 //av. cosine of scattering angle in tissue:

55 f loat gcol = 0.62 + lambda *29e-5;

56 f loat gery = 0.9969;

57

58 // Collagen:

59 //Mie scattering: (reduced)

60 f loat c_mie = 105; // voksen person , fra Winnem2004

61 f loat musmr = c_mie *(1 - 1.745e-3* lambda + 9.843e-7* lambda*lambda);

62

63 // Rayleigh scattering: (NOT reduced)

64 f loat c_ray = 1.05 e12; // voksen person , fra Winnem2004

65 f loat musrr = c_ray*pow(lambda ,-4);

66

67 //total scattering coeff. in collagen:

68 f loat must = (musmr + musrr)*100/(1 - gcol);

69

70 //total scattering coeff. in tissue:

71 // double must = mustr /(1-g); // deler paa 1-g for aa gaa fra reduced til

ikke reduced

72

73 // Erythrocytes:

74 //scatt. coeff. at 685nm:

75 f loat musb685 = 55.09e-12;

76 // Erythrocyte volume:

77 f loat ve = 1.25e-16;

78 //scatt. coeff.:
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79 f loat musb = musb685*H*(1-H)*(1.4 -H)/ve*pow ((685/( lambda *1.0)) ,0.37); //

FIXME: ok det skal mangle en gb fordi dette er jo for monte carlo og

ikke diff

80

81 //total scattering coefficient

82 output ->muse = must*(1-Be) + musb*Be;

83 output ->musd = must*(1-Bd) + musb*Bd;

84

85

86 // probability that scattering was caused by collagen , epidermis

87 //float pcole = must*(1-Be)/output ->muse;

88

89 // probability that scattering was caused by collagen , dermis

90 //float pcold = must*(1-Bd)/output ->musd;

91

92 // probaility for scattering from Mie

93 //float pmie = (musmr /(1-gcol))/(( musmr/(1-gcol))+musrr);

94

95 // anisotropy g in dermis

96 output ->ge = gcol;//*pcole*pmie + gery*(1-pcole);

97

98 //g in epidermis

99 output ->gd = gcol;//*pcold*pmie + gery*(1-pcold);

100 }

101

102 f loat muh_oxy( f loat l){

103 int low_ind = ( int )(l -400);

104 int upp_ind = low_ind +1;

105 f loat lower_l = ( int )l;

106 f loat upper_l = lower_l +1;

107 return (muabo[low_ind] + (l - lower_l)/( upper_l - lower_l)*(muabo[upp_ind]

- muabo[low_ind ]));

108 }

109

110 f loat muh_deoxy( f loat l){

111 int low_ind = ( int )(l -400);

112 int upp_ind = low_ind +1;

113 f loat lower_l = ( int )l;

114 f loat upper_l = lower_l +1;

115 return (muabd[low_ind] + (l - lower_l)/( upper_l - lower_l)*(muabd[upp_ind]

- muabd[low_ind ]));

116 }

File A.6: GPU�MCML/fast�gpumcml/opticalprop.h

1 #ifndef OPTICALPROP_H_DEFINED

2 #define OPTICALPROP_H_DEFINED

3

4 f loat ext_oxy( f loat l);

5 f loat ext_deoxy( f loat l);

6

7 f loat muh_oxy( f loat l);

8 f loat muh_deoxy( f loat l);

9

10

11

12 typedef struct{

13 f loat muse; //muh_s in epidermis

14 f loat musd; //muh_s in dermis

15 f loat ge; // anisotropy factor

16 f loat gd;
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17 } ScattCoeffStruct;

18

19

20 typedef struct{

21 // general

22 unsigned long nphotons;

23

24 // epidermis

25 f loat ge;

26 f loat muse;

27 f loat muae;

28 f loat ne;

29 f loat de;

30

31 // dermis

32 f loat gd;

33 f loat musd;

34 f loat muad;

35 f loat nd;

36 f loat dd;

37 } SkinStruct;

38

39 void calcSkinData( f loat lambda , f loat oxy , f loat Bd , f loat muam694 , SkinStruct

