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Preface

Welcome to the FDC toolbox!

This report gives an overview of the Flight Dynamics and Control toolbox FDC 1.2, a graphical
software environment for the design and analysis of aircraft dynamics and control systems, based
upon Matlab and Simulink. Its main goal is to simplify the Flight Control System design
process, although it can be applied to a broad range of Stability and Control related problems.
An early version of the toolbox was used in practice for an autopilot design process for the De
Havilland ‘Beaver’ aircraft, which was performed by graduate students of the section Stability
and Control of the Faculty of Aerospace Engineering (including myself) in 1992/1993. This
project provided an impressive demonstration of the flexibility and power of Simulink-based
tools by enabling us to bring the autopilot project from the early designs in Matlab to the
actual flight test phase in a short period of time with great results (see refs.[22] and [29]). Based
upon this ‘Beaver’ autopilot experience the current version of the FDC toolbox has evolved into
an advanced ‘proof of concept’ package which has matured a lot since the early versions from
1992/1993. FDC 1.2 thus paves the way for future general-purpose toolboxes in the field of
Flight Dynamics and Control research.

FDC 1.2 can play an important role in aeronautical education by assisting in Flight Dy-
namics and Control related training courses. There it can take full advantage of its clear model-
structure and its flexibility which enables it to be used for a variety of tasks, e.g. control system
design, off-line simulations of the open-loop, uncontrolled aircraft (either non-linear or linear),
closed-loop simulations of an automatically controlled aircraft, etc. The non-linear dynamic
model of the ‘Beaver’ aircraft is very suitable for a first introduction to the structure of aircraft
dynamics in general due to its relatively simple structure which nevertheless contains many typi-
cal aircraft characteristics that make it an ideal basis for a general treatment of aircraft dynamics.
For instance, the model clearly exhibits cross-coupling of longitudinal and lateral motions and it
describes asymmetrical aircraft behavior due to propeller-slipstream effects. FDC 1.2 can help
assisting courses on Automatic Flight Control Systems (AFCS’s) if it is used in combination with
the various existing control system toolboxes for Matlab. Its powerful non-linear simulation
capabilities make it easy to extend such courses beyond the linear AFCS design and simulations,
thus bridging the gap between the control theory and its applications in practice.

About the second edition of this report

Since the first edition in 1997, the Internet has become the standard distribution channel for the
FDC toolbox. In addition to the software itself, the PostScript source files for the FDC 1.2 report
were also made available over the Internet. This new edition was created primarily to shorten
the download-time for the PostScript sources and to make it possible to create a PDF version of
the report. Contrary to the previous version, the new sources are resolution-independent, which
will enhance the printing quality when applying a high-resolution output device.
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iv PREFACE

The text of the report has not been changed, apart from one section in the install instructions.
However, some parts are slightly outdated – in particular the system requirements section.
Contrary to the text, many figures have been updated: some bitmap graphics have been replaced
by vector graphics, which enhances their quality while reducing the size of the corresponding
PostScript files, and other bitmap graphics have been implemented as gray-scale pictures instead
of dithered black-and-white pictures. But since the contents are virtually the same, there’s no
need to re-print this report if you already own a hard-copy of the old version.

One important remark about the software requirements: FDC 1.2 is not compatible with
Matlab 5/Simulink 2 or newer! To solve this problem, version 1.3 of the FDC toolbox was
created for Matlab 5.1/Simulink 2.1 (this version has also been tested successfully with Matlab
5.3/Simulink 3.0). Some other improvements were made as well: the on-line help system was
improved and some small changes were made in the user-interface. However, these changes were
not big enough to justify a new user-manual. If you use FDC 1.3, the document you’re currently
reading is still the best reference source available. However, make sure to read the readme and
whatsnew-files for FDC 1.3 too; they contain more information about the differences between
versions 1.2 and 1.3.

The structure of this report

Creating a report which treats the complete FDC toolbox from the different points-of-view of all
types of users was not easy. The ‘proof of concept’ character of the FDC toolbox required both a
thorough treatment of the mathematical structure of the models and algorithms and a detailed
description about the actual implementation of the models and tools in Matlab/Simulink.
Moreover, the report should show how to get started as an ‘FDC novice’, while a detailed des-
cription about the ‘Beaver’ autopilot was deemed necessary to demonstrate the more advanced
applications of the FDC toolbox for experienced users. For this reason, it was first planned
to divide the report into three separate parts: theoretical backgrounds, reference guide, and
tutorial/examples. However, one of the virtues of this toolbox is the fact that the practical im-
plementation of the models and tools makes it easier to comprehend the theory and vice versa.
In other words, a formal separation of theory and practice was not that trivial. For this reason
it was decided to combine the different elements into one report. So whether you simply want to
apply the existing models incorporated in FDC 1.2 for a demonstration of Stability and Control
related problems or use the models and tools as a guideline for the implementation of your own
models: all necessary information can be found in this report.

This did, however, require some compromises with regard to the structure of the report. It
would have been somewhat easier to trace the required information when using separate volumes
for the theory, implementation, and examples, but this has been compensated by means of a
clear table of contents, chapter headers on top of the pages, and a complete index to simplify
searching. The general structure of the report is as follows:

• chapter 1 shows how to install the software package and how to get started with FDC 1.2,

• chapter 2 gives an introduction to the Flight Control System design process, one of the
main applications of the FDC package,

• chapter 3 treats the theoretical aspects of the different dynamic models from the FDC
toolbox,

• chapter 4 treats the theoretical aspects of some important analytical tools contained in or
used by FDC 1.2,

• chapters 5 to 8 provide the link between the theory from chapters 3 and 4 and the FDC
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Figure 1: Different ways to approach this report

software by describing the Simulink models and Matlab programs from FDC 1.2 sys-
tematically in alphabetical order (these chapters fulfill the function of reference guide in
this report),

• chapter 9 describes some utilities from the FDC toolbox which are needed for defining
or loading model parameters, steady-state initial conditions, system matrices of linearized
models, etc. and for post-processing simulation results,

• chapter 10 demonstrates the practical use of the models and tools for the analysis of
open-loop aircraft responses,

• chapters 11 and 12 describe a detailed case-study of the ‘Beaver’ autopilot,

• chapter 13 contains recommendations for further improvements of the FDC toolbox,

• appendix A contain a list of symbols and definitions,

• appendix B gives background information for the derivations of the equations of motion,

• the other appendices contain parameter definitions for the models from chapter 3, the
Simulink systems from chapters 5 to 7, and the Matlab tools from chapter 8.
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How to read this report

Figure 1 gives a schematic overview of the different ways to use this report. All users should start
reading chapter 1 for a short introduction to the package and the install instructions. If you want
to get started rightaway to get a general idea about the possibilities of the package you should
continue with chapter 10. Users who want to know more about the theoretical backgrounds
should read chapters 3 and 4, while the function of a reference guide to the Matlab/Simulink
implementation is fulfilled by chapters 5 to 6, 8, and 9. Experienced users are encouraged to read
chapters 11 and 12 for a detailed case-study of the ‘Beaver’ autopilot, which clearly demonstrates
the enormous flexibility of the Simulink environment for solving such control system design
problems. However, even though the structure of the autopilot simulation model has been
brought to the same standard as the other FDC systems, it is recommended to get familiar with
the toolbox first before proceeding with this case-study. Users who don’t comprehend the open-
loop simulations from chapter 10 will most likely have problems with the autopilot simulation
models as well. The autopilot simulation model from chapter 12 contains the complete set of
control laws used for the actual flight tests, so it takes into account many problems encountered
in practice. If you plan to design your own autopilot control laws, it is very useful to study
chapters 11 and 12, because they contain useful clues for easing out the transition from simulation
model to flight test. Chapter 2 provides useful general background information for all readers
who are interested in Automatic Flight Control Systems design processes. Finally, chapter 13
highlights a number of further improvements of the FDC toolbox under consideration for future
releases.

Typographical conventions

The following typographical conventions are used in this report:

• scalar variables and functions, as well as variable names from software source codes and
graphical Simulink systems, are typeset in italics,

• vectors and vector functions are typeset in boldface,

• matrices and frames of reference are denoted with ITALIC CAPITALS,

• names of software packages, filenames, and directory names are typeset in small capi-
tals,

• Names of Simulink systems are typeset in Sans Serif style, Matlab functions are either
denoted by their filenames (small capitals with extension .m) or in SANS SERIF CAPITALS.

• commands to be typed by the user at the DOS prompt or the Matlab command-line are
typeset in typewriter style.

Contact information

The homepage for the FDC toolbox is located at: http://www.dutchroll.com. It contains more
information about the new version FDC 1.3 and future updates of the FDC toolbox. If you have
any questions or comments, please contact the author via e-mail at: rauw@dutchroll.com.

Marc Rauw, May 10, 2001
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Chapter 1

Introduction to FDC 1.2

1.1 What is the FDC toolbox?

FDC is an abbreviation of Flight Dynamics and Control. The FDC toolbox for Matlab and
Simulink makes it possible to analyze aircraft dynamics and flight control systems within
one software environment on one PC or workstation. The toolbox has been set up around a
general non-linear aircraft model which has been constructed in a modular way in order to
provide maximal flexibility to the user. The model can be accessed by means of the graphical
user-interface of Simulink. Other elements from the toolbox are analytical Matlab routines
for extracting steady-state flight-conditions and determining linearized models around user-
specified operating points, Simulink models of external atmospheric disturbances that affect
the motions of the aircraft, radio-navigation models, models of the ‘Beaver’ autopilot, and several
help-utilities which simplify the handling of the systems.

The package can be applied to a broad range of stability and control related problems
by applying Matlab tools from other toolboxes to the systems from FDC 1.2. The FDC
toolbox is particularly useful for the design and analysis of Automatic Flight Control Systems
(AFCS’s). By giving the designer access to all models and tools required for AFCS design and
analysis within one graphical Computer Assisted Control System Design (CACSD) environment
the AFCS development cycle can be reduced considerably, as will be shown in chapter 2. The
current version 1.2 of the FDC toolbox is an advanced ‘proof of concept’ package which effectively
demonstrates the general ideas behind the application of CACSD tools with a graphical user-
interface to the AFCS design process. Currently, the aircraft model has been worked out in
detail for the De Havilland DHC-2 ‘Beaver’ aircraft, but due to the modular structure of the
models and the flexibility of Matlab and Simulink it will be relatively easy to implement other
aircraft models within the same structure and to enhance or refine the models if required.

1.2 Required Hardware and Software

Version 1.2 of the FDC-toolbox was developed for Matlab 4.0 / Simulink 1.2c for MS
Windows 3.1.1 It is necessary to have these or newer versions of these programs installed
on your system. Matlab for Windows version 4.0 requires a PC with an 80386 or better
processor, equipped with at least 4 Mbytes of RAM. In practice, an i486 computer with 4 Mbytes
of RAM, running at a clock-speed of 33 MHz proved to be just powerful enough for our AFCS
design tasks, but more computing power and more system memory is strongly recommended,
especially if you plan to do simulations with stochastic or highly discontinuous input signals.

1For Matlab 5.1 / Simulink 2.1 or newer, use FDC 1.3 instead; see the remarks in the Preface.
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For real number-crunching tasks, the toolbox should be loaded onto a real powerful personal
computer or workstation (the FDC toolboxes for Matlab 4.0 / Simulink 1.2c (or higher)
should work well for corresponding workstation versions of Matlab and Simulink, although
this has not been tested). The toolbox itself requires approximately 2 Mbytes of free space on
your harddisk, but it is recommended to reserve more space for storing simulation results and
your own model enhancements on your harddisk.

1.3 License Agreement

Before installing the FDC package to your computer, it is necessary to read this section. Using
FDC 1.2 implies that you agree with the rules from this license. The basic philosophy behind
these rules is that the FDC toolbox should be a system which can be trusted by all types of
users to fulfill their needs, while at the same time providing a maximum flexibility for the users
to experiment with the FDC files. It is not possible to ensure compatibility between different
Simulink (sub-) systems and Matlab programs from the FDC toolbox if different versions
of the systems and tools are distributed under the same names. For instance, altering the
definitions of the input and output vectors within the existing aircraft model Beaver will render
the current systems that call Beaver as a subsystem useless, unless those systems are changed
accordingly. This may not be a problem for an individual user who can easily keep track of all
changes made to the programs and systems, but if the models are shared with others – which is
the ultimate goal of the modular FDC structure – unexpected errors will arise.

For this reason, the license rules only allow distribution of the complete, original distribu-
tion files of the FDC toolbox. The user is free to release custom-made versions and add-ons to
the FDC toolbox, under the condition that these changes and extensions are clearly marked as
being different from the original FDC toolbox. It is not allowed to include such extensions to
the original FDC distribution diskettes or copies thereof. It is allowed to distribute enhanced
FDC tools of models, as long as they are saved under different filenames. These rules are not
intended to discourage the user in experimenting with the programs and Simulink models from
the FDC toolbox. It is allowed to use the existing files or separate elements from these files as
‘templates’ for own developments, as long as the original source is mentioned in the new version
and a new filename is used for distribution.

The following license rules should be taken into account:

• All software written by M.O. Rauw which is part of the FDC toolbox may be used without
restrictions.

• The software written by M.O. Rauw which is part of the FDC toolbox may only be
distributed in unchanged and complete form, including all the files listed in the file con-
tents.txt, and only if this is done without charge. If you want to distribute only parts
of the FDC toolbox or charge a fee for handling, etc., you have to contact the author. In
particular, commercial distribution on diskette or CD-ROM is prohibited without explicit
permission.

• Any custom-made extensions to the FDC package should be distributed separately, using
filenames that differ from the original FDC package. Inclusion of extensions to the original
FDC distribution diskette is prohibited without explicit permission from the author.

• Elements from the FDC tools or systems may be included in other programs and systems,
provided the original source (e.g. ‘FDC 1.2 by M.O. Rauw’) is referred to in the resulting
source codes. Distribution of customized versions of the systems and tools from the FDC
toolbox is allowed only if the differences from the original version are clearly marked.
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• Distribution of the program documentation other than that included on the FDC distri-
bution diskette is prohibited without explicit permission from the author.

• No guarantee is made as to the proper functioning of the FDC software. No liability will
be admitted for damage resulting from using the software.

• Instead of a list: All trademarks used in this document and all the other documents and
program files from the FDC toolbox are registered to whoever it is that owns them.

Note: the file license.txt from the FDC distribution diskette contains a copy of these license
rules. Any last-minute changes to this license agreement will be clearly marked in that file.
Please read it before installing FDC 1.2.

1.4 Installing FDC 1.2

Before starting the installation, you should read the readme-file to find out if there are any
last-minute changes to the software or installation procedure. There are two different FDC 1.2
distributions: an Internet distribution and a floppy-disk distribution that uses a self-extracting
ZIP file to store the models and tools. Unpacking instructions are given in a readme file that
is included with each distribution; these instructions will not be repeated here.

After unpacking the FDC models and tools into the right directory, start Matlab and
go to the FDC root-directory. The default FDC root-directory is c:\fdc12 and you can type:
chdir c:\fdc12 to go there. Next, type fdc or fdcinit at the Matlab command-line to start
the initialization routine FDCINIT (see figure 1.1). As a first-time user you will be welcomed by
some introductionary messages and you will be asked to check the FDC directory structure which
is used by FDCINIT to enhance the Matlab search path (figure 1.2). At this stage, it is not
necessary to change anything, unless you have installed FDC to a different root-directory than
c:\fdc12; in that case you must specify the new root-directory as demonstrated in figure 1.3 for
the directory g:\mytools\fdc12. FDCINIT will automatically guide you through this process,
but remember that the program is not (yet) able to check whether the specified directory names
are correct or not, although Matlab itself issues a warning message if you have specified an
incorrect path when finishing the initialization procedure.1 It is possible to save a changed
version of the FDC directory-tree as default setting for future sessions. The initialization routine
will automatically enhance the Matlab search-path with the FDC directories. Do not run or
FDCINIT more than once during an FDC-session in order to avoid duplicate entries in the
Matlab search-path.

After finishing this initialization, type help at the Matlab command-line. You will see
that the FDC directories have been added to the Matlab path. Information about each in-
dividual FDC directory will be listed if you type help dirname, where dirname is an FDC
subdirectory; e.g. type help aircraft for a short explanation about the files in the FDC sub-
directory aircraft. Since most help texts don’t fit in the command window, it is necessary to
use the slider-button on the right side of the command window to view them completely.

1Note: the current user-interface of the FDC toolbox is still largely text-oriented, i.e. the programs display
information in the Matlab command window and they expect all user-inputs to be entered in the command
window. However, newer versions of Matlab automatically convert text-oriented menu’s to graphical user-
menu’s such as the one shown in figure 1.3. This inconsistent behavior may sometimes be confusing, so further
improvement of the user-interface will have high priority for future versions of the FDC toolbox. Since the
command-window can be hidden behind other windows while FDC programs display information or expect inputs
from the user, it is recommended to keep at least some part of the command window clear from other windows.
Otherwise you may loose track of the messages which FDC sends to the user. It is therefore recommended to use
a large high-resolution display.
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Figure 1.1: Starting the initialization of FDC 1.2

Figure 1.2: Check directory structure during initialization
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Figure 1.3: Specifying a new root-directory for FDC 1.2 during initialization

Figure 1.4: Suppressing the directory-check for future FDC-sessions
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1.5 Getting started with FDC 1.2

1.5.1 Initializing FDC 1.2

When the installation is finished, the FDC toolbox contains the following subdirectories:

AIRCRAFT contains the non-linear aircraft model Beaver, the main library FDCLIB and its
sublibraries, and a model-parameter definition program MODBUILD,

APILOT contains simulation models of the ‘Beaver’ autopilot,
DATA contains datafiles with model-parameters and is used for storing data such as

steady-state trimmed-flight conditions or linearized aircraft models,
DOC contains text-files with program documentation (readme-files, license agree-

ment, list of new features, list of features for future versions of the toolbox, and
a complete list of all files from the toolbox)

EXAMPLES contains examples which demonstrate how to simulate open-loop responses of
the aircraft in Simulink and how to access the non-linear aircraft model from
the Matlab workspace plus some ‘tutorial’ systems,

HELP contains on-line help texts for the graphical subsystems and for the most im-
portant analytical tools from the FDC-package,

NAVIGATE contains the radio-navigation library NAVLIB and its sublibraries,
TOOLS contains the trim and linearization routines, routines for post-processing simu-

lation results, load routines for model-initialization, and a Simulink library
FDCTOOLS with useful blocks that can’t be found in the standard Simulink
libraries,

WIND contains the wind and turbulence library WINDLIB and its sublibraries.