*output);

40

41 void calcScattCoeff( f loat lambda , f loat H, f loat Be , f loat Bd , ScattCoeffStruct

*output);

42

43 #endif

File A.7: GPU�MCML/fast�gpumcml/gpumcmlchanges.c

1

2 int set_simulation_data(SimulationStruct ** simulations , SkinStruct skinData)

3 {

4 int i=0;

5 int ii=0;

6 int n_layers = 2;

7 unsigned long number_of_photons = skinData.nphotons;

8 f loat dtot =0;

9 double n1 , n2 , r;

10

11 // Allocate memory for the SimulationStruct array

12 *simulations = (SimulationStruct *) malloc( s izeo f (SimulationStruct)*1);

13 i f (* simulations == NULL){perror("Failed to malloc simulations .\n");return 0;}

14

15 //set the program to ignore detection of absorption , will be a performance

bottleneck if we do

16 (* simulations)[i]. ignoreAdetection =1;

17 (* simulations)[i].AorB='A';

18

19 //set the number of photons

20 (* simulations)[i]. number_of_photons=number_of_photons;

21

22 //set grid to exact one element , we don't need it since no absorption is

saved

23 (* simulations)[i].det.dz=skinData.dd *1.11; //litt stoerre enn tykkelsen

24 (* simulations)[i].det.dr =0.01;

25 (* simulations)[i].det.nz=1;

26 (* simulations)[i].det.nr=100;

27 (* simulations)[i].det.na=50;
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28

29 // number of layers

30 (* simulations)[i]. n_layers = n_layers;

31

32 // Allocate memory for the layers (including one for the upper and one for

the lower)

33 (* simulations)[i]. layers = (LayerStruct *) malloc( s izeo f (LayerStruct)*(

n_layers +2));

34 i f ((* simulations)[i]. layers == NULL){perror("Failed to malloc layers .\n");

return 0;}

35

36 //ser upper refractive index

37 (* simulations)[i]. layers [0].n=1.0;

38

39 //set layer parameters

40 // epidermis

41 dtot =0;

42

43 ii=1;

44 (* simulations)[i]. layers[ii].n=skinData.ne;

45 (* simulations)[i]. layers[ii].mua=skinData.muae /100.0;

46

47

48 (* simulations)[i]. layers[ii].g=skinData.ge;

49 (* simulations)[i]. layers[ii].z_min=dtot;

50 dtot+= skinData.de *100.0;

51 (* simulations)[i]. layers[ii].z_max=dtot;

52 (* simulations)[i]. layers[ii].mutr =1.0f/( skinData.muae /100.0 + skinData.

muse /100.0);

53

54 // dermis

55 ii++;

56 (* simulations)[i]. layers[ii].n=skinData.nd;

57 (* simulations)[i]. layers[ii].mua=skinData.muad /100.0;

58

59

60 (* simulations)[i]. layers[ii].g=skinData.gd;

61 (* simulations)[i]. layers[ii].z_min=dtot;

62 dtot+= skinData.dd *100;

63 (* simulations)[i]. layers[ii].z_max=dtot;

64 (* simulations)[i]. layers[ii].mutr =1.0f/( skinData.muad /100.0 + skinData.

musd /100.0);

65

66

67

68 // Read lower refractive index (1 xfloat)

69 (* simulations)[i]. layers[n_layers +1].n=1;

70

71 // calculate start_weight

72 n1=(* simulations)[i]. layers [0].n;

73 n2=(* simulations)[i]. layers [1].n;

74 r = (n1-n2)/(n1+n2);

75 r = r*r;

76 (* simulations)[i]. start_weight = 1.0F - ( f loat )r;

77

78 return 1;

79 }

80

81 //do initialization of the gpu

82 void initialize_gpumcml(GPURunData *data){

83 int i;
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84 UINT64 seed = (UINT64) time(NULL);

85 data ->num_GPUs = 1; // assume only one GPU

86 // Determine the number of GPUs available.