Each time you start an FDC-session you must add the FDC directories to the Matlab path
by running FDCINIT from the FDC root-directory (first change directory, then type fdc or
fdcinit). After the first session the initialization routine will skip the welcome messages, but
you still must check the directory path before FDCINIT will add the FDC directories to the Mat-
lab path. If you want to skip the directory-check in future sessions, you must select the suppress
option after checking the directories (see figure 1.4). Note: if you plan to enhance the FDC tool-
box, it is advisable not to suppress the directory-check, because it can be used to include new
subdirectories for your own FDC extensions to the Matlab path; just click the appropriate
button in the menu shown in figure 1.3 and answer the questions in the Matlab command
window. FDCINIT always tries to retrieve its default settings from the file fdcinit.ini, which
is stored in the root-directory of the FDC package. If you change the FDC directory tree and
save this definition as the new default setting, the file fdcinit.ini will be changed accordingly.
Once the suppress option has been selected during a directory-check, it is not possible to change
the tree definition anymore, unless you delete the file fdcinit.ini from the FDC root-directory
before running FDCINIT. If fdcinit.ini cannot be found in the FDC root-directory, you will be
welcomed as if you were a first-time user and the directory-check options will reappear.

1.5.2 Contents of the FDC toolbox

The most important elements from the FDC toolbox are its Simulink model libraries: the main
library FDCLIB, the wind and turbulence library WINDLIB, and the radio-navigation library
NAVLIB. These libraries can be opened by typing fdclib, windlib, or navlib at the Matlab
command-line. FDCLIB provides links to sublibraries containing the different blocks from the
non-linear aircraft model, the complete non-linear model of the ‘Beaver’ aircraft, the wind and
navigation libraries, several ‘button’-blocks, and some example systems which explain how the
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different FDC models can be used in practice. Typing fdclib at the Matlab command-line will
open the block-library shown in figure 1.5. Each block from this library can be double-clicked
with the mouse to open the corresponding sublibrary or simulation model. The title block in
the upper left corner of the library can be double-clicked to provide information about some
important block-conventions from the graphical systems in FDC 1.2. The blocks from the left
hand side of the main library window will open sublibraries of the aircraft model when double-
clicked. The blocks on the right hand side refer to complete simulation models and ‘tutorial
systems’.

For instance, double-clicking the block Aerodynamics will reveal the sublibrary shown in
figure 1.6. This library currently contains the aerodynamic models for the ‘Beaver’ aircraft, but
it can easily be enhanced with aerodynamic models for other aircraft. Opening such sublibraries
is useful during model construction work. Since it takes some time to load these sublibraries,
it is recommended not to close these libraries until your model construction work is actually
finished. If you want to make room on your screen you can better temporarily minimize the
window instead of closing it. The main library remains accessible in a separate window as long
as that window is not closed.1

The complete non-linear aircraft model is contained in the Simulink system Beaver, which
can also be accessed directly by typing beaver at the command-line. Examples of open-loop
simulation models are contained in the systems OLOOP1, OLOOP2, and OLOOP3, which can
either be opened directly by typing oloop1, oloop2, or oloop3 at the command-line, or accessed
via the main library FDCLIB. ‘Tutorials’ for these open-loop simulation systems are also avail-
able; they are called OLOOP1T, OLOOP2T, and OLOOP3T respectively. Complete autopilot
simulation models for the ‘Beaver’ aircraft are available in the systems APILOT1, APILOT2, and
APILOT3. It is recommended not to use these systems until you have gained some experience
with the open-loop simulation models, because the autopilot models are relatively complex in
comparison to the other systems. This is why the autopilot systems are not accessible from the
main model library FDCLIB. See chapters 11 and 12 for a complete description of the autopilot
models from FDC 1.2.

1.6 Some warnings

Although it is highly recommended to use the different models and tools from the FDC toolbox
for your own experiments, it is important not to neglect the current interactions between the
different models and tools. For instance, increasing the number of output signals from the
aircraft model by adding new Outport blocks in the first level of the aircraft model will require
appropriate changes in the systems that call the aircraft model, e.g. the open-loop simulation
models or the autopilot models. Since all parts of the FDC systems are freely accessible by
the user, the possibilities to experiment are virtually unlimited. But in order to maintain the
integrity of the complete FDC toolbox, it is advised to keep safety copies of the original files
somewhere on your system in order to be able to restore possible errors arising during the editing
of those files (of course it is always possible to re-install the complete package if things go really
wrong), and it is strongly recommended to use different filenames for your own adaptations of the
FDC models and tools to clearly distinguish them from the originals. If you want to distribute
your own developments you are even obliged to do this, according to the license agreement from
section 1.3.

1Tip for MS Windows: under Simulink the screen tends to become crowded with all kinds of windows,

especially if it is small. To quickly find the appropriate window, try using Alt + Tab or Alt + Shift +

Tab to walk through a list of windows currently displayed at the screen, including the minimized windows.
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Figure 1.5: Main block-library of the FDC toolbox

Figure 1.6: Sublibrary with aerodynamic models
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If you decide not to read the remainder of this report, in particular chapter 10, you are bound to
receive some disturbing error messages when performing experiments with the tools and models
from the FDC toolbox. This is quite harmless, but please don’t blame the product for it. All
systems and tools from FDC 1.2 have performed quite well in practice, so if Simulink complains
about things like missing parameters you’ll probably have done something wrong. The toolbox
has become more user-friendly (not to say more fool-proof) since the first versions, but it still
requires sufficient basic knowledge to use it. So please keep on reading a bit longer... If you
want to get started quickly, the best thing to do now is to continue with chapter 10. See also
figure 1 from the preface.
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Chapter 2

The Flight Control System design
process

2.1 Introduction

Active flight control technology has dramatically changed the way aircraft are designed and
flown: the flying qualities of modern aircraft are largely determined by a set of control laws
in the heart of a computer system! Flight control systems with mechanical linkages have been
replaced by full authority, fly-by-wire, digital control systems. Such Automatic Flight Control
Systems (AFCS’s) can be designed and analyzed effectively by incorporating design-techniques
and mathematical dynamic models in a user-friendly Computer Assisted Control System Design
(CACSD) package. The FDC-toolbox for Matlab / Simulink is a practical example of such a
design-environment. This chapter will outline the general control system design cycle, in order
to stress the importance of such a CACSD environment for AFCS design and analysis.

2.2 The AFCS design cycle

A practical division of the AFCS design process into a number of different phases is given
in ref.[20]. Although this reference is nowadays outdated with respect to the available tools
(computer hardware and software), this division is still quite useful:

1. Establish the system purpose and overall system requirements. System purpose can be
equated with mission or task definitions. System requirements can be separated in (i)
operational requirements, derived from the functions needed to accomplish the mission
phases and (ii) implied requirements, derived from the characteristics of the interconnected
components of the control system and the environment in which they operate.

2. Determine the characteristics of unalterable elements, command-signals, and external dis-
turbances. The characteristics of some parts of the system cannot easily be changed by
the designer. Often the vehicle itself, its control surface actuators and some of its sensors
are ‘unalterable’.1 Moreover, the structure of the commands and disturbances is a direct
consequence of the mission requirements and the environment in which the control system
has to operate.

1If the AFCS is designed for an all-new aircraft, the selection of the hardware (sensors, actuators, computers,
etc.) must be included in the AFCS design and analysis in stead of taking the hardware as being unalterable. In
this report, all hardware is considered to be given, so the ‘only’ problem to be considered is the development of
the appropriate control laws to make a given aircraft fly a certain mission.

11
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3. Evolve competing feasible systems (i.e. determine the basic block-diagrams). Usually, there
are more ways to achieve the requirements, e.g. with different sensed motion quantities
and/or the application of different control theories. Then it is possible to evolve competing
candidate systems for selection on the basis of certain desirable properties.

4. Select the ‘best’ system. The competing designs can be compared on the basis of (i)
design qualities, which include dynamic performance (speed of response, bandwidth, etc.)
and physical characteristics (weight, volume, power consumption, etc.), and (ii) design
quantities, which include safety, reliability, maintainability, cost, etc. An optimum system
is one that has some ‘best’ combination of these features.

5. Study the selected system in detail. The selected system must be evaluated for all normal
and abnormal operating conditions. At each state of the AFCS validation the assumptions
made earlier in the AFCS design must be checked for validity. If necessary, a new iteration
of the design should be started from the point where the wrong assumption was made.

This scheme reflects the AFCS design process within a manufacturing environment. In a re-
search context, the scheme has to be modified somewhat, due to the differences between research
and manufacturing tasks. The task of research is to determine what is required and to produce
a clear and comprehensive definition of the requirements; the manufacturing task is to make
and deliver a reliable and effective product (ref.[27]). Therefore, the first AFCS design phase
in particular will be different in a research environment, because the system requirements are
often poorly understood or may even be the objective of the research itself. In addition, the
design tools may be immature, and their development may again be an objective of the research
(the development of the FDC toolbox from this report is an obvious example). The design,
simulation, and implementation of control laws within a research context will be similar to the
production application, although more flexibility of the tools will sometimes be required. For
instance, it should be possible to rapidly alter the control laws within the Flight Control Com-
puters (FCC’s) of the aircraft in order to evaluate different solutions to typical control system
design problems with a minimum of programming efforts. In the research environment, step 4
does not necessarily need to include the selection of a ‘best’ system since it may be useful to
evaluate competing control solutions all the way up to evaluation in real flight, just to get more
knowledge about their advantages and disadvantages. Moreover, the requirements with respect
to fail-safety of the AFCS may be less restrictive in a research context than for manufacturing.
For instance, during the autopilot design project for the DHC-2 ‘Beaver’ laboratory aircraft,
only one FCC (a portable 80286 PC (!), coupled to a 16-bit ROLM computer that handled the
I/O functions) was used, whereas AFCS’s for production aircraft apply multiple FCC’s which
cross-check eachother’s command signals.

Figure 2.1 shows the first step in the AFCS design process: the definition of the mission to
be fulfilled by the aircraft, which imposes requirements upon the shape of the flight-path and
the velocity along this flight-path. The resulting control problem is therefore to generate appro-
priate deflections of aerodynamic control surfaces or changes in engine power or thrust, necessary
to fulfill the mission. This control problem is sketched in figure 2.2. The classical approach to
the AFCS design problem is to start with the complete set of non-linear equations of motion,
and then make assumptions which enable these equations to be linearized about some local equi-
librium point. In the initial phase of the AFCS design project, control system design tools based
upon linear system theory can be applied to these linearized models of the aircraft and its sub-
systems. Programs like Matlab provide the required computer support for these applications.
Although the linear control system design and analysis techniques will provide insight in the
essential behavior of the AFCS, only relatively small deviations from the equilibrium state are
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Figure 2.1: Definition of the aircraft’s mission
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Figure 2.2: The general flight control problem
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permitted before the results become invalid in comparison to the real aircraft. Luckily the main
purpose of many AFCS control laws themselves is to keep the deviations from the equilibrium
state as small as possible, e.g. in order to keep a certain altitude or heading. However, there are
other control laws which due to their nature require large deviations from the nominal values,
e.g. for selecting a new reference heading which differs considerably from the original value. For
this reason, detailed non-linear simulations must be made in order to validate (and enhance)
the results of the linear analysis and design. This will ensure that the AFCS works well over
the compete range of the flight-envelope for which it is designed, taking into account a suitable
safety margin. This analysis covers a wide range of velocities and altitudes and all possible
aircraft configurations. This non-linear off-line analysis of the control system can be performed
on one PC or workstation, using a software environment such as Matlab / Simulink. ‘Off-line’
in this respect means that the analysis does not have to be performed in real-time and does not
yet include piloted flight-simulation. In a later stage the control system should be evaluated
in a real-time flight-simulator, to enable a test-pilot to assess the handling qualities of the au-
tomatically controlled aircraft. In particular, the pilot–aircraft interaction should be examined
thoroughly, especially if the pilot will be actively involved in the aircraft control loop (which
obviously is true for so-called fly-by-wire systems).

Based upon these results it is possible to choose the best solution if there are more feasible
solutions to fulfill the mission requirements. If the results of the on-line and off-line analysis are
completely satisfactory the next step will be the implementation of the control laws in the Flight
Control Computer(s) of the aircraft. The aircraft must be equipped with suitable actuators and
sensors, which must be thoroughly tested and calibrated. For some purposes, e.g. certification
purposes, it even may be useful to test the complete control system in an Iron Bird test-stand
arrangement which provides hardware-in-the-loop simulation capabilities. In order to reduce
the risks at making conversion errors, it should be possible to couple at least the complete
FCC software, but preferably also its hardware, to the real-time flight-simulator and the off-line
design environment. This ensures that the control laws evaluated in flight are exactly the same
as the last versions analyzed on-ground.1

After successfully concluding the simulations and ground tests of the hardware and FCC
software, the AFCS can be evaluated in real flight. In an ideal world this phase would only
be a straightforward verification of the previous results, but in practice it is often necessary to
return to a previous stage in the AFCS development for fixing errors or fine-tuning the control
laws. It also may be necessary to update the mathematical models if deficiencies in these mod-
els are found during the in-flight evaluations. Quantitative results from the flight tests need
to evaluated on-ground to confirm the correct control behavior, for which purpose the off-line
environment for AFCS design and analysis is again an ideal platform.

The iterative nature of this AFCS development cycle should be acknowledged: at any stage
in the process, the discovery of a fault, design error, or previously unrecognized uncertainty
requires the return to a previous design stage. It is therefore very important that the transitions
between the different development phases are made as straightforward as possible, to reduce
the number of transition errors which inevitably will arise if the tools for the different phases
are not compatible (Murphy’s Law), and to reduce the time needed for the AFCS development.
For this reason, the AFCS designer needs to have access to the analytical tools for linear and
non-linear AFCS design and analysis along with the required mathematical models within an

1For the ‘Beaver’ autopilot project some dramatic examples of conversion errors were encountered, luckily
for a large part before we actually started the flight-tests. Still, some errors were discovered during the actual
flight-tests! In this respect, references [22] and [29] provide ample food for thought with regard to possible future
AFCS projects... See also the recommendations from chapter 13.



2.2. THE AFCS DESIGN CYCLE 15

integrated software environment on a single PC or workstation. The software tools for off-line
design and analysis should be able to effectively communicate with eachother and with the tools
for real-time on-line simulations and the FCC. Moreover, the designer should be able to manip-
ulate all elements of a specific control system, as well as the mathematical models involved in a
specific design task, by means of a graphical user-interface.

Examples of integrated AFCS design environments are presented in refs.[8] and [24]. Those
papers particularly emphasize the need for multidisciplinary design in which aerodynamic, struc-
tural, propulsive, and control functions are considered all together. This is important, because
modern flight controllers may excite structural modes of the aircraft and interact with the
control-actuator dynamics, and because of the increasing need to integrate flight controls with
engine controls and load-alleviation functions. Interactions between the aerodynamic, propul-
sive, and structural models must be taken into account. For future aircraft, the interacting
phenomena will become even stronger because they will employ such features as the extensive
use of composite materials (resulting in greater aero-elastic coupling) and relaxed static stability
(refs.[8] and [24]).

Figure 2.3 summarizes the complete AFCS design cycle. It illustrates the division in differ-
ent design stages from ref.[20] and the more detailed divisions presented in refs.[8], [24] and [27],
and it clearly shows the iterative nature of the whole process. On the left-hand side of the
figure the models and tools (software and hardware environments) are shown, while the right-
hand side shows the design stages themselves. The figure reflects the current scope of the
Matlab/Simulink-based FDC toolbox. As yet it is still necessary to make manual conver-
sions of the control laws to cross the dashed line between off-line and on-line analysis, which
still considerably hampers the AFCS development and increases the risk of making errors. Fu-
ture versions of the toolbox should therefore be equipped with interfacing-tools that simplify
this step. It will be a big leap forwards if it becomes possible to automatically transfer com-
plete simulation models from the Simulink-environment to the flight-simulator as shown in the
figure. A first step towards that goal would be the automatic conversion of the control laws
from Simulink to a high-level programming language. This step will be elaborated further in
section 13.2.
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Figure 2.3: The AFCS design cycle



Chapter 3

Mathematical models – theoretical
backgrounds

3.1 Introduction

The FDC toolbox was built around several mathematical models needed for the analysis of the
aircraft dynamics and the design and evaluation of Automatic Flight Control Systems. Figure 3.1
shows the closed-loop structure of an automatically controlled aircraft that is affected by external
disturbances. In this structure, the models of the aircraft dynamics, sensors, actuators, and
computational effects are the basic elements which often can’t be altered by the AFCS designer
(see section 2.2). The AFCS control laws and the mode-controller which configures the control
laws for a specific pilot-selected control task are the subject of our analysis. The design and fine-
tuning of these control laws requires application of control system design theory to the dynamic
models of the other elements from figure 3.1. Since the motions of the aircraft, and hence
the performance of the AFCS, are affected by external disturbances, it is necessary to include
these influences to the dynamic model of the aircraft and to derive mathematical models which
describe the nature of these disturbances themselves. The external disturbances are mainly due
to non-steady atmosphere.

In this chapter the different elements from figure 3.1 will be elaborated, with the excep-
tion of the AFCS control laws and the mode-controller. Most attention will be given to the
non-linear model of the aircraft dynamics. Due to the clear modular structure of this model it
can be applied to a very wide range of aircraft or other vehicles such as spacecraft, ships, or
road-vehicles. The few aircraft-dependent parts within this model will be worked out here for
the DHC-2 ‘Beaver’ aircraft. That model is quite sophisticated, yet very compact, which makes
it especially suited for an introductionary treatment of the structure of the aircraft-dynamics
and for the practical demonstration within the ‘proof of concept’ toolbox from this report. Of
the other dynamic models from figure 3.1 some typical examples will be given to provide a basis
for a complete model library. In section 3.3 only atmospheric disturbances will be elaborated.
Section 3.4 describes some important models of radio-navigation signals (VOR and ILS), and
section 3.5 gives a brief overview of some other sensor and actuator models that were used
for the design and analysis of the ‘Beaver’ autopilot. The control laws of the ‘Beaver’ autopi-
lot will be treated in chapter 11 as a practical demonstration of a complete AFCS design project.

Note: a complete list of all symbols, reference frames, abbreviations, and other definitions from
this report has been included in appendix A.

17
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Figure 3.1: Block-diagram of automatically controlled aircraft

3.2 The non-linear aircraft model

The core of the simulation package is a non-linear model of the aircraft dynamics, consisting
of twelve Ordinary Differential Equations (ODE’s or state equations), and a large number of
output equations. This model can be broken down into a number of different modules, most of
which are independent of the kind of moving vehicle under consideration.

3.2.1 General equations of motion

The aircraft equations of motion are derived from basic Newtonian mechanics. The general force
and moment equations for a rigid body are:

F = m

(
∂V

∂t
+Ω×V

)

(3.1)

M =
∂(I ·Ω)

∂t
+Ω× (I ·Ω) (3.2)

These equations express the motions of a rigid body relatively to an inertial reference frame (see
appendix B for the derivation of these rigid body equations). V = [ u v w ]T is the velocity
vector at the center of gravity, Ω = [ p q r ]T is the angular velocity vector about the c.g.
F = [ Fx Fy Fz ]

T is the total external force vector, and M = [ L M N ]T is the total external
moment vector. I is the inertia tensor of the rigid body, which is defined as:

I =






Ixx −Jxy −Jxz
−Jyx Iyy −Jyz
−Jzx −Jzy Izz




 (3.3)

The coefficients from this tensor are the moments and products of inertia of the rigid body. If
the frame of reference is fixed to the vehicle these values are constant, regardless of the attitude
of the vehicle. In order to make equations (3.1) and (3.2) usable for control system design and
analysis, simulation purposes, system identification, etc., these equations need to be re-written
in non-linear state-space format. Moving the time-derivatives of the linear and angular velocities
to the left hand side of the equations yields:

∂V

∂t
=

F

m
−Ω×V (3.4)
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∂Ω

∂t
= I−1 (M−Ω× I ·Ω) (3.5)

Together these dynamic equations form a state-space system which is valid for any rigid body,
e.g. aircraft, spacecraft, road-vehicles, or ships. These equations obviously form the core of the
simulation model. The body-axes components of linear and rotational velocities can be regarded
as the state variables from this model, while the body-axes components of the external forces
and moments are the input variables of these equations.

This clear picture is complicated by the fact that the external forces and moments them-
selves depend upon the motion variables of the aircraft. In other words: the state variables
themselves must be coupled back to the force and moment equations. Although this makes the
equations more complex, it is still possible to combine these equations in a non-linear state space
system:

ẋ = f (x,Ftot(t),Mtot(t)) (3.6)

with:

Ftot = g1 (x(t),u(t),v(t), t)
Mtot = g2 (x(t),u(t),v(t), t)

This set of equations is equivalent to the single non-linear state equation:

ẋ = f (x(t),u(t),v(t), t) (3.7)

with state vector x, input vector u, disturbance vector v, and time t. From equations (3.4)
and (3.5) it is obvious that the state vector x at least must contain the linear and angular
velocity components from the vectors V and Ω. Later it will be shown that six additional state
variables, defining the attitude and position of the aircraft with respect to the Earth, have to
be introduced for solving these equations. It is possible that the forces and/or moments do not
only depend on the state vector x but also of its time-derivative ẋ. This makes equation (3.7)
implicit:

ẋ = f(x(t), ẋ(t),u(t),v(t), t) (3.8)

Luckily, this implicit relation often can be written like:

ẋ = f1(x(t),u(t),v(t), t) + f2(ẋ(t), t) (3.9)

which makes it somewhat easier to solve numerically, especially if f2 is a linear function. The
practical consequences of this will be outlined for the dynamic model of the ‘Beaver’ in sec-
tion 3.2.3.

The state vector x obviously contains linear and angular velocity components, i.e. the elements
from V and Ω. In addition to these variables, information about the spatial orientation of the
aircraft is needed for finding the gravitational force contributions. Furthermore, the altitude
of the aircraft is needed for the computation of aerodynamic and engine forces which are both
affected by changes in air density that depend upon the altitude of the aircraft. The coordinates
of the aircraft with respect to the Earth are not needed for solving the equations of motion,
but they are useful for other purposes, such as the assessment of the flight-path for certain
manoeuvres. Therefore, the complete state vector x will consist of twelve elements: three linear
velocities, three angular velocities, three Euler angles which define the attitude of the aircraft
relatively to the Earth, two coordinates and the altitude which define the position of the aircraft,
relatively to the Earth. In practice, it turns out to be more convenient to use the true airspeed,
angle of attack, and sideslip angle instead of the linear velocity components along the body-axes
of the aircraft, yielding the following state vector:

x = [ V α β p q r ψ θ ϕ xe ye H ]T (3.10)
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Appendix B contains a full derivation of the equations of motion, including the kinematic rela-
tions which define the attitude and position of the aircraft and the conversion equations from
the body-axes velocities to the true airspeed V , angle of attack α, and sideslip angle β. Fig-
ure 3.2 gives a graphical overview of the non-linear rigid body dynamics. Together, all elements
from this figure represent the non-linear state-space system from equation (3.6). The state
variables are obtained by integrating their time-derivatives with respect to time, taking into
account the initial value of the state vector, x0. In order to obtain the time-derivatives of the
state variables the state variables are coupled back to the force and moment equations and the
equations of motion themselves. All forces and moments must be expressed in components along
the body-axes of the vehicle (denoted by the superscript B). Forces and moments which are
expressed with respect to other reference frames must be transformed to body-axes components
by pre-multiplying the force and moment vectors with the appropriate transformation matrix.
In the figure, this is illustrated for the aerodynamic forces and moments, which are transferred
from flight-path axes (superscript W ) to body-axes, and for the gravitational forces, which are
transferred from Earth axes (superscript E ) to body-axes. Figure 3.2 forms the basis for the
development of the modular structure of the rigid body equations for the FDC 1.2 toolbox.

3.2.2 External forces and moments

The next step in the development of the dynamic model is to identify the different contributions
to the external forces and moments acting upon the rigid body. Obviously these contributions
are dependent of the kind of vehicle under consideration. Here, forces and moments due to grav-
itational, propulsive, and aerodynamic effects, plus the influence of non-steady atmosphere will
be considered. This comprises an in-flight model of a conventional aircraft. Other contributions
can easily be included to the model, e.g. ground forces during taxiing, or a ground-effect model
for aircraft that fly close to the ground.

Aerodynamic Forces & Moments

The aerodynamic forces and moments depend upon the flight condition, defined by the state
vector x, and the external aerodynamic control inputs, defined by the input vector uaero. These
inputs are the deflections of the aerodynamic control surfaces (elevator, ailerons, rudder) and the
deflection of the flaps. For the DHC-2 ‘Beaver’ aircraft, a sophisticated aerodynamic model has
been determined from flight tests in 1988, see ref.[26]. This model expresses the aerodynamic
forces and moments along the aircraft’s body-axes in terms of polynomial functions of the state
and input variables and the time-derivative of the state vector:

Faero = d · p1 (x, ẋ,uaero) (3.11)

where Faero is a vector of aerodynamic forces and moments, and p1 is a polynomial vector-
function that yields non-dimensional force and moment coefficients. For the ‘Beaver’ model, the
ẋ-term is linear and only takes into account the direct contribution of β̇ to the aerodynamic side-
force Ya. The pre-multiplication with the vector d converts these non-dimensional coefficients
to dimensional forces and moments; d equals:

d = qdynS
[

1 1 1 b
2 c b

2

]T
(3.12)

S is the wing-area of the aircraft, b is the wing-span, c is the mean aerodynamic chord, and qdyn
is the dynamic pressure (qdyn = 1

2ρV
2, see section 3.2.4).

The polynomial functions from p1, describing the aerodynamic force and moment coefficients in
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the body-fixed reference frame are:

CXa = CX0 + CXαα+ CX
α2α

2 + CX
α3α

3 + CXq

qc

V
+ CXδr

δr + CXδf
δf + CXαδf

αδf

CYa = CY0 + CYββ + CYp
p b

2V
+ CYr

rb

2V
+ CYδa δa + CYδr δr + CYδrαδrα+ CY

β̇

β̇b

2V

CZa = CZ0 + CZαα+ CZ
α3α

3 + CZq
qc

V
+ CZδe δe + CZ

δeβ2 δeβ
2 + CZδf δf + CZαδf αδf

Cla = Cl0 + Clββ + Clp
p b

2V
+ Clr

rb

2V
+ Clδa δa + Clδr δr + Clδaαδaα

Cma = Cm0 + Cmαα+ Cm
α2α

2 + Cmq

qc

V
+ Cmδe

δe + Cm
β2β

2 + Cmr

rb

2V
+ Cmδf

δf

Cna = Cn0 + Cnββ + Cnp
p b

2V
+ Cnr

rb

2V
+ Cnδa δa + Cnδr δr + Cnq

qc

V
+ Cn

β3β
3 (3.13)

See table C.3 in appendix C for the values of the stability and control coefficients from these
polynomial equations. Notice the cross-coupling between lateral motions and longitudinal forces
and moments. Also notice the contribution of β̇ to the aerodynamic side-force Ya, which explains
the occurrence of ẋ in the general polynomial equation (3.11). Due to this phenomenon the state
equation (3.6) becomes implicit. In general such relationships are linear, as is illustrated here
for the ‘Beaver’ model. This makes it easy to re-write the state equations as a set of explicit
ODE’s, as outlined for the DHC-2 ‘Beaver’ aircraft in section 3.2.3. Table C.2 in appendix C
gives the flight-condition for which the aerodynamic model has been determined. Corrections
to the body-axes moments are necessary if a different position of the center of gravity is used,
see ref.[26].

Engine Forces & Moments

The engine forces and moments strongly depend upon the type of aircraft under consideration,
in a similar way as the aerodynamic forces and moments. For a piston-engined aircraft like the
‘Beaver’, the primary engine control inputs are the engine speed n, and the manifold pressure
pz, which directly affect the engine power P . The engine power also varies with altitude due to
changes in air-density. In the case of the ‘Beaver’ aircraft, changes in engine power and airspeed
are expressed in terms of variations of the non-dimensional pressure increase in the propeller
slipstream dpt:

dpt =
∆pt
1
2ρV

2
= C1 + C2

(

P
1
2ρV

3

)

(3.14)

with P
1
2
ρV 3 measured in [kW kg−1 s3] and: C1 = 0.08696, C2 = 191.18, see ref.[26]. The engine

power in [Nms−1] can be calculated with the following expression:

P = 0.7355

{

−326.5 +
(

0.00412 (pz + 7.4)(n+ 2010) + (408.0− 0.0965n)
(

1.0− ρ

ρ0

))}

(3.15)

where:

pz = manifold pressure [′′Hg ],
n = engine speed [RPM ],
ρ = air-density [kgm−3],
ρ0 = air-density at sea level = 1.225 [kgm−3].

The engine forces and moments, which include propeller slipstream effects, are written as poly-
nomial functions of x and dpt in a similar way as the aerodynamic model, see ref.[26]:

Fprop = d · p2 (x, dpt) (3.16)
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where the subscript prop denotes propulsive effects. The vector function p2 contains the poly-
nomials for the non-dimensional propulsive force and moment coefficients; the actual forces and
moments are again obtained by pre-multiplication with the vector d, see equation (3.12). The
polynomial functions gathered in p2, which describe the propulsive force and moment coefficients
in the body-fixed reference frame are:

CXp = CXdpt
dpt + CX

αdpt2
α dpt2

CYp = 0

CZp = CZdpt
dpt

Clp = Cl
α2dpt

α2dpt

Cmp = Cmdpt
dpt

Cnp = Cn
dpt3

dpt3 (3.17)

See table C.4 in appendix C for the values of the stability and control coefficients from these
polynomial equations.

Gravity forces

The gravity force components along the aircraft’s body axes equal:

Fgrav =






Xgr

Ygr
Zgr




 =W ·






− sin θ
cos θ sinϕ
cos θ cosϕ




 (3.18)

where W is the aircraft weight, θ is the pitch angle, and ϕ is the roll angle of the vehicle.
Obviously, the attitude of the vehicle with respect to the Earth must be known. The attitude is
defined by three rotations from the Earth-fixed reference frame FE to the body-fixed reference
frame FB.

1 Equation (3.18) reflects the result of the pre-multiplication of the gravity force
equation in Earth-axes with the rotation matrix TV→B.

Forces and moments due to non-steady atmosphere

In section B.3 of appendix B it is shown that it is necessary to make corrections to the external
force components along the aircraft’s body-axes if the aircraft is flying through non-steady
atmosphere. These corrections are equal to:

Fwind =






Xw

Yw
Zw




 = −m ·






u̇w + qww − rvw
v̇w − pww + ruw
ẇw + pvw − quw




 (3.19)

See appendix B for more details.

3.2.3 Converting implicit state equations to explicit equations

As explained in section 3.2.1, it is possible that the external forces and moments depend upon
time-derivatives of state variables, which makes the general state equations implicit, see equa-
tion (3.8). An example of this is the dependency of the aerodynamic sideforce upon the time-
derivative of the sideslip angle for the ‘Beaver’ model, shown earlier in the relation:

CYa = CY0 + CYββ + CYp
p b

2V
+ CYr

rb

2V
+ CYδa δa + CYδr δr + CYδrαδrα+ CY

β̇

β̇b

2V
(3.20)

1Strictly speaking, these rotations were from the vehicle-carried vertical reference frame FV to the body-fixed
reference frame FB . See section A.7.2 for details.
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Notice the last term in this equation! The ODE for the sideslip angle, which is derived in
appendix B, is equal to:

β̇ =
1

V m
(−Fx cosα sinβ + Fy cosβ − Fz sinα sinβ) + p sinα− r cosα (3.21)

in which the aerodynamic contribution to the force component Fy is equal to Ya =
1
2ρV

2S CYa .

Due to this relation, the time-derivative β̇ appears on both sides of equation (3.21). In theory
it is possible to solve this equation numerically but that is not recommended since this would
reduce the speed of the computations due to the fact that this yields a so-called algebraic loop
in the simulation model (see section 4.2.7). In this case, it is easy to convert the β̇-equation to

an explicit equation. First of all, the contribution of β̇ to the side-force Fy can be written as a
separate term:

β̇ =
1

V m

(

−Fx cosα sinβ + Fy∗ cosβ − Fz sinα sinβ + 1
2
ρV 2S CY

β̇

β̇b
2V
cos β

)

+ p sinα− r cosα
(3.22)

where Fy
∗ is the side-force without the contribution of β̇. The β̇-term on the right hand side of

this equation can easily be moved to the left-hand side:

β̇∗ ≡ β̇

(

1− ρSb

4m
CYβ̇ cosβ

)

=
1

V m
(−Fx cosα sinβ + Fy∗ cosβ − Fz sinα sinβ) + p sinα− r cosα

(3.23)

Based upon this equation the following calculation sequence can be used in the simulation model:

1. first compute the external forces and moments as usual, except for the β̇-contribution to
the aerodynamic side-force,

2. substitute the thus obtained forces and moments into the general β̇ equation, yielding a
value β̇∗ instead of β̇,

3. compute the true value of β̇ with the expression β̇ = β̇∗
(

1− ρSb
4mCYβ̇

)−1
.

The last step can be regarded as a correction factor for the originally computed value of β̇,
which was denoted here as β̇∗. This correction term is aircraft-dependent because it contains
the term CY

β̇
, but the equation for β̇∗ does not depend upon the aircraft under consideration.

This separation in aircraft-dependent and aircraft-independent terms is desirable to obtain a
standardization of the aircraft models.

3.2.4 Atmosphere and airdata variables

In order to compute the aerodynamic and engine forces and moments from their non-dimensional
counterparts the dynamic pressure needs to be known. For most aircraft it is necessary to
take into account compressibility effects, which requires knowledge of the Mach number, and
sometimes it may be necessary to take into account scale-effects which require knowledge of the
Reynolds number. Other so-called airdata variables and airdata-related variables are needed
to compare simulations with measurements in real flight or windtunnel experiments. For this
reason, a number of airdata equations have been included in the aircraft model. The airdata
variables depend upon atmospheric properties such as the air pressure, density, and temperature.
Here we use the ICAO Standard Atmosphere model (see for instance ref.[23]) to determine these
properties. According to this model, the air temperature T decreases linearly with increasing
altitude in the troposphere (i.e. at altitudes from zero to 11,000 meters above sea level):

T = T0 + λh (3.24)
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where:

T = air temperature, [K ],
h = altitude above sea level, [m],
T0 = air temperature at sea level, [K ],
λ = temperature gradient in troposphere = −0.0065 Km−1.

The air pressure depends upon the altitude according to the basic hydrostatic equation:

dps = −ρ g dh (3.25)

We assume that the ideal gas law can be applied to the air in the atmosphere:

ps
ρ

=
Ra
Ma

T (3.26)

Combining these equations and neglecting the altitude-dependency of the gravitational acceler-
ation g yields:

dps
ps

= −Ma g0
RaT

dh (3.27)

where:

ps = air pressure, [Nm−2],
g0 = gravitational acceleration at sea level = 9.80665 ms−2,
Ma = molecular weight of the air, [kg kmol−1],
Ra = molar gas constant = 8314.32 JK−1kmol−1.

The static air pressure ps is found after integrating equation (3.27), which yields:

ln

(
ps
p0

)

= − g

λR
ln

(
T0 + λh

T0

)

(3.28)

This equation can be written as:

ps
p0

=

(

1 +
λh

T0

)− g
λR

=

(
T0
T

) g
λR

(3.29)

where:

p0 = air pressure at sea level = 101325 Nm−2,
R = specific gas constant = Ra/M0 = 287.05 JK−1kg−1, with:

M0 = 28.9644 kg kmol−1 = molecular weight of the air at sea level.