87 int dev_count;

88 CUDA_SAFE_CALL( cudaGetDeviceCount (& dev_count) );

89 i f (dev_count <= 0)

90 {

91 fprintf(stderr , "No GPU available. Quit.\n");

92 exit (1);

93 }

94

95 cudaDeviceProp props;

96 int n_threads = 0; // total number of threads for all GPUs

97 for (i = 0; i < data ->num_GPUs; ++i)

98 {

99 data ->hstates[i] = (HostThreadState *) malloc( s izeo f (HostThreadState));

100

101 // Set the GPU ID.

102 data ->hstates[i]->dev_id = i;

103

104 // Get the GPU properties.

105 CUDA_SAFE_CALL( cudaGetDeviceProperties (&props , data ->hstates[i]->dev_id) )

;

106

107 // Validate the GPU compute capability.

108 int cc = (props.major * 10 + props.minor) * 10;

109 i f (cc < __CUDA_ARCH__)

110 {

111 fprintf(stderr , "\nGPU %u does not meet the Compute Capability "

112 "this program requires (%d)! Abort .\n\n", i, __CUDA_ARCH__);

113 exit (1);

114 }

115

116 // We launch one thread block for each SM on this GPU.

117 data ->hstates[i]->n_tblks = props.multiProcessorCount;

118

119 n_threads += data ->hstates[i]->n_tblks * NUM_THREADS_PER_BLOCK;

120 }

121 // Allocate and initialize RNG seeds (for all threads on all GPUs).

122 data ->x = (UINT64 *) malloc(n_threads * s izeo f (UINT64));

123 data ->a = (UINT32 *) malloc(n_threads * s izeo f (UINT32));

124

125 #ifde f _WIN32

126 i f (init_RNG(data ->x, data ->a, n_threads , "safeprimes_base32.txt", seed))

exit (1);

127 #else

128 i f (init_RNG(data ->x, data ->a, n_threads , "executable/safeprimes_base32.txt

", seed)) exit (1);

129 #endif

130 // Assign these seeds to each host thread state.

131 int ofst = 0;

132 for (i = 0; i < data ->num_GPUs; ++i)

133 {

134 SimState *hss = &(data ->hstates[i]->host_sim_state);

135 hss ->x = &data ->x[ofst];

136 hss ->a = &data ->a[ofst];

137

138 ofst += data ->hstates[i]->n_tblks * NUM_THREADS_PER_BLOCK;

139 }

140 }

141
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142 //free memory structures

143 void deinitialize_gpumcml(GPURunData *data){

144 int i;

145 // Free host thread states.

146 for (i = 0; i < data ->num_GPUs; ++i) free(data ->hstates[i]);

147

148 // Free the random number seed arrays.

149 free(data ->x); free(data ->a);

150

151 }

152

153

154 double run_gpumcml(GPURunData gpuData , SkinStruct skinData)

155 //int main(int argc , char* argv [])

156 {

157 int willPrint = 0;

158 SimulationStruct* simulations;

159 int n_simulations;

160 int i;

161

162 // Read the simulation inputs.

163 n_simulations = set_simulation_data (& simulations , skinData);

164

165 // perform all the simulations

166 double diff_reflct;

167 double spec_reflct;

168 double transmitt;

169 for (i=0;i<n_simulations;i++)

170 {

171 // Run a simulation

172 DoOneSimulation(i, &simulations[i], gpuData.hstates , gpuData.num_GPUs ,

gpuData.x, gpuData.a, &diff_reflct , &transmitt , &spec_reflct , willPrint)

;

173 }

174 double retVal = diff_reflct;///(1- spec_reflct); //siden Rdiff bestaar av

gamma*(1-Rsp), vil kun ha gamma for aa sammenligne direkte med

diffusjonsteori

175

176

177 FreeSimulationStruct(simulations , n_simulations);

178 return retVal;

179 }

A.3 General MATLAB-implementation of the di�usion model

This is not included since it is not my work, although it was changed somewhat to keep better control
over the reduced and unreduced scattering coe�cients. Small scripts for calculating oxygenation and the
like is not included.
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