The gravitational acceleration g was held constant during this integration. This actually means
that the geometrical altitude h in this equation must be replaced by the geopotential altitudeH.1

In this report the slight distinction between h and H will be neglected, in view of the relatively
low altitudes considered. But from now on the symbol H will be used to denote the altitude (just
a little reminder of this small inaccuracy). Contrary to the pressure equation (3.29), where the
acceleration g was assumed to be equal to g0 for all altitudes, the model does take into account
changes in g with altitude for the computation of the aircraft’s weight. The actual gravitational
acceleration is then computed with the following equation:

g = g0

(
REarth

REarth + h

)2

(3.30)

where:

REarth = radius of the Earth = 6371020 m

1

The geopotential altitude H is defined as: H ≡

∫ h

0

g

g0
dh
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The air-density ρ (in [kgm−3]) is calculated from ps and T by means of the ideal gas law (3.26),
which yields:

ρ =
psMa

RaT
=

ps
RT

(3.31)

The aerodynamic and propulsive forces and moments that act upon the aircraft are functions
of the dynamic pressure qdyn, which takes into account changes in airspeed and changes in
air-density:

qdyn = 1
2ρV

2 (3.32)

For aircraft which fly at higher airspeeds than the ‘Beaver’ it is necessary to take into account
the compressibility of the air, for which the Mach number M is needed. M is defined as:

M =
V

a
(3.33)

where a is the speed of sound (in [ms−1]):

a =
√

γRT (3.34)

For the ‘Beaver’ aircraft it is not necessary to take into account these compressibility effects,
though it is still quite useful to know the value ofM . For instance, if one wants to compare flight-
test results with the simulations it is useful to compute the Mach-dependent impact pressure qc
and total temperature Tt since those quantities can be measured in flight. The impact pressure
is equal to:

qc = ps

{(

1 +
γ − 1

2
M2

) γ
γ−1

− 1

}

(3.35)

where γ = 1.4 = ratio of the specific heats of air with constant pressure and air with constant
volume, respectively. The total temperature Tt is equal to:

Tt = T

(

1 +
γ − 1

2
M2

)

(3.36)

Other important variables are the calibrated and equivalent airspeeds Vc and Ve, which are
computed with the equations:

Vc =

√
√
√
√

2γ

γ − 1

p0
ρ0

{(

1 +
qc
p0

) γ
γ−1

− 1

}

(3.37)

Ve = V

√
ρ

ρ0
=

√

2qdyn
ρ0

(3.38)

Sometimes it is necessary to take into account scale effects, e.g. if the aerodynamic model is
determined by windtunnel measurements on a scale model. In that case, the Reynolds number
needs to be known. Often this is computed with respect to the mean aerodynamic chord c,
which yields the non-dimensional value:

Rc =
ρV c

µ
(3.39)

The Reynolds number per unit length (in [m−1]) is equal to:

Re =
ρV

µ
(3.40)

In equations (3.39) and (3.40), µ is the coefficient of the dynamic viscosity, which can be calcu-
lated with the equation of Sutherland:

µ =
1.458 · 10−6 T 3

2

T + 110.4
(3.41)



3.2. THE NON-LINEAR AIRCRAFT MODEL 27

Summarizing: If we want to solve the equations of motion for the ‘Beaver’ aircraft, the variables
p, T , ρ, and qdyn must be calculated. All other airdata (-related) variables are useful for many
analytical purposes and some of them are needed for solving the equations of motion if, contrary
to the ‘Beaver’ model, compressibility or scale effects are taken into account.

3.2.5 Additional output variables

In the previous paragraph we have obtained a list of state variables, time-derivatives of the state
variables, forces and moments, atmospheric variables, and airdata variables. It is possible to
include a large number of additional output variables to this list. Here we will include additional
normalized kinematic accelerations, specific forces, body-axes velocity rates and some flight-path
(-related) variables. It is easy to enhance this list if required.

Kinematic accelerations and specific forces

It is possible to calculate a number of interesting accelerations and outputs from accelerometers,
which are often important in the aircraft control analysis and design (e.g. for achieving appro-
priate turn-coordination by means of a control-loop that uses the acceleration along the YB axis
as feedback signal, or for applications in the field of manoeuvre load limiting). The aircraft
model from the FDC-toolbox considers accelerations in the vehicle’s center of gravity only, but
equations for positions outside the center of gravity can easily be included if necessary. See for
instance ref.[9].

The body-axis acceleration vector a can be expressed as:

a = V̇ =
∂V

∂t
+Ω×V (3.42)

where Ω is the rotational velocity vector of the aircraft. Expanding equation (3.42) into its
components along the body-axes and substituting for u̇, v̇, and ẇ (see equation (3.45)) yields:

ax,k =
1

g0
(u̇+ qw − rv) =

Fx
W

ay,k =
1

g0
(v̇ + ru− pw) =

Fy
W

(3.43)

az,k =
1

g0
(ẇ + pv − qu) =

Fz
W

The accelerations are measured in units of g which explains the division by g0. W = mg is the
total weight of the aircraft, measured in [N ]. The index k is used to denote that these variables
represent kinematic accelerations in the body-fixed reference frame.

The outputs of accelerometers along the body-axes at the vehicle’s center of gravity – usu-
ally called specific forces – are equal to the kinematic body accelerations minus the gravity
terms:

Ax = ax,k + sin θ = (Fx −Xgr) /W
Ay = ay,k − cos θ sinϕ = (Fy − Ygr) /W
Az = az,k + cos θ cosϕ = (Fz − Zgr) /W

(3.44)

Ax, Ay, and Az are measured in units of g. These accelerations represent what is actually felt
in the aircraft’s center of gravity.
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Body-axes velocity rates

For educational purposes, it may be useful to take a closer look at the body-axes components
of the accelerations of the aircraft. The body-axes velocity rates u̇, v̇, and ẇ are equal to:

u̇ =
Fx
m
− qw + rv

v̇ =
Fy
m

+ pw − ru (3.45)

ẇ =
Fz
m
− pv + qu

Note that u̇, v̇, and ẇ differ from the kinematic accelerations from equation (3.42) in that they
do not contain the angular and translational velocity cross-product terms. (Also notice that
u̇, v̇, and ẇ have not been expressed in [g ].) The body-axes velocity components u, v, and w
are no state variables due to the fact that it was more convenient to use the true airspeed V ,
angle of attack α, and sideslip angle β instead; see section B.2 of appendix B. For this reason,
equations (3.45) have been implemented as additional output equations in the FDC models.

Flight-path variables

Some additional flight-path (-related) variables have been included to the aircraft model from
the FDC toolbox. First of all, the flight-path angle γ is computed, using the following expression:

γ = arcsin

(

Ḣ

V

)

(3.46)

This angle is for instance useful during approach simulations where it determines how much the
aircraft deviates from the standard glide-path. The acceleration in the direction of the velocity
vector V, measured in units of g, is called the flight-path acceleration fpa. It is equal to:

fpa =

√
u̇2 + v̇2 + ẇ2

g0
=
V̇

g0
(3.47)

Other flight-path related variables are the azimuth angle χ and the bank angle Φ, which are
obtained with the following equations:

χ = β + ψ (3.48)

Φ = ϕ · cos(θ − α0) (3.49)

with α0 the value of the angle of attack in a steady-state flight condition (ref.[23]). See also the
description of the flight-path or wind reference frame FW in appendix A, section A.7.2.

3.3 External atmospheric disturbances

3.3.1 Deterministic disturbances

The velocity and direction of the mean wind with respect to the ground usually is not constant
along the flight-path. This variation of the mean wind along the flight-path is called wind
shear.1 The influence of wind shear upon the motions of the aircraft is of particular importance
during the final approach and landing, and take-off and initial climb. An idealized profile of the
mean wind as a function of altitude is shown in figure 3.3. More extreme wind profiles in lower
atmosphere have been measured (see for instance ref.[1]) and have sometimes resulted in serious

1Some textbooks denote the local variations of the wind with respect to the ground including atmospheric
turbulence as wind shear. In this report the turbulence is considered separately.
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accidents. A very serious type of wind shear is encountered in so-called microbursts, where large
nose winds are followed by large tail winds in just a couple of seconds.

In this report we only use the ICAO standard atmosphere (see for instance ref.[23]) which
has a standard temperature lapse-rate λ = dT/dH = −0.0065 Km−1. For this lapse-rate a
typical idealized wind profile can be represented by the following expression (see ref.[1]):

Vw = Vw 9.15

H0.2545 − 0.4097

1.3470
(0 < h < 300m)

Vw = 2.86585Vw9.15 (h ≥ 300m)
(3.50)

Vw 9.15 is the wind speed at 9.15 m altitude. The wind profile in figure 3.3 is based upon a value
Vw 9.15 = 1 ms−1. Wind profiles which are typical for other values of the temperature lapse rate
are presented in ref.[1]. This model of the wind speeds in the boundary layer of the Earth is not
adequate for the more extreme wind-profiles that can occur in practice in the lower atmosphere.
Hence, actual measurements of extreme wind profiles may have to be used for the assessment
by simulations of Automatic Flight Control Systems.

The aircraft equations of motion – derived in appendix B – use wind velocities along the air-
craft’s body-axes to determine the influence upon the motions of the aircraft. If we assume that
the vertical wind velocity component ww is zero, we have the situation shown in figure 3.4. In
this figure, the wind direction with respect to the Earth-fixed reference frame is denoted by ψw
and the total wind velocity by Vw. Note that the wind direction is the direction from where the
wind is blowing, so ψw is zero if the wind is blowing from the North. The components along the
XB and YB-axes are now equal to:

uw = Vw cos(ψw − π) cosψ + Vw sin(ψw − π) sinψ
vw = −Vw cos(ψw − π) sinψ + Vw sin(ψw − π) cosψ (3.51)

where ψ is the heading of the aircraft and all angles have been measured in [rad ]. If we consider
atmospheric turbulence too it is necessary to add the turbulence velocity components to these
wind components.

3.3.2 Stochastic disturbances

The theory of stochastic processes provides a convenient means for describing atmospheric tur-
bulence accurately enough for most simulations, e.g. for the assessment of AFCS control laws.
Auto power density spectra form the basic elements of the turbulence model. In the literature,
several sets of these spectra can be found. They all require the selection of intensity levels and
scale lengths before they can be applied in simulations. The following six assumptions con-
cerning stochastic processes are usually made when they are applied to atmospheric turbulence
(ref.[1]):

1. Ergodicity, which means that time averages in the process are equal to corresponding
ensemble averages. This assumption makes it possible to determine all required statistical
properties related to a given set of atmospheric conditions from a single time history of
sufficient length.

2. Stationarity, which deals with temporal properties of turbulence. If the statistical prop-
erties of a process are not affected by a shift in the time origin, this process is called
stationary.

3. Homogeneity, which deals with spatial properties of turbulence. Turbulence may be called
homogeneous if its statistical properties are not affected by a spatial translation of the
reference frame.
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Figure 3.3: Wind profile for λ = −0.0065 [Km−1] and Vw 9.15 = 1 [ms−1]
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4. Isotropy, which means that the statistical properties are not changed by a rotation or a
deflection of the frame of reference. Complete isotropy implies homogeneity. Because of
isotropy, the three mean-square velocity components and their scale lengths are equal:

σu
2 = σv

2 = σw
2 ≡ σ2

Lu = Lv = Lw ≡ Lg
(3.52)

5. Taylor’s hypothesis of ‘frozen atmosphere’, which implies that gust velocities are functions
of the position in the atmosphere only. During the short time-interval in which the aircraft
is under the influence of the velocities at a certain point in the atmosphere, these velocities
are assumed not to change with time. This hypothesis allows spatial correlation functions
and frequencies to be related to correlation functions and frequencies in the time-domain.
The following relations are used:

∆x = V τ (3.53)

ω = ΩV (3.54)

∆x = distance between to points in space; [m]
V = true airspeed of the aircraft; [ms−1]
τ = time needed by the aircraft to cover the distance ∆x; [s]
Ω = spatial frequency; [rad m−1]
ω = temporal frequency; [rad s−1]

6. Normality, which means that the probability density function of each turbulence velocity
component is Gaussian. With this assumption, the information of the covariance matrix
only is sufficient for a total statistical description of atmospheric turbulence (ref.[21]).

Experimental data on atmospheric turbulence at low altitudes, i.e. in the boundary layer of the
Earth, do not satisfy all these assumptions (ref.[1]). At low altitudes the assumptions of homo-
geneity and isotropy are not very valid due to the proximity of the ground. Both assumptions
are affected by terrain roughness and the height above the ground. The assumption of station-
arity is satisfied only over the short periods of time during which the meteorological conditions
remain reasonably constant. Stationarity is also affected by the shape and roughness of the
ground surface below the aircraft. Taylor’s hypothesis seems to be valid as long as the aircraft’s
velocity is large relative to the encountered turbulence velocity. For this reason it is somewhat
doubtful that the hypothesis is fully valid when simulating the final approach and landing of
S/VTOL aircraft.1 Finally, measurements have provided evidence that atmospheric turbulence
is not perfectly Gaussian. The measured departures from a normal amplitude distribution are
small, but pilots seem to be quite sensitive to these effects. Actual atmospheric turbulence
possesses what is sometimes called a ‘patchy’ structure (ref.[1]).

In the models used for the FDC toolbox, assumptions 1 to 6 have all been maintained. These
turbulence may have to be enhanced in the future to assure a more accurate description of
actual atmospheric turbulence, particularly for the simulation of final approach and landing.
Of course it is also possible to insert measurements of actual turbulence as input signals to the
FDC models if a very high accuracy is required.

Power spectra of atmospheric turbulence

Several analytical power spectral density functions have been obtained from measured data. The
von Kármán spectral density functions seem to best fit the available theoretical and experimental

1STOL = short take-off and landing, VTOL = vertical take-off and landing. Aircraft from these categories
are able to fly with very low airspeeds.
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Figure 3.5: Von Kármán and Dryden spectra (A: longitudinal, B : lateral/vertical)

data on atmospheric turbulence, particularly at higher spatial frequencies (ref.[21]). The von
Kármán spectra for the three components of the turbulence velocity are:

Sugug(Ω) = 2σu
2Lu

1

(1 + (1.339LuΩ)2)
5
6

(3.55)

Svgvg(Ω) = σv
2Lv

1 + 8
3(1.339LvΩ)

2

(1 + (1.339LvΩ)2)
11
6

(3.56)

Swgwg(Ω) = σw
2Lw

1 + 8
3(1.339LwΩ)

2

(1 + (1.339LwΩ)2)
11
6

(3.57)

The cross spectral density functions are zero in isotropic turbulence at any point in space. Al-
though this approximation is not very valid at low altitudes, the cross covariances – and hence,
the cross power spectral densities – are usually neglected (ref.[14]). The von Kármán spectra
yield an asymptotic behavior of S(Ω) ∼ Ω−5/3 as Ω approaches infinity. See figure 3.5.

A major drawback of the von Kármán spectral densities is that they are not rational func-
tions of Ω. For this reason the following power spectral density model is often used for flight
simulation purposes:

Sugug(Ω) = 2σu
2Lu

1

1 + (ΩLu)2
(3.58)

Svgvg(Ω) = σv
2Lv

1 + 3(ΩLv)
2

(1 + (ΩLv)2)
2 (3.59)

Swgwg(Ω) = σw
2Lw

1 + 3(ΩLw)
2

(1 + (ΩLw)2)
2 (3.60)

These functions are the Dryden spectra. In figure 3.5 the Dryden spectra have been compared
with the von Kármán spectra. The most obvious difference is the asymptotic behavior at large
values of the spatial frequency, the former having a slope of − 5

3 and the latter a slope of −2.

Filter design for atmospheric turbulence

For simulation purposes it would be practical to model atmospheric turbulence as white noise
passing through a linear, rational ‘forming filter’, as shown in figure 3.6. The relationship
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Figure 3.6: Modeling atmospheric turbulence as filtered white noise

between the auto-spectral density of the output signal y and the auto-spectral density of the
input signal u of a linear filter can be written as:

Syy(ω) = |Hyu(ω)|2Suu(ω) (3.61)

where |Hyu(ω)| denotes the amplitude response of the filter. If the input signal u is white noise,
its spectral density satisfies:

Suu(ω) = 1 (3.62)

so for white noise, relation (3.61) simplifies to:

Syy(ω) = |Hyu(ω)|2 (3.63)

To apply these relations, the spatial spectral density functions of the turbulence velocities must
be transformed to functions of ω, which is possible because we assume Taylor’s hypothesis to be
valid. This transformation is given by:

S(ω) =
1

V
S

(

Ω =
ω

V

)

(3.64)

Notice the term 1/V that arises in the spectral density function. See ref.[21] for more details.

The Dryden spectra were developed to approximate the von Kármán turbulence spectra by
means of rational functions. This makes it possible to apply relation (3.64) for the generation
of turbulence velocity components from white noise inputs. From the definitions of the Dryden
spectra in equations (3.58) to (3.60) and relation (3.64) the following expressions are found:

|Hugw1(ω)|2 = 2σu
2Lu
V

1

1 +
(
Lu

ω
V

)2 (3.65)

|Hvgw2(ω)|2 = σv
2Lv
V

1 + 3
(
Lv

ω
V

)2

1 +
(
Lv

ω
V

)2 (3.66)

|Hwgw3(ω)|2 = σw
2Lw
V

1 + 3
(
Lw

ω
V

)2

1 +
(
Lw

ω
V

)2 (3.67)

Solving equations (3.65) to (3.67) yields the following candidate functions for the frequency
responses of the forming filters:

Hugw1(ω) = σu

√

2Lu
V

1

1± Lu
V jω

(3.68)

Hvgw2(ω) = σv

√

Lv
V

1±
√
3 Lv
V jω

(

1± Lv
V jω

)2 (3.69)
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Hwgw3(ω) = σw

√

Lw
V

1±
√
3 Lw
V jω

(

1± Lw
V jω

)2 (3.70)

In these equations w1, w2, and w3 are independent white noise signals. Choosing the minus
sign in the denominators would lead to unstable filters and hence should be rejected for physical
reasons. Choosing the minus sign in the numerators leads to non-minimum phase systems
(ref.[21]). Therefore we shall use positive signs in both the numerator and denominator.

It is easy to implement these filters in a simulation package like Simulink. If white noise
is approximated by a sequence of Gaussian distributed random numbers, it is then very easy
to obtain the required time-trajectories of the turbulence velocity components. These random
sequences should be completely independent, which may not be obvious if the simulation software
uses some initial starting value or ‘seed’ for its random-generator. It is possible to implement
better approximations of the von Kármán turbulence spectra by using a series of additional lead-
lag networks for adding differentiating and integrating terms to the basic first-order Dryden-
filters. A full derivation of these approximations can be found in ref.[1]. In the FDC toolbox
only linear filters for the Dryden spectra have been used.

3.4 Radio-navigation models

3.4.1 The Instrument Landing System

Nominal ILS signals

The Instrument Landing System (ILS) is the standard aid for non-visual approaches to landing,
in use throughout the world today. Under certain circumstances it can provide guidance data
of such integrity that fully coupled approaches and landings may be achieved. The system
comprises three distinct parts of on-ground equipment of which only the localizer and glideslope
signals will be considered in the FDC models:

1. the localizer transmitter, which gives guidance in the horizontal plane,

2. the glideslope (or glide-path) transmitter, which provides vertical guidance,

3. two or three marker beacons, situated on the approach line, which give an indication of
the distance from the approaching aircraft to the runway.

Figures 3.7 and 3.8 show the lay-out of the ILS ground equipment and the approach path.
The localizer signal is emitted by an antenna, situated beyond the up-wind end of the runway.
Operating at a frequency within the 108.0 to 112 MHz frequency band it radiates a signal
modulated by 90 and 150 Hz tones, in which the 90 Hz predominates to the left hand side of the
approach path and 150 Hz predominates to the right, as seen from an aircraft on final approach.
Figure 3.9 shows the required minimum coverage of the localizer signals according to ICAO
(ref.[2]).

The glideslope antenna is located some 300 meters beyond the runway threshold (approxi-
mately adjacent to the touch-down point) and at about 120 to 150m from the runway centerline.
The frequency of the glideslope signal lies within the 328.6 to 335.0 MHz band. The signal is
modulated by 90 and 150 MHz tones, in which the 90 Hz is predominant above the desired
glide-path and 150 Hz beneath the glide-path. Due to the position of the glideslope antenna,
the intersection of the localizer reference plane and the glideslope reference cone is actually a
hyperbola which is located a small distance above the idealized straight glide-path. This is shown
in figure 3.10. The minimum coverage of the glideslope signals, required by ICAO (ref.[2]), is
shown in figure 3.11.
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Figure 3.12: ILS performance categories

An ILS installation is said to belong to a certain performance category, representing the meteo-
rological conditions under which it is to be used. These conditions are summarized in figure 3.12.
An ILS installation of category I is intended to provide guidance down to an altitude of 200
ft, a category II installation provides guidance down to 100 ft, and an installation of category
III must provide guidance down to the runway surface. Only cat. III signals can be used for
fully automatic landings. If the aircraft is making an approach under cat. I conditions, the pilot
should either see the runway lights at an altitude of 200 ft or cancel the final approach and
go-around.1

The localizer and glideslope signals are received on board the aircraft. They are displayed
in an appropriate form to the pilot and may be fed directly to an automatic pilot as well. The
nominal ILS signals on board the aircraft are expressed in terms of the currents, supplied to the
pilot’s cockpit instrument. The magnitude of the localizer current iloc depends upon the angle
Γloc (measured in [rad ]) between the localizer reference plane and a vertical plane that passes
through the localizer antenna, as depicted in figure 3.14.

1The altitude at which the runway lights should be visible is called the decision height. Some airlines use larger
decision height values than figure 3.12.
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The localizer current is:

iloc = Sloc Γloc [µA] (3.71)

where Sloc is the sensitivity of the localizer system. According to ref.[2], Sloc has to satisfy the
following equation:

Sloc = 1.40xloc [µA rad−1] (3.72)

where xloc is the distance from the localizer antenna to the runway threshold (measured in [m]),
see figure 3.8.

For the simulation of ILS-approaches, a runway-fixed reference frame FF = OFXFYFZF will
be introduced. The XF -axis is directed along the runway centerline in the direction of take-off
and landing. ZF points downwards and YF points rightwards as seen from an aircraft on final
approach. At time t = 0 the position of the aircraft’s c.g. coincides with the origin of the Earth-
fixed reference frame, hence: xe = 0, ye = 0, and H = H0. The position of the origin OF of the
runway reference frame at t = 0 is given by the coordinates xRW and yRW , measured relatively
to the Earth-fixed reference frame, and the altitude of the runway above sea level, HRW . From
figures 3.13 and 3.14, the following transformations from the coordinates xe and ye referenced
to the Earth-fixed reference frame FE to the coordinates xf and yf referenced to FF can be
deduced:

xf = (xe − xRW ) cosψRW + (ye − yRW ) sinψRW (3.73)

yf = −(xe − xRW ) sinψRW + (ye − yRW ) cosψRW (3.74)

where ψRW is the heading of the runway, measured relatively to the North. The height of the
aircraft above aerodrome level, Hf , is equal to:

Hf = H −HRW (3.75)

H is the altitude of the aircraft above sea level. (Note: the reference frame F ′
E = O′

EX
′
EY

′
EZ

′
E

in figure 3.13 is an intermediate frame of reference, which has the same orientation as FE , but
an origin that has been moved to the projection point of OF on the horizontal plane at sea level.
Hence: x′e = xe − xRW and y′e = ye − yRW ; see also figure 3.14.)

As can be seen from figure 3.14, Γloc can be computed from the coordinates xf and yf as
follows:

Rloc =
√

yf 2 + (xloc − xf )2
dloc = yf

}

Γloc = arcsin

(
dloc
Rloc

)

(3.76)

Γloc and dloc are positive if the aircraft flies at the right hand side of the localizer reference plane
heading towards the runway. The locations which provide a constant glideslope current lie on
a cone, as shown in figures 3.10 and 3.15. The nominal glide path has an elevation angle γgs
which normally has a value between −2◦ and −4◦. Obviously γgs is negative since the aircraft
descents along the glide path. The magnitude of the glideslope current is proportional to the
glideslope error angle εgs [rad ] (see figure 3.15):

igs = Sgs εgs [µA] (3.77)

where Sgs is the sensitivity of the glideslope system, which according to ref.[2] equals:

Sgs =
625

|γgs|
[µA rad−1] (3.78)
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From figure 3.15 it can be seen that the error angle εgs can be computed from the coordinates
xf and yf and the height above the runway, Hf , with the following expressions:

Rgs =
√

(xgs − xf )2 + (yf − ygs)2 (3.79)

εgs = γgs + arctan

(

Hf

Rgs

)

(3.80)

The distance from the aircraft to the nominal glideslope is:

dgs = (Rgs tan γgs +Hf ) cos γgs (3.81)

In these expressions εgs and dgs are positive if the aircraft flies above the glideslope reference
line. Notice that γgs is always negative! In order to check if the aircraft flies in the area where
the glideslope signals can be received (figure 3.11), the angle Γgs is calculated too. Due to the
position of the glideslope antenna this angle is not exactly equal to Γloc, although the differences
are small. Computing Γgs is straightforward:

Γgs = arcsin

(

yf − ygs
Rgs

)

(3.82)

Steady-state ILS offset errors

ICAO has established limits for ILS steady-state offset errors introduced by the ground equip-
ment, see ref.[2]. These limits are of course most stringent for cat. III approaches. Tables 3.1
and 3.2 give these limits for localizer and glideslope transmitters, respectively. The nominal
glide path must pass over the runway threshold at an altitude of 15 ± 3 m. The maximum
values of the localizer current iloc and the glideslope current igs are limited to ±150 µA, hence
±150 µA represents a full-scale deflection on the cockpit instrument (ref.[2]).



3.4. RADIO-NAVIGATION MODELS 41

Performance category
of ILS system

Maximum deviation from
nominal localizer sensitivity [%]

Maximum deviation of localizer
runway reference plane from

centerline at runway threshold [m]

I ± 17 ± 10.5

II ± 17 ± 7.5

(± 10 where practicable) (± 4.5 for new installations)

III ± 10 ± 3

Table 3.1: Maximum permissible localizer steady-state errors

Performance category
of ILS system

Maximum deviation from
nominal glideslope sensitivity [%]

Maximum deviation of nominal
glideslope elevation angle

I ± 25 ± 0.075 γgs

II ± 20 ± 0.075 γgs

III ± 10 ± 0.04 γgs

Table 3.2: Maximum permissible glideslope steady-state errors

ILS noise characteristics

Due to interference effects caused by buildings, high voltage cables, etc., the actual ILS signals
become distorted in the spatial and time domains. To an approaching aircraft, these distortions
appear as noise in the time-domain, superimposed on the nominal ILS signals. Based on available
experimental data, localizer and glideslope noise may be approximated by stochastic signals
which have rather simple power spectral density functions.

Refs.[1] and [14] present power spectra for ILS noise, which are expressed in the same
general form as the Dryden model for longitudinal atmospheric turbulence, see equation (3.58).
The power spectral density function for localizer noise can be approximated by:1

Sloc(Ω) = 2σloc
2Lloc

1

1 + (ΩLloc)2

[

µA2rad−1m
]

(3.83)

where:

σloc = standard deviation of the localizer noise,
Lloc = ‘scale’ of the localizer noise, approximately 130 m
Ω = spatial frequency [radm−1]

1Note: the expressions for ILS noise and atmospheric turbulence given in refs.[1] and [14] have an ad-
ditional term π in the denominator. The Dryden spectra from ref.[21] do not contain this term, due to a
slightly different definition of the Fourier transform. In this report, the definition of the Dryden filters from
ref.[21] has been used, and due to the similarity of the expressions for ILS noise the term π will be omitted here too.

The definitions of the Fourier transform and the inverse Fourier transform used in ref.[21] are:

X(ω) = F{x(t)} =

∫
∞

−∞

x(t)e−jωt dt; x(t) = F
−1{X(ω)} =

1

2π

∫
∞

−∞

X(ω)ejωt dω
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The power spectral density of the glide path noise appears to be similar to the localizer noise
and may be approximated by:

Sgs(Ω) = 2σgs
2Lgs

1

1 + (ΩLgs)2

[

µA2rad−1m
]

(3.84)

where:

σgs = standard deviation of the glideslope noise,
Lgs = ‘scale’ of the glideslope noise, approximately 85 m
Ω = spatial frequency [radm−1]

For atmospheric turbulence it is often assumed that the turbulence velocities are functions only
of the position in the atmosphere (the frozen field concept or Taylor’s hypothesis). This assump-
tion can be made because aircraft usually fly at large speeds compared to turbulence velocities.
Using Taylor’s hypothesis for the ILS noise will probably induce errors, especially for aircraft
with very low final approach speeds such as the ‘Beaver’. Still, this expression makes it possible
to convert the spatial power spectral density functions to temporal expressions in ω, which can
be used for practical simulations. One should remember that the power spectral density func-
tions are in any case approximations of the actual ILS noise, so if a really accurate representation
of ILS noise is required for simulations (e.g. for assessing automatic cat. III landing systems)
an actual calibration of the localizer and glideslope signals for the site in question should be used.

With Taylor’s hypothesis it is possible to substitute ω = ΩV . Then the ILS noise can be
modeled as a white-noise signal which is sent through a linear forming filter in the same way as
the derivations for atmospheric turbulence shown in figure 3.6. The resulting filters are:

Hloc(ω) = σloc

√

2Lloc
V

1

1 + Lloc
V jω

(3.85)

Hgs(ω) = σgs

√

2Lgs
V

1

1 +
Lgs
V jω

(3.86)

Alternative shapes of the power spectral density functions for localizer and glideslope noise are
given in ref.[17]. These expressions were based upon average power spectral density plots of
beam noise at several airports:

Sloc = |Hloc(ω)|2 =
25 (1.5 + jω)2

(0.35 + jω)2(10 + jω)2

[

µA2rad−1s
]

(3.87)

Sgs = |Hgs(ω)|2 =
15.9

(0.25 + jω)2

[

µA2rad−1s
]

(3.88)

The filters for these spectral density functions are:

Hloc(ω) = ± 5 (1.5 + jω)

(0.35 + jω)(10 + jω)
(3.89)

Hgs(ω) = ± 3.9875

0.25 + jω
(3.90)

Both ILS noise models have been implemented in the FDC toolbox. The maximum allowable
values of the standard deviations of localizer and glideslope noise, according to ICAO standards
(ref.[2]) are given in figure 3.16.

In addition to the ILS noise and steady-state errors, specific deterministic interference
patterns may occur due to signal reflections from aircraft in the vicinity of the glideslope and/or
localizer transmitters. These disturbances may be quite severe and should be taken into account
for the evaluation of automatic landing systems. It is possible to construct relatively simple
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Figure 3.16: Maximum allowable ILS localizer and glideslope noise

models of these interference effects, but the FDC toolbox does not contain these models yet.
See ref.[1] for more details.

3.4.2 The VOR navigation system

Nominal VOR signals

The Very high frequency Omnidirectional Radio range (VOR) system is a standard short-range
radio-navigation aid. The system uses the 108-118 MHz frequency range. The VOR ground
station radiates a cardioid pattern that rotates 30 times per second, thus generating a 30 Hz
sine wave at the output of the airborne VOR receiver. The ground station also radiates an
omnidirectional signal which is modulated with a 30 Hz reference tone. The phase difference
between the two 30 Hz tones is a function of the bearing of the aircraft, relatively to the VOR
ground station. A position fix can be obtained by using two or more VOR’s or a combination
of VOR and DME information.1 See refs.[3], [4], or [18].

Figure 3.17 shows the geometry of the VOR system. Simple general-aviation VOR systems
make it possible for the pilot to fly along a VOR radial, which must be selected by means of
the ‘Omni Bearing Selector’ (OBS). This reference bearing is called ‘Course Datum’ (CD). The
bearing where the aircraft is actually flying is denoted by QDR (a term used in radio telephony).
The course deviation angle ΓVOR, which is equal to the angle between the reference bearing and
the actual bearing, is shown on the cockpit instrument. This information may also be used
by an automatic control system to automatically follow a VOR radial. Modern airliners and
business aircraft have more advanced Area Navigation systems which use information of multiple
VOR stations and of other navigation equipment to follow arbitrary routes between so-called
waypoints. In this report we will limit ourselves to the use of VOR systems for tracking VOR
radials.

1DME = Distance Measuring Equipment.
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In order to compute VOR signals for simulation purposes it is necessary to know the exact
positions of the VOR station and the aircraft with respect to the Earth-fixed reference frame.
If the position of the VOR ground station is given by (xVOR, yVOR, HVOR) and the position of
the aircraft by (xe, ye, H), the following equations can be used to compute ΓVOR:

QDR = arctan

(
ye − yVOR

xe − xVOR

)

(3.91)

ΓVOR = CD −QDR (3.92)

A typical value for a full-scale deflection of the cockpit instrument is ΓVOR = 10◦.

It is necessary to know whether the aircraft flies to or from the VOR transmitter. This informa-
tion is visualized in the cockpit by means of a To-From indicator. If |ψ − QDR| > 90◦ the To
indicator should be visible; if |ψ−QDR| < 90◦ the From indicator must be shown. In figure 3.17
the aircraft flies from the VOR transmitter, which is in accordance with these relations since
ψ −QDR ≈ 40◦ < 90◦.

VOR coverage and cone of silence

The ground distance RVOR can be used to determine whether the aircraft flies in an area where
the VOR signals can be received with appropriate reliability. This distance is equal to:

RVOR =
√

(xe − xVOR)2 + (ye − yVOR)2 (3.93)

If the aircraft flies in a certain area in the direct neighborhood of the VOR transmitter, the
signals are not accurate. This area is formed by a cone with a top-angle of approximately 80 to
120 degrees, the so-called Cone of Silence. This has been shown in figure 3.18. See also ref. [3].
The aircraft flies outside the cone of silence if:

ξ ≡ arctan

(
H −HVOR

RVOR

)

≤ 90◦ − (40◦ to 60◦) (3.94)

Table 3.3 gives the maximum coverage of the VOR signals as a function of the height above
ground level, according to ref.[4]. Based upon this table, the following approximative function
for the VOR coverage as a function of the altitude (in [m]!) was found with the Matlab function
POLYFIT:

Range = 1000
(

−2.3570 · 10−6(H −HVOR)
2 + 5.7087 · 10−2(H −HVOR) + 80.8612

)

(3.95)

Another often used rule-of-thumb for determining the VOR coverage (see ref.[3]) is:

Range = 1.2
(√

h+
√

hVOR

)

(3.96)

Range is measured in nautical miles, h is the height above the ground measured in [ft ] and hVOR

is the elevation of the VOR antenna above the ground measured in [ft ]. Usually the latter term is
neglected. For implementation in the FDC toolbox it will be necessary to convert this expression
to S.I. units and substitute h = H − HVOR. However, since the values from equations (3.95)
and (3.96) don’t differ much, only equation (3.95) has been implemented in the toolbox.

VOR steady-state errors

The nominal VOR signals become distorted by VOR noise and steady-state errors. There are
two types of systematic errors: ground station errors and airborne equipment errors. Each of
these errors comprises both the equipment and antenna errors and site or location errors.
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Height [ ft ] VOR range [ NM ]

1000 50

5000 92

20000 182

30000 220

3000 75

5000 95

Table 3.3: VOR coverage based on two different flight tests

ICAO has established the following rules (refs.[2] and [4]):

1. the error of the airborne equipment must be smaller than ±2◦ at a distance from the
antenna of four times the wavelength and at an elevation-angle of 0◦ to 40◦,

2. the maximum error for the ground station is ±3.5◦.
Ref.[4] presents some results of measurements of ground equipment errors. Typical measured
values are errors of ±1.4◦ to ±2.5◦. Besides the constant steady-state errors of the ground and
airborne equipment there are also random errors such as variations of supply voltage of the
ground and/or airborne equipment, temperature changes, inaccurate instrument reading, etc.
According to ref.[4] the following values for the overall VOR system error were obtained from
flight tests using commercial aircraft:

ε < ±1.7◦ (68% of the tests)
ε < ±3.4◦ (95% of the tests)
ε < ±5.1◦ (99.7% of the tests)

Since ref.[4] is already somewhat outdated, it can safely be assumed that modern VOR stations
and receivers are more accurate.
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3.5 Sensors, Actuators, Flight Control Computer

Depending upon the tasks of the control system and its hardware characteristics, other dynamic
submodels may be necessary to complete the block-diagram from figure 3.1. The control laws
use measured signals, which do not fully correspond with the ‘ideal’ outputs from the aircraft
model, due to the characteristics of the sensors that measure them. It may be necessary to add
noise components and/or steady-state errors, to take into account filter characteristics of the
sensors, to include time-delays, etc. Moreover, it may be necessary to take into account the
influence of computer processing upon the signals in case a digital Flight Control Computer is
used to determine the control surface deflections. In the example of the ‘Beaver’ autopilot, a
quantization effect in the altitude measurements was encountered due to a Least Significant Bit
that corresponded with 4 feet. And although a steady-state error of 4 feet would have been
quite acceptable for the Altitude Hold mode of our autopilot, the resulting discontinuities in the
altitude signal proved to yield unacceptable control characteristics (see ref.[22]) that required
additional filtering of the altitude signal. This example shows how important it can be to take
into account the differences between the ‘ideal’ outputs from the aircraft model and the measured
signals which enter the control laws in practice.

On the output side of the control laws, the ‘ideal’ control surface deflections are distorted
due to the characteristics of the cables and actuators and because of additional time-delays and
discretization effects due to the characteristics of the computer systems. Moreover, the range
of deflections of the actuators and the control surfaces is limited and the rate of change of
these deflections may be limited for reasons of constructional strength and stiffness. Since these
effects may have an adverse effect upon the behavior of the AFCS, it is necessary to analyze
their influence in non-linear simulations.

Apart from the radio-navigation models from the previous section, which in fact are just
sophisticated sensor models, the FDC 1.2 toolbox does not yet contain a complete library of
sensor models, actuator models, and computational effects. It does contain some simple ad-hoc
solutions for the assessment of the ‘Beaver’ autopilot, including simple linear second-order models
of the actuator dynamics and the elastic behavior of the cables between the actuators and the
control surfaces (for the ‘Beaver’ aircraft these cables were unusually long). The altitude signal
was artificially quantized to take into account the Least Significant Bit of 4 feet. Computational
delays can be taken into account by means of standard Time Delay blocks from Simulink. Future
versions of the toolbox should be equipped with standard libraries to provide ‘of the shelf’ sensor
and actuator models for general control system design purposes.
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Chapter 4

Analytical tools – theoretical
backgrounds

4.1 Introduction

This section describes the theoretical backgrounds of some important analytical tools from
Simulink and FDC 1.2. In section 4.2, the numerical integration methods from Simulink are
described. This section provides some general theoretical backgrounds on numerical integration
techniques, which may be useful for determining the most suitable integration method and the
kinds of errors to expect. This section can be regarded as a theoretical addition to the somewhat
limited treatment of the simulation tools in the Simulink user manual. In section 4.3 the trim-
routine from FDC 1.2 is treated. Contrary to the simulation and linearization tools, the trim-
routine does not use the built-in Simulink trim-functions, but a custom-made algorithm which
is especially suited for the determination of steady-state flight conditions. Section 4.3 provides
the theoretical basis for the treatment of the trim routines from section 8.2. Section 4.4 gives a
short theoretical description about the linearization tool from Simulink which is used by some
routines from FDC 1.2 to linearize the non-linear aircraft model in some user-specified operating
point.

4.2 Simulation tools

4.2.1 Introduction

FDC 1.2 makes use of the built-in simulation functions of Simulink for the determination of
aircraft responses to control inputs or external disturbances. These simulation functions are
fulfilled by six different numerical integration routines:

1 – EULER. This is a one-step integration method which simply multiplies the time-derivatives
of the state variables with the step-size. Since it requires much smaller step-sizes than the
other methods in order to achieve the same accuracy, this method is not recommended for
the majority of simulation problems. It will not be used for FDC simulations.

2 – LINSIM. This method divides the system in linear and non-linear subsystems. The linear
subsystems are discretized and then solved in a straightforward way, leaving only the non-
linear system dynamics to be solved numerically. This works best for systems which are
‘relatively linear’. For the highly non-linear Simulink models from the FDC toolbox this
method is not suited.
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3 – RK23. This is a third-order Runge-Kutta method which uses a second-order method for
step-size control. It is a general purpose method which works well for a large range of
simulation problems and for the simulation of systems with discontinuities. In theory this
makes it a suitable candidate for FDC simulations, although RK45 and ADAMS/GEAR turned
out to be faster in practice.

4 – RK45. This is a fifth-order Runge-Kutta method which uses a fourth-order method for
step-size control. The method is usually faster and more accurate than RK23 and it produces
fewer output points. For this reason it has been applied in practice for FDC simulations. If
the input signals are smooth, the ADAMS/GEAR methods may be more suitable than the
Runge-Kutta methods.

5 – ADAMS. This is a so-called predictor-corrector method which uses a variable number of
points for the generation of one output point. It works well for systems with smooth state-
trajectories and it can be used in combination with GEAR. This combination has been applied
for FDC simulations in cases where the state-trajectories were smooth, i.e. if the systems were
not affected by noisy disturbances or many discontinuous input signals.

6 – GEAR. This method is primarily designed for the simulation of systems with a mixture of
very fast and slow dynamics (so-called ‘stiff’ systems, see section 4.2.5). It has been applied
in combination with ADAMS for FDC simulations, where the autopilot systems in particular
exhibited such a mixture of fast and slow dynamics (namely the fast dynamics of the control
actuators and the slow dynamics of the phugoid and spiral modes of the aircraft). The
Runge-Kutta method RK45 was used for FDC simulations in cases where the input signals
to the aircraft model contained noisy disturbances or many discontinuities.

In the next sections, some theoretical aspects of these methods will be outlined. These sections
are largely based upon refs.[12], [13], and [25]. The actually used integration equations in Simu-
link are neither accessible to the users, nor described in detail in the Simulink user’s manual,
so it is not sure that the equations from the next sections are exactly equal to the relations
used by Simulink, but they do give a good general overview of the theoretical backgrounds of
numerical integration.

4.2.2 The type of problems considered

The numerical integration methods used in Simulink are designed to determine the time-
trajectories of continuous state variables of dynamical systems described by ordinary differential
equations (ODE’s):

ẋ(t) = f(x(t),u(t), t); x(t0) = x0 (4.1)

where x is the state vector, u is the input vector, f is some non-linear function, and x0 is the
initial value of the state vector at time t0. Since few differential equations can be solved exactly,
the solutions of these ODE’s must be approximated numerically. The numerical integration
methods have been developed for solving so-called initial value problems:

ẋ(t) = f(x(t), t); x(t0) = x0 (4.2)

This equation does not take into account the input vector u anymore, but the methods for
solving equation (4.2) are similar to the methods for dealing with equation (4.1). If the state
vector x has N elements, N constants of integration appear in the solution of equation (4.2).
A unique solution to this system can be obtained only if the initial values of the states are
specified. The techniques for solving the vector equation (4.2) are essentially the same as the
techniques used for solving scalar initial value problems given by the equation:

ẋ(t) = f (x(t), t) (4.3)
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The numerical integrators from Simulink generate a sequence of discrete points t0, t1, t2, . . . in
time, possibly with variable spacing hn = tn+1− tn (the step-size). At each point tn the solution
x(tn) is approximated by xn, which is computed from earlier values of x. If k earlier values xn,
xn−1, . . . , xn−k+1 are used for the computation of xn+1, the method is called a ‘k-step method’.
For instance, the Euler method (the integrator EULER in Simulink) is a single-step method:

xn+1 = xn + hn · f (xn, tn) (4.4)

4.2.3 Stability, errors, and order of a numerical integration method

Figure 4.1 shows a typical family of solutions of a first-order differential equation for different
initial values x0. Here, a wrong value of the initial condition yields an error which increases in
time, i.e. the differential equation is unstable. The figure demonstrates how the Euler approxi-
mation generally crosses from one solution to another between to time steps. For this unstable
differential equation, the resulting error increases in time. In figure 4.2 the solutions of the ODE
converge as time proceeds which means that this ODE is stable and numerical integration errors
do not increase with time. Non-linear differential equations may be unstable in some regions
and stable in others. For systems of ODE’s, the situation is even more complex. One should
always be aware of possible instabilities of dynamic systems when assessing numerical results.

There are two types of errors in numerical integration processes:

1. discretization errors

2. round-off errors

Discretization errors are a property of the numerical integration method, while round-off errors
occur due to the finite number of digits used in the calculations (hence they are a property of the
computer and the program that is used). In general, the total error decreases as the step-size
hn decreases, until a point where the round-off error becomes dominant. This is illustrated in
figure 4.3. Due to these errors it is possible that the numerical solution becomes unstable, even
if the ODE itself is stable. See for instance figure 4.4, which shows a system that is numerically
integrated with the Euler method with a too large step-size.

The order of a numerical integration method is defined in terms of the local discretization
error δn, obtained when the method is applied to problems with smooth solutions. A method is
of order p if a number C exists so that:

|δn| ≤ Chn
p+1 (4.5)

C may depend on the derivatives of the function which defines the differential equation and on
the length of the interval over which the solution is sought, but it should be independent of the
step number n and the step-size hn.

4.2.4 Different categories of numerical integration methods

According to ref.[12], it is possible to distinguish between four general categories of step-by-step
methods which will briefly be discussed here. All results can easily be converted to vector nota-
tions for sets of Ordinary Differential Equations.
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1. Taylor series methods

A smooth solution x(t) of equation (4.3) can be approximated by a Taylor series expansion:

x(t+ hn) = x(t) + hnẋ(t) +
hn

2

2!
ẍ(t) + . . . (4.6)

Provided it is possible to determine higher-order time-derivatives of x, a numerical method of
order p can be obtained by using:

xn+1 = xn + hnẋn +
hn

2

2!
ẍn + . . . +

hn
p

p!

(
dpx

dtp

)

(4.7)

The first neglected term provides an estimate of the local discretization error. An example of a
Taylor series method is the Euler method (equation (4.4)), which neglects all time-derivatives of
order two and higher. Hence, the local discretization error of the Euler method is of order h2.

2. Runge-Kutta methods

Runge-Kutta methods approximate Taylor series methods without evaluating time-derivatives
beyond the first. The higher-order derivatives are replaced by a number of evaluations of the
function f . Modern Runge-Kutta algorithms typically include techniques for estimating the
discretization error in order to control the step-size. Runge-Kutta methods require only one
value xn in order to compute xn+1, which makes them self-starting. The reader is referred to
ref.[13] for a derivation of a second-order Runge-Kutta method which clearly demonstrates the
relations between the Taylor series and the Runge-Kutta approximation.

The fifth-order Runge-Kutta method, used by the integrator RK45 can be described by the
following formulas:

ki = hnf (xn +
i−1∑

j=1

βij ki, tn + αi hn); i = 1, . . . , 6 (4.8)

xn+1 = xn +
6∑

i=1

γi ki (4.9)

These equations contain 27 coefficients: 6 α’s, 15 β’s, and 6 γ’s. The β’s form a lower triangular
array, so that each ki is obtained from the previous k’s. By expanding all k’s in Taylor series,
substituting the expansions into the formula for xn+1, and comparing the result with the Taylor
series for the true local solution of the differential equation the coefficients can be determined.
This is elaborated in detail in ref.[13].

The combination of coefficients used in the fifth-order Runge-Kutta Fehlberg routine are
given in table 4.1, see refs.[12] and [13]. The table also contains a second set of coefficients
γi

∗ which together yield another method which is accurate to fourth order. This fourth-order
solution is therefore:

xn+1
∗ = xn +

6∑

i=1

γi
∗ki (4.10)

The difference δn between the fifth and fourth-order solutions, used for step-size control, is equal
to:

δn ≡ xn+1 − xn+1∗ =
6∑

i=1

(γi − γi∗) (4.11)
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αi βij γi γi
∗

0 16
135

25
216

1
4

1
4 0 0

3
8

3
32

9
32

6656
12825

1408
2565

12
13

1932
2197 −7200

2197
7296
2197

28561
56430

2197
4104

1 439
216 −8 3680

513 − 845
4104 − 9

50 −1
5

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40
2
55 0

Table 4.1: Fehlberg coefficients for integrator RK45

A vector equivalent of this scheme is used by the Matlab routine ODE45 (and probably also
by the Simulink integrator RK45). In this Matlab routine the acceptable error is calculated
with:

τn = tol ·max{|xn|, 1} (4.12)

or a vector equivalent of this equation, where tol is the desired accuracy. Knowing the acceptable
error τn and the error estimate δn, ODE45 updates the step-size as follows:

hn+1 = min

{

hmax , 0.8hn

(
τn
δn

) 1
5

}

with: hn+1 ≥ hmin (4.13)

Obviously the step-size is not updated if δn = 0. Similar expressions are applied for vector
equations. The integrator RK23 uses a similar scheme. This algorithm is probably equal to
the code from the Matlab routine ODE23 which updates the state variable with the following
expressions:

k1 = f (x, t) (4.14)

k2 = f (x+ hnk1, t+ hn)

k3 = f

(

x+
hn
4
(k1 + k2), t+

hn
2

)

xn+1 = xn +
hn
6
(k1 + 4k3 + k2)

where hn is updated in a similar manner as for the RK45 method.

3. Multistep methods

Contrary to Runge-Kutta and Taylor series methods, multistep methods use information at pre-
vious points to obtain a better accuracy. Multistep methods can be very effective. They usually
require less function evaluations than one-step methods of equal accuracy. Furthermore, an
estimate of the discretization error can often be trivially obtained (ref.[12]). All linear multistep
methods can be considered as special cases of the formula:

xn+1 =
k∑

i=1

αi xn+1−i + hn

k∑

i=0

βi fn+1−i (4.15)

where fi = f (xi, ti), k is an integer, and either αk or βk is not zero. This formula defines the
general k-step method. It is linear because every fi appears linearly in the equation; f itself
does not necessarily have to be a linear function in its arguments. After the method is ‘started’,
each step requires the calculation of xn+1 from the known values xn, xn−1, . . . , xn−k+1, fn,
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i : 1 2 3 4 5 6

β1i 1

2β2i 3 −1
12β3i 23 −16 5

24β4i 55 −59 37 −9
720β5i 1901 −2774 2616 −1274 251

1440β6i 4277 −7923 9982 −7298 2877 −475

Table 4.2: Coefficients of the Adams-Bashforth integration method

i : 1 2 3 4 5 6

β1i
∗ 1

2β2i
∗ 1 1

12β3i
∗ 5 8 −1

24β4i
∗ 9 19 −5 1

720β5i
∗ 251 646 −264 106 −19

1440β6i
∗ 475 1427 −798 482 −173 27

Table 4.3: Coefficients of the Adams-Moulton integration method

fn−1, . . . , fn−k+1. If β0 = 0 this method is explicit and the calculation is straightforward. If
β0 6= 0 the method is implicit because fn+1 = f (xn+1, tn+1) is then needed to solve for xn+1.

Usually a combination of two multistep methods is used for computing each step of the
solution: an explicit method, called predictor, followed by one or more applications of an im-
plicit method, which is called a corrector. The ADAMS method is a predictor-corrector multistep
method. It is not known exactly what integration scheme is used by Simulink, but the most im-
portant Adams methods found in literature are the explicit Adams-Bashforth integration method
and the implicit Adams-Moulton method. Probably these algorithms are used by Simulink too.
The k-step Adams-Bashforth formula can be written as:

xn+1 = xn + hn

k∑

i=1

βki fn+1−i (4.16)

Table 4.2 lists some values βki for this method. The k-step Adams-Moulton formula is equal to:

xn+1 = xn−1 + hn

k−1∑

i=0

βki
∗ fn+1−i (4.17)

Table 4.3 lists some values βki
∗ for this method. Often the Adams-Bashforth method is used as

predictor and Adams-Moulton as corrector.

4. Extrapolation methods

The predictor methods actually extrapolate the value xn+1 from known previous values of x and
the function evaluations f . There exist other types of extrapolation methods as well. These
methods will not be discussed here, since the Simulink integrators do not use them. See ref.[13]
for more information.
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k : 2 3 4 5 6

β0
2
3

6
11

12
25

60
137

60
147

α1
4
3

18
11

48
25

300
137

360
147

α2 −1
3 − 9

11 −36
25 −300

137 −450
147

α3
2
11

16
25

200
137

400
147

α4 − 3
25 − 75

137 −225
147

α5
12
137

72
147

α6 − 10
147

Table 4.4: Coefficients for stiffly stable integrator (GEAR)

4.2.5 Stiff differential equations

‘Stiffness’ of the differential equations can roughly be defined as the presence of one or more fast
decay processes in time, with a time constant that is short compared to the time-span of interest.
The time constant is defined as the time in which a solution to a differential equation decays
by a factor 1/e. In a physical system, different elements often have different time constants,
which means that some solutions to differential equations decay much faster than others. In such
cases the signals with fast dynamics will determine the stability of the integration method, even
though these components may have decayed to insignificant levels. Figure 4.4 shows a family of
solutions of a stiff system, which is integrated by an Euler method with a too large step-size.
Although this system is stable, the numerical solution diverges rapidly. The only way to solve
this problem is by reducing the step-size, but eventually round-off and discretization errors will
accumulate enough to result in another instability. The transient part of the solution, which
decays very fast, prevents an increase in step size, although the solution is very smooth after
only a few seconds.

Simulink contains two integrators which are particularly suited for solving stiff ODE’s:
GEAR and LINSIM. Of these integrators, LINSIM is only suited for ‘almost linear’ systems. GEAR
works well for systems with smooth, non-linear, stiff solutions. It uses a predictor-corrector
method which takes a variable number of steps between two output points. This method is
probably based upon the stiffly stable method from ref.[13], which can be written as:

xn =
k∑

i=1

αi xn−i + hn β0 fn (4.18)

The coefficients αi and β0 are listed in table 4.4. The method differs from the Adams method
in the way in which the implicit expression is solved. In Simulink it is possible to use a
combination of ADAMS and GEAR, where Simulink itself will decide which of the two methods
to use, depending upon the stiffness of the equation.

4.2.6 Obtaining state-models from transfer functions

In Simulink it is possible to define system dynamics by means of transfer functions, which
are converted to state equations by Simulink itself to make it possible to apply the numerical
integration routines. It is useful to know how this conversion may be achieved in order to know
more about the computation methods of Simulink, and also because it enables us to implement
transfer functions with non-constant coefficients within graphical Simulink systems. In the case
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of the FDC toolbox, this conversion scheme has been applied in practice for the implementation
of the Dryden turbulence filters which are defined by transfer functions with airspeed-dependent
coefficients.

Several possible transformations from transfer functions to linear state models can be
found in the literature, see for instance refs.[5], [7], or [25]. Only one method will be shown here.
Consider the following transfer function:

H(s) ≡ Y (s)

U(s)
=

bn−1s
n−1 + . . . F + b2s

2 + b1s+ b0
sn + an−1sn−1 + . . . + a2s2 + a1s+ a0

(4.19)

To transform this equation into a state model, it will first be rewritten and a help function V (s)
will be introduced:

V (s) ≡ Y (s)

bn−1sn−1 + . . . + b1s+ b0
=

U(s)

sn + an−1sn−1 + . . . + a1s+ a0
(4.20)

This yields the following equations:

Y (s) =
(

bn−1s
n−1 + . . . + b1s+ b0

)

V (s) (4.21)

snV (s) = U(s)− an−1sn−1V (s)− . . . − a1sV (s)− a0V (s) (4.22)

Equations (4.21) and (4.22) can be used to obtain a linear state model. Figure 4.5 shows the
expanded block-diagram equivalent of transfer function (4.19). The diagram is constructed with
first-order integrals (the 1/s blocks) and simple gain blocks. If we define the state vector for
this transfer function block as:

x = V (s)













1
s
s2

s3

...
sn−1













(4.23)

the following linear state equations are found:

ẋ = Ax+ bu

y = c · x (4.24)

with state matrices:

A =













0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1













; b =













0
0
0
...
0
1













; c = [ b0 b1 b2 . . . bn−1 ] (4.25)

For the implementation of the Dryden turbulence filters and for one filter in the Altitude Select
mode of the ‘Beaver’ autopilot simulation model, block-diagrams similar to figure 4.5 have been
used in practice. Note that transfer functions with constant coefficients can be implemented in
Simulink directly by means of built-in transfer-function blocks.

4.2.7 Algebraic loops

One difficulty that can arise during simulation of a continuous-time system on a digital computer
is the occurrence of algebraic loops. Consider a system in block-diagram representation. The
actual model is in fact a parallel system: all variables change simultaneously. But the calculation
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U(s) s  Vn s    Vn-1
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Figure 4.5: Block-diagram equivalent of transfer function

of responses of a parallel system on a digital computer system (with one microprocessor) can
only be done sequentially. This means that the simulation program must choose an order of
calculations. However, when feedback is applied, it is possible that no suitable sequence can be
found. This situation occurs when two or more blocks with direct feed-through of their inputs
form a feedback-loop. This is called an algebraic loop. For instance, consider the system in
figure 4.6, consisting of a gain A with negative unity feedback. If this system is analyzed with
an integrator with step width hn, it is possible to write:

en = un − yn−1
yn = Aen

where yn ≡ y(nhn) and yn−1 ≡ y((n − 1)hn−1) (n is an integer). Taking the Z-transform of
these equations yields:

Y (z)

U(z)
=

Az

z +A

which indicates that additional dynamics due to the sequential calculation of the parallel feed-
back system have been introduced (see figure 4.7).

When Simulink detects an algebraic loop it will use an iterative Newton-Rhapson method
to solve the resulting implicit problem (see the Simulink user’s manual and ref.[5]). First, a
new block ALB is added to the system which contains the implicit algebraic equations that
result due to the algebraic loop, see figure 4.8. This block has an input g(x) and an output x.
The block tries to find a value of x such that g(x) = x. This means that the following non-linear
equation has to be solved:

G(x) = g(x)− x = 0 (4.26)
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Figure 4.6: Gain with unity feedback: an algebraic loop
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Figure 4.7: Dynamics, introduced by an algebraic loop (gain with unity feedback)
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ALB

Algebraic
Equations

x g(x)

Figure 4.8: Iterative solution of an algebraic loop

This is done by applying the Newton-Rhapson method:

xi+1 = xi −
(
G′(xi)

)−1
G(xi) (4.27)

where:

G′(xi) =
G(xi +∆x)

∆x
; (∆x small) (4.28)

The subscript i denotes the iteration number, not the time. Simulink returns an error if it can’t
solve the algebraic loop within 200 iterations. Note that the Newton-Rhapson iterations have
to be carried out for every time-step, i.e. the integration will inevitably slow down. Moreover,
algebraic loops may be too complex for Simulink to find a solution. Therefore one should try to
avoid algebraic loops whenever possible. It is possible to ‘break’ an algebraic loop by including
a dynamical element in the feedback loop, e.g. a filter. See ref.[5] for more details.

4.3 The trimming facility from FDC 1.2

The FDC toolbox contains a custom trimming routine which can be applied to find steady-state
flight conditions. Such flight conditions can be applied as ‘operating points’ for the linearization
process, which is necessary for the design of AFCS’s based upon linear system theory, and
as initial conditions for simulations. Although Simulink contains a general trim routine (the
Matlab function TRIM), the special problem of trimming a non-linear aircraft model can better
be solved by means of a specialized aircraft trim routine. The theoretical backgrounds for such
a routine will be shown in this section. This section has largely been based upon ref.[25].

4.3.1 Definition of steady-state flight

Recall the non-linear state equation (3.7) from section 3.2 for describing the general rigid-body
dynamics:

ẋ = f(x(t),u(t),v(t), t) (4.29)

with state vector x, input vector u, and external disturbance vector v. This equation is actually
a special case of the more general implicit differential equation:

f(ẋ(t),x(t),u(t),v(t), t) = 0 (4.30)

In ref.[25], a singular point or equilibrium point of a time-invariant system with no external
control inputs is defined as:

f(ẋ,x,u) = 0 , with: ẋ = 0 and: u = 0 or constant (4.31)

Here the disturbance vector v has been omitted. The system is ‘at rest’ when all of the time-
derivatives are identically zero.
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Steady-state flight can be defined as a condition in which all of the motion variables are constant
or zero and all acceleration components are zero. This definition is very restrictive, unless some
simplifying assumptions are made. The definition allows steady wings-level flight and steady
turning flight if the flat-Earth equations of motion are used, assuming that the aircraft’s mass
remains constant during the motions of consideration. If the change in atmospheric density
with altitude is neglected during the trim process, a wings-level climb and a climbing turn are
permitted as steady-state flight conditions too. The equations for the coordinates xe and ye,
and the altitude H then don’t couple back into the equations of motion and don’t need to be
used in finding a steady-state equation. So steady-state flight can be defined in terms of the
remaining nine state variables of the flat-Earth equations:

ṗ, q̇, ṙ, V̇ , α̇, β̇ = 0 , u = constant (4.32)

Additional constraints have to be made to define the exact flight condition. Here we consider
steady wings-level flight, steady turning flight, steady pull-up or push-over, and steady rolls,
which are defined by the following constraints:

steady wings-level flight: ϕ, ϕ̇, θ̇, ψ̇ = 0 (i.e.p, q, r = 0)

steady turning flight: ϕ̇, θ̇ = 0, ψ̇ = turn rate

steady pull-up: ϕ, ϕ̇, ψ̇ = 0, θ̇ = pull-up rate

steady roll: θ̇, ψ̇ = 0, ϕ̇ = roll rate

The conditions ṗ, q̇, ṙ = 0 require the angular rates – and therefore also the aerodynamic and
thrust moments – to be zero or constant. The conditions V̇, α̇, β̇ = 0 require the aerodynamic
forces to be zero or constant. For this reason, the steady-state pull-up/push-over and steady roll
conditions can only exist instantaneously. Still, it can be useful to trim the aircraft dynamics
in such flight conditions (and use the resulting trim values of x and u to linearize the aircraft
model for these flight conditions) because control systems must operate there too.

To find a steady-state flight condition, a set of non-linear simultaneous equations, derived from
the state model, must be solved. Due to the very complex functional dependence of the aero-
dynamic data, it is in general not possible to solve these equations analytically. Instead, a
numerical algorithm must be used to iteratively adjust the independent variables until some
solution criterion is met. The solution will be approximate, but can be made arbitrarily close
to the exact solution by tightening up the criterion. Also, the solution may not be unique; for
example, steady-state level flight at a given engine power level can correspond to two different
airspeeds and angles of attack. Our knowledge of aircraft behavior makes it possible to specify
the required steady-state condition so that the trim algorithm will converge on an appropriate
solution. The trim algorithm presented here will deal with the aircraft model only through its
input and output signals. It does not have to work within the model to balance forces and mo-
ments separately, which makes the trim-routine generally applicable. Hence, any aircraft model
using the same input and state vectors as the model from this report can be trimmed with the
same program, the internal structure of the aircraft model does not matter.

In the next three sections, first it will be shown how the steady-state condition can be specified,
how many of the control variables may be chosen independently, and what constraints exist on
the remaining variables. Then, an algorithm which solves the non-linear equations numerically
will be developed.
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4.3.2 Specification of the flight condition

The (initial) values of the altitude, airspeed, and climb angle for steady-state flight must be
specified by the user within the limits imposed by the engine power. Assuming that the con-
figuration of the aircraft (flap setting, landing gear up or down, etc.) is pre-specified, it can be
expected that a unique combination of control inputs and remaining state variables will exist.
For the ‘Beaver’ model, the flap setting δf and the engine speed n will be pre-specified. In gen-
eral, it is not possible to determine any analytical constraints on the remaining control variables
δe, δa, δr, and pz, so these control inputs must be adjusted by the numerical trim algorithm.
This is not the case for all state variables.

The three states which define the position of the aircraft (xe, ye, and H) can temporarily
be eliminated from consideration, because the only relevant component of the position vector
is the (initial) altitude H, which can be pre-specified. For steady translational flight, the state
variables ϕ, p, q, and r are identically zero and ψ can be selected freely by the user. This leaves
V , α, β, and θ to be considered. The sideslip angle β must be adjusted by the trim algorithm to
zero out the sideforce Fy, which leaves V , α, and θ. It is customary to impose a flight-path angle
constraint on the steady-state condition, so finally the variables V and γ remain to be specified
by the user. In the next section, a general rate-of-climb constraint which allows non-zero values
of the roll angle will be given.

In steady-state turning flight, ϕ, p, q, and r will differ from zero. The turn can be specified
by the yaw rate ψ̇ or by the turn radius R (ψ̇ = V/R); the initial heading can still be specified
freely. Then p, q, and r can be determined from the kinematic relations given in appendix B
(equation (B.60)), given the attitude angles θ and ϕ. If the roll angle ϕ is known, the required
pitch angle θ can be obtained from the rate-of-climb constraint, which will be treated in the next
section. It is possible to specify the roll angle freely, but then in general a significant sideslip
angle β will occur which will yield a skidding turn. Therefore, a constraint for coordinated turns
will be included, which will compute the roll and sideslip such that the aircraft is banked at an
angle with no component of the aerodynamic side-force Ya.

4.3.3 The rate-of-climb and turn-coordination constraints

The rate-of-climb and turn-coordination constraints must be solved simultaneously, because the
first constraint involves θ while the latter one involves both θ and ϕ. According to ref.[25], the
flight condition must satisfy the following equation:

sin γ = a sin θ − b cos θ (4.33)

where:

a = cosα cosβ

b = sinϕ sinβ + cosϕ sinα cosβ (4.34)

Solving for θ, the resulting rate-of-climb constraint is found to be:

tan θ =
a b+ sin γ

√

a2 − sin2 γ + b2

a2 − sin2 γ
, θ 6= ±π

2 (4.35)

The coordinated turn constraint can be written as:

sinϕ = G cos θ (sinα tan θ + cosα cosϕ) (4.36)

with G = ψ̇V/g0 (see ref.[25]). This equation must be used in conjunction with (4.35) to trim
the aircraft for turning flight with a specified rate-of-climb. If the equations (4.35) and (4.36)
are solved simultaneously, the only remaining variables to be adjusted by the numerical trim
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algorithm are the angle of attack and sideslip angle and the control inputs. According to ref.[25]
the simultaneous solution equals:

tanϕ = G
cosβ

cosα

(ã− b̃2) + b̃ tanα
√

c̃ (1− b̃2) +G2 sin2 β

ã2 − b̃2 (1 + c̃ tan2 α)
(4.37)

where:

ã = 1−G tanα sinβ

b̃ =
sin γ

cosβ
(4.38)

c̃ = 1 +G2 cos2 β

The value of ϕ given by equation (4.37) can be substituted in (4.35) to solve for θ. For skidding
turns ϕ can be selected freely by the user, so then only the rate-of-climb constraint remains to
be solved. When the flight-path angle is zero, equation (4.37) reduces to:

tanϕ =
G cosβ

cosα−G sinα sinβ
(4.39)

With these flight-path constraints we can develop a general aircraft-trim algorithm which will
be described next.

4.3.4 The resulting steady-state trimmed-flight algorithm

The trim algorithm determines steady-state flight conditions by searching for the state and
control vectors for which the state derivatives V̇ , α̇, β̇, ṗ, q̇, and ṙ are identically zero. This is
realized in practice by applying a numerical minimization routine to a scalar cost function J ,
which equals:

J = c1V̇
2 + c2α̇

2 + c3β̇
2 + c4ṗ

2 + c5q̇
2 + c6ṙ

2 (4.40)

where ci, i ∈ {1, 2, . . . , 6}, are weighting constants. According to ref.[25], the Simplex algorithm
usually performs well as minimization algorithm for the aircraft-trim problem. Figure 4.9 shows
the resulting trim algorithm. First the flight condition must be specified. The trim program
must make an initial guess for the independent state variables and the control variables which
will be adjusted during the trim process. Next, the minimization routine which searches for the
values of x and u for which the cost function J is minimal will be started. The elements of these
vectors which are adjusted by the minimization routine or the constraints are updated for each
iteration step. The state equations are then evaluated for the new values of u and x to find
the time-derivative of the state-vector, ẋ. Substituting the results in equation (4.40) yields the
new value of J , which is returned to the minimization routine. A stop criterion which depends
upon the change of J between two iterations is used to decide when to finish the minimization
procedure. Also, the maximum number of iterations is limited so the process will stop if no
minimum can be found.

4.4 The linearization facility

FDC 1.2 contains the linearization utility ACLIN, which can be used to extract a linearized air-
craft model from the graphical, non-linear Simulink implementation of the aircraft dynamics.
This utility calls the Simulink program LINMOD for the actual linearization process. This
section will briefly describe the theoretical backgrounds of this linearization process.
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Figure 4.9: Trim algorithm from FDC 1.2
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First of all, consider the non-linear state equation:

ẋ(t) = f(x(t),u(t) ) (4.41)

This expression can be linearized around a certain operating point (x0,u0):

ẋ(t) ≈ ∂f

∂x
(x− x0) +

∂f

∂u
(x− x0) + ẋ0 (4.42)

where ẋ0 = f(x0,u0 ). Moving ẋ0 to the left-hand side of the equation yields:

ẋ− ẋ0 =
∂f

∂x
(x− x0) +

∂f

∂u
(x− x0) (4.43)

Now define:

x′ = x− x0, a vector of length n

u′ = u− u0, a vector of length m

A =
∂f

∂x

B =
∂f

∂u
Substituting these expressions in equation (4.43) yields the small-perturbations equation:

ẋ′ = Ax′ +Bu′ (4.44)

which is the desired linear state equation. The task of a numerical linearization algorithm is to
determine the elements of the matrices A and B. The matrix A can be written out as follows:

A =







∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn
∂x1

. . . ∂fn
∂xn






≈







∆f1
∆x1

. . . ∆f1
∆xn

...
...

∆fn
∆x1

. . . ∆fn
∆xn






=

=







f1(x0+∆x1,u0)−f1(x0,u0)
∆x1

. . . f1(x0+∆xn,u0)−f1(x0,u0)
∆xn

...
fn(x0+∆x1,u0)−fn(x0,u0)

∆x1
. . . fn(x0+∆xn,u0)−fn(x0,u0)

∆xn







(4.45)

with:

∆xi = ∆xi ·










δi,1

δi,2
...

δi,n










with: δi,j =

{

0 if i 6= j

1 if i = j
(4.46)

The columns of A can be gathered in vectors, yielding:

A =
[

f(x0+∆x1,u0)−f(x0,u0)
∆x1

. . . f(x0+∆xn,u0)−f(x0,u0)
∆xn

]

=

=
[

ẋx1−ẋ0

∆x1
. . . ẋxn−ẋ0

∆xn

]

(4.47)

Obviously, in this equation we define:

ẋxi ≡ f(x0 +∆xi,u0) (4.48)

which represents the output from the state equation (4.41) in the operating point with the ith

element of the state vector being perturbed by the amount ∆xi. If this perturbation is chosen
properly, it is now easy to determine an approximation of the matrix A by subsequently com-
puting its columns (i = 1, . . . , n).
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In a similar way, the matrix B can be derived. This time, the elements of the input vector
u need to be perturbed. The resulting approximation of B then equals:

B =
[

f(x0,u0+∆u1)−f(x0,u0)
∆u1

. . . f(x0,u0+∆um)−f(x0,u0)
∆um

]

=

=
[

ẋu1−ẋ0

∆u1
. . . ẋum−ẋ0

∆um

]

(4.49)

In this equation the columns of B were gathered in vectors. The following definitions were
applied:

∆ui = ∆ui ·










δi,1

δi,2
...

δi,m










with: δi,j =

{

0 if i 6= j

1 if i = j
(4.50)

and:

ẋui ≡ f(x0,u0 +∆ui) (4.51)

Equation (4.51) represents the output from the state equation (4.41) in the operating point with
the ith element of the input vector perturbed by the amount ∆ui.

The non-linear output equation equals:

ẏ(t) = g(x(t),u(t) ) (4.52)

This equation can also be linearized around the operating point (x0,u0):

ẏ(t) ≈ ∂g

∂x
(x− x0) +

∂g

∂u
(x− x0) + y0 (4.53)

where y0 = g(x0,u0 ). This equation can be developed into the following small-perturbation
equation for the output vector y:

y′ ≡ y − y0 = Cx′ +Du′ (4.54)

with:

C =
∂g

∂x

D =
∂g

∂u
C and D can be approximated using the same procedure as for the matrices A and B from the
state equation. The sizes of these matrices are:

A : (n× n)
B : (n×m)

C : (m× n)
D : (m×m)

This method has been implemented in the Simulink routine LINMOD. There is also a routine
LINMOD2, which uses a more advanced version of this method, but the basic principles still
apply.
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Chapter 5

FDC implementation of the aircraft
model

5.1 General structure of the aircraft model

Recall figure 3.2 from chapter 3. This figure provides the general framework for the Simu-
link implementation of the non-linear aircraft model. The modular structure from figure 3.2
is clearly reflected in the Simulink block-diagram from figure 5.1 which shows the simulation
model of the ‘Beaver’ aircraft. From left to right we see the atmosphere and airdata equations
in the block Airdata Group, the different contributions to the external forces and moments in
the blocks Aerodynamics Group, Engine Group, Gravity, and Fwind, a summation of the external
forces and moments in the block FMsort, and the equations of motion themselves in the block
Aircraft Equations of Motion. This latter block contains the twelve state equations, some cor-
rection blocks, and an integrator which determines the time-trajectories of the state variables.
Some output variables which are not necessary for solving the equations of motion have been
gathered in the subsystem Additional Outputs. The block Hlpfcn in the feedback-loop computes
some often used sines and cosines of angular values from the state vector. On the left-hand side
of the block-diagram, we see the external inputvectors uaero and uprop, which contain inputs
to the aerodynamic and engine models, and uwind, which contains wind velocity components
along the aircraft’s body-axes, including contributions from atmospheric turbulence. On the
right-hand side of the diagram, all results are gathered in a number of output vectors.

The block-diagram from figure 5.1 thus provides the general picture of the aircraft dynam-
ics, but it can’t be used as first level of the Simulink model because it does not contain all
necessary interfacing functions. Figure 5.2 shows the top-level of the Simulink implementation
of the aircraft model, which fulfills the input/output functions of the system. In this level, all
twelve scalar input variables are gathered in the three input vectors from figure 5.1 by means of
Mux blocks. Since Simulink does not allow the use of input vectors in the top-level of a system,
twelve scalar Inport blocks were needed. Figure 5.1 shows the contents of the central subsystem
Beaver dynamics and output equations. On the left-hand side of this subsystem the outputs are
combined in one output vector which is sent to the Matlab workspace. The most important
results are extracted from this vector by means of Demux blocks and connected to (scalar) Out-
port blocks, thus enabling us to connect the aircraft model to other Simulink systems, such as
an autopilot model. Again, due to limitations of Simulink itself, it is not possible to connect

69
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output vectors to these Outport blocks.1

There are three To Workspace blocks, one of which is connected to a Clock in order to create
a time-axis for the analysis of simulation results. They blocks send all input signals to the
matrix In, all output signals to the matrix Out , and a time-axis to the vector time within the
Matlab workspace. After running a simulation, these matrices can be examined, and used for
plotting results. Enter type inputs.hlp or type outputs.hlp for on-line help, or double-click
the blue-colored Mux blocks with shadow borders in the top-level of the aircraft model2. See
also the descriptions of RESULTS and RESPLOT in chapter 9. The definitions of the matrices In
and Out are given in section E.2 of appendix E. The To Workspace block that is connected to
the Clock creates a time-vector time, which is needed for plotting purposes because Simulink
integrators use variable step-widths. Storage of the input signals is useful in cases where they
are generated by other Simulink systems, e.g. control laws or external disturbance blocks.

The input signals which enter the system through the Inport blocks in the top-level of a Simulink
system will be called S-function inputs in the remainder of this report. Similarly, the outputs
which leave the system through the Outport blocks in the top-level will be called S-function
outputs from now on. For practical reasons, only a small subset of the output signals have been
connected to the Outport blocks in the top-level of the system, but it is relatively easy to change
this set by adding new Outport blocks and making the right connections. For many purposes the
current set of outputs will be sufficient. Contrary to the S-function outputs, the To Workspace
blocks take into account all output signals. These results will be called simulation results from
now on. So S-function outputs are intended to be used by other systems while simulation results
are sent to the Matlab workspace for further analysis after finishing the simulations. In this
chapter, the top-level from the aircraft model Beaver shown in figure 5.2 will be denoted as
Level 1, while the second level, shown in figure 5.1, will be called Level 2. Level 1 can be opened
by typing beaver at the Matlab command-line. Zooming in to deeper levels is possible by
double-clicking the subsystems with the mouse.

The masked subsystem blocks from the system Beaver have also been sorted in the following
sublibraries of the main model library FDCLIB:

1. airdata, atmosphere,

2. aerodynamics,

3. engine forces and moments,

4. gravity and wind forces,

5. equations of motion,

6. other (output-) equations.

These sublibraries may be useful if you plan to use the system Beaver as a template for the
implementation of other aircraft models. In order to illustrate the connections between the dif-
ferent masked subsystem blocks, FDCLIB also contains the unmasked subsystems from Beaver.
The model library can be opened by typing fdclib at the command-line.

1Luckily, Simulink does not have any restrictions with regard to the use of vector inputs and outputs for
subsystems such as the diagram from figure 5.1, so this rather confusing Muxing and Demuxing is required in the
top-levels of graphical systems only.

2All blocks with a blue foreground and white background having shadow borders are linked to an on-line help
text that will be displayed in the Matlab command window when such a block is double-clicked. For more
information about the color conventions from FDC 1.2, enter type colors.hlp at the command-line.
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Figure 5.1: Block-diagram of level 2 of the aircraft model Beaver
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Figure 5.2: Block-diagram of top-level of the aircraft model Beaver

5.2 Conventions used in the Reference Guide chapters

The remainder of this chapter contains a systematical description of the Simulink implementa-
tion of the aircraft model from chapter 3. Chapter 6 describes the implementation of the wind
and turbulence models, chapter 7 describes the implementation of the radio-navigation models,
and chapter 8 gives an overview of the Simulink implementation of the analytical tools for the
FDC toolbox. With regard to the description of the graphical Simulink systems these chapters
all use the same conventions. For each block in these systems the basic equations, inputvariables,
outputvariables, parameters, and connections to other blocks will be listed. If a block contains
other subsystems, a list of those subsystems will be given instead of the equations. For each
separate chapter, the blocks will be treated in alphabetical order. The name of the subsystems
is shown in the upper left corner of the pages; the upper right corner shows the position of the
subsystem within the aircraft model (this chapter) or the model library (chapters 6 and 7). For
instance, the description of the block 12 ODEs from the system Beaver has the following header:

12 ODEs Level 1 / Level 2 / Aircraft Equations of Motion / 12 ODEs

which indicates that the subsystem 12 ODEs is contained in the third level of the Simulink
system Beaver. This subsystem can be accessed by opening the system Beaver (which will reveal
Level 1) and then double-clicking the blocks Beaver dynamics and output equations (to reveal
Level 2), Aircraft equations of Motion, and 12 ODEs, respectively. If you try to zoom in further,
for instance by double-clicking the block Eulerdot, you will see that the contents of this block
have been hidden from the user by means of the Masking function of Simulink. The individ-
ual equations can be accessed only if the block is Unmasked first. This may seem somewhat
inconvenient, but it facilitates the re-usability of blocks from the aircraft model and hence the
overall modularity of the system, and it protects the system from being inadvertently disrupted
at the level of the basic equations, which is the most difficult level to debug. Also, this black-box
approach makes it theoretically possible to implement separate blocks by means of Matlab, C
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or Fortran subroutines without changing their appearance within the overall system. Since
it is assumed here that the user has direct access to the Simulink models, this chapter does
not contain any pictures of masked subsystems. If you want to analyze the contents of masked
subsystems you must therefore open the respective system on your own computer.

The connections paragraphs from the alphabetical block-descriptions list the connections
between different subsystems, ordered by their input and output signals. For the description
of the blocks from the non-linear aircraft model, the exact level of the block within the system
Beaver is shown between brackets. For instance, the signal yatm is sent from the block Atmosph
to the block Airdata 1, which both are part of the subsystem Airdata Group. In the connections
section from Airdata 1 this is written as: “yatm comes from the block Atmosph (Airdata Group)”.
The first two path-items, being Level 1 and Level 2, have not been mentioned here to shorten
the notations, although they are mentioned in the header lines of the block-descriptions.

5.2.1 On-line help for FCD 1.2

Each graphical subsystem contains a blue-colored title-block which lists the block-name, the au-
thor, and the month in which it was made. Shadow borders around these blocks mean that they
will reveal more information about the subsystem when being double-clicked. This is done by
listing the contents of the appropriate help-file in the Matlab command-window. The help-files
are contained in the FDC subdirectory help. They can be read also with an ASCII viewer or
editor, or by typing type blkname.hlp at the Matlab command-line, where blkname is the
name of the help-file, which is usually directly related to the name of the subsystem block. All
reference chapters from this report will refer to the appropriate help-text for each subsystem
block, whenever on-line help is available. Moreover, if you double-click a masked subsystem
blocks and then click on the help button, the name of the appropriate help-file will be displayed.
On-line help for the Matlab subroutines from FDC 1.2 can be viewed by typing help progname

at the command-line, where progname is the name of the Matlab routine of interest; e.g. type
help actrim for more information about the aircraft trim routine. Of course you can also view
the contents of the m-files with an ASCII viewer or editor.

Some particularly useful help-texts are:

• inputs.hlp, contains information about the inputs to the system Beaver,

• outputs.hlp, contains information about the outputs from the system Beaver,

• colors.hlp, gives an overview about the color conventions used in graphical systems from
FDC 1.2,

• eqmotion.hlp, describes the subsystem Aircraft Equations of Motion from the non-linear
aircraft model,

• level1.hlp, contains information about the first level of the system Beaver,

• level2.hlp, contains information about the second level of the system Beaver,

• fdclib.hlp, gives a short description about the main FDC library FDCLIB.

The next pages (pp. 74 to 108) describe the blocks and subsystems from the aircraft model
Beaver in alphabetical order.

Note: appendix A contains a list of symbols, reference frames, abbreviations, and other defi-
nitions; appendix E lists all acronyms and variable names used by the FDC models and tools.



12 ODEs Level 1 / Level 2 / Aircraft Equations of Motion / 12 ODEs

Type
Non-masked subsystem, aircraft-independent, essential for solving state equations.

Description
The subsystem 12 ODEs contains the twelve non-linear Ordinary Differential Equations describing
the aircraft dynamics. These equations of motion are valid for all rigid bodies, assuming a flat, non-
rotating Earth (see appendix B). The time-derivatives of the twelve state variables are non-linear
functions of the state variables themselves and the external forces and moments, which, in turn,
depend upon the state variables and external inputs.

Subsystems/masked blocks
There are four masked subsystem blocks contained in the subsystem 12 ODEs:

Vabdot: computes time-derivatives of the true airspeed, angle of attack, and sideslip angle
pqrdot: computes time-derivatives of the angular velocities along the body-axes of the aircraft
Eulerdot: computes time-derivatives of the Euler angles
xyHdot: computes time-derivatives of the coordinates and the altitude above sea-level

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Ftot = [ Fx Fy Fz ]
T total external forces, Ftot

Mtot = [ L M N ]T total external moments, Mtot

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

y∗bvel = [ u+ uw v + vw w + ww ]
T body-axes velocity components plus wind, ybvel∗

Outputs
ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot

Note: the vector ẋ that leaves the subsystem 12 ODEs must be corrected for the influence of β̇ upon
the aerodynamic side force Ya. This correction is made in the block xdotcorr; see the accompanying
description for more details.

Parameters
The masked subsystem Vabdot needs the parameter matrix GM1; the masked subsystem pqrdot needs
the matrix GM2. Use the routine MODBUILD (section 9.2) for defining these parameters, or use
LOADER (section 9.3.1) for loading them into the Matlab workspace. See appendix D for the
definitions of GM1 and GM2.

Connections
in: x comes from the block Integrator (Equations of Motion); Ftot and Mtot come from FMsort; yhlp

comes from Hlpfcn; y∗bvel is the sum of the output from uvw (Equations of Motion) and the wind
velocity components from the external input vector uwind

out: ẋ (not corrected for implicit nature of the β̇-equation) is connected to the block xdotcorr (Equations
of Motion)

Enter type 12odes.hlp at the command-line for on-line help.
2
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Accel Level 1 / Level 2 / Additional Outputs / Accel

Type
Masked subsystem, aircraft-independent, not essential for solving state equations.

Description
The masked subsystem block Accel computes some accelerations and specific forces (outputs of ac-
celerometers) in the aircraft’s center of gravity. These output variables are useful for many purposes
in AFCS design, e.g. turn-coordination by means of feedback of the specific force along the YB axis, or
manoeuvre load limiting. However, these variables are not used for actually solving the equations of
motion themselves! This block does not compute accelerations for points outside the center of gravity,
but similar blocks can be implemented easily.

Equations
As outlined in section 3.2.5 the kinematic accelerations in the aircraft’s body-axes are equal to:

• Kinematic accelerations ax,k, ay,k, and az,k along the body-axes, measured in the vehicle’s c.g.:

ax,k =
1

g0
(u̇+ qw − rv) = Fx

W

ay,k =
1

g0
(v̇ + ru− pw) = Fy

W

az,k =
1

g0
(ẇ + pv − qu) = Fz

W

These accelerations are measured in units of g which explains the division by g0. W = mg is the total
weight of the aircraft, measured in [N ]. Note: the kinematic accelerations differ from the body-axes
velocity rates u̇, v̇, and ẇ because the latter do not contain the angular and translational velocity
cross-product terms; see section 3.2.5.

• Outputs of body-axis accelerometers (specific forces) Ax, Ay, and Az at the c.g., [g]:

Ax = ax,k + sin θ = (Fx −Xgr) /W
Ay = ay,k − cos θ sinϕ = (Fy − Ygr) /W
Az = az,k + cos θ cosϕ = (Fz − Zgr) /W

Inputs
Ftot = [ Fx Fy Fz ]

T total external forces, Ftot

Fgrav = [ Xgr Ygr Zgr ]
T gravity forces, Fgrav

Outputs
yacc = [ Ax Ay Az ax,k ay,k az,k ]

T specific forces and accelerations, yacc

Parameters
Accel needs the parameter vector GM1 to extract the mass m of the aircraft (the mass has been
implemented as a parameter, i.e. it is assumed that it is constant during the relative short time
intervals considered). Use MODBUILD (section 9.2) to define GM1 , or use LOADER (section 9.3.1) to
load it into the Matlab workspace. See appendix D for the definition of GM1.

Connections
in: Ftot comes from the block FMsort; Fgrav comes from Gravity
out: yacc is not used by any other block in the system Beaver

Enter type accel.hlp at the command-line for on-line help.
2
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Additional Outputs Level 1 / Level 2 / Additional Outputs

Type
Non-masked subsystem, aircraft-independent, not essential for solving state equations.

Description
The non-masked subsystem Additional Outputs contains output equations which are not needed for
the solution of the state equations and which can not logically be included into another non-masked
subsystem from the non-linear aircraft model. The user is free to add or delete ’additional output
blocks’ to/from this subsystem, but it is not allowed to use output signals from this subsystem as
inputs to the forces and moments blocks or the equations of motion themselves. Any function of the
states, their time-derivatives, external inputs and/or disturbances, or outputs from other subsystems
within the Simulink-implementation of the aircraft model may be included in the subsystem Additional
Outputs.1

Subsystems/masked blocks
Currently, there are three masked subsystem blocks contained in the subsystem Additional Outputs:

Accel: computes specific forces (outputs of accelerometers) and kinematic accelerations
Flpath: computes some flight-path variables
uvwdot: computes the time-derivatives of the body-axes velocity components

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

Ftot = [ Fx Fy Fz ]
T total external forces, Ftot

Fgrav = [ Xgr Ygr Zgr ]
T gravity forces, Fgrav

Outputs
yfp = [ γ fpa χ Φ ]

T flight-path variables, yfp

yuvw = [ u̇ v̇ ẇ ]T time-derivatives of body-axes velocities, yuvw

yacc = [ Ax Ay Az ax,k ay,k az,k ]
T specific forces and accelerations, yacc

Parameters
The masked subsystem Accel needs the parameter vector GM1; the masked subsystem Flpath needs
the initial value of the state vector, xinco. Use the routine MODBUILD (section 9.2) for defining GM1,
or use LOADER (section 9.3.1) for loading this parameter vector into the Matlab workspace. Use
ACTRIM (section 8.2) for defining a trimmed initial flight condition, or use INCOLOAD (section 9.3.2)
to load one to the workspace. See appendix D for the definition of GM1.

Connections
in: x comes from the block Integrator (Equations of Motion); ẋ comes from xfix (Equations of Motion);

yhlp comes from Hlpfcn; Ftot comes from FMsort; Fgrav comes from Gravity
out: yfp which leaves the block Flightpath (Additional Outputs), yuvw from uvwdot (Additional Outputs),

and yacc from Accel (Additional Outputs) are not connected to any other block in the system
Beaver

Enter type moreouts.hlp at the command-line for on-line help.
2

1Since the outputs from the subsystem Additional Outputs are not involved in the solution of the state equations
themselves, the use of time-derivatives of state variables within this subsystem does not yield algebraic loops.
However, care must be taken when feeding back outputs from this subsystem to the input-side of the aircraft
model, e.g. in autopilot control loops, because that may yield an algebraic loop which may be too complicated
for Simulink to solve. See also section 4.2.7.
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Aerodynamics Group (Beaver) Level 1 / Level 2 / Aerodynamics Group

Type
Non-masked subsystem, aircraft-dependent, essential for solving state equations.

Description
The subsystem Aerodynamics Group contains blocks for computing aerodynamic forces and moments
which act upon the aircraft under consideration. In this case the aerodynamic model of the DHC-2
‘Beaver’, described in ref.[26], has been implemented. The subsystem Aerodynamics Group does not
compute the contributions to the forces and moments due to the slipstream-effects of the propeller;
this is done in the subsystem Engine Group.

Subsystems/masked blocks
There are three masked subsystem blocks contained in the subsystem Aerodynamics Group (Beaver):

Aeromod: computes the non-dimensional aerodynamic force and moment coefficients for the aircraft
under consideration (currently Aeromod contains the aerodynamic model of the ‘Beaver’
from ref.[26])

Dimless: computes non-dimensional angular velocities
FMdims: converts the non-dimensional force and moment coefficients to dimensional forces and mo-

ments

Since the block Aeromod (Beaver) is aircraft-dependent, it needs to be replaced if a model of an-
other aircraft is implemented. However, if the definitions of the non-dimensional angular velocities
are different in another aircraft model, it may be more convenient to replace the whole subsystem
Aerodynamic Group instead. Building a large library of aerodynamic models for different aircraft in
Simulink makes it easy to simulate many types of aircraft with a minimum of programming efforts.

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

uaero = [ δe δa δr δf ]
T aerodynamic control inputs, uaero

yad1 = [ a M qdyn ]
T basic airdata variables, yad1

Outputs
ydl = [ pb

2V
qc
V

rb
2V
]T non-dimensional angular velocities, ydl

Caero = [ CXa CYa CZa Cla Cma
Cna ]

T aerodynamic force and moment coefficients, Caero

FMaero= [ Xa Ya Za La Ma Na ]
T dimensional aerodynamic forces and moments, FMaero

Parameters
The masked subsystem block Dimless and the block FMdims need the parameter-vector GM1; the
block Aeromod (Beaver) needs the parameter-matrix AM. Use MODBUILD (section 9.2) for defining
these parameters, or use LOADER (section 9.3.1) for loading them into the Matlab workspace. See
appendix D for the definitions of AM and GM1.

Connections
in: x comes from the block Integrator (Equations of Motion); uaero is an external input vector with

aerodynamic control inputs; yad1 comes from Airdata1 (Airdata Group);
out: ydl from Dimless (Aerodynamics Group) is used by the block Aeromod (Aerodynamics Group);

Caero from Aeromod (Aerodynamics Group) is used by FMdims (Aerodynamics Group); FMaero

from FMdims (Aerodynamics Group) is used by the block FMsort

Enter type aerogrp.hlp at the command-line for on-line help.
2
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Aeromod (Beaver) Level 1 / Level 2 / Aerodynamics Group / Aeromod

Type
Masked subsystem, aircraft-dependent, essential for solving state equations.

Description
The masked subsystem Aeromod (Beaver) contains the aerodynamic model for the DHC-2 ‘Beaver’
aircraft, described in ref.[26]. For this aircraft, the aerodynamic forces and moments are expressed in
terms of non-linear polynomial functions of state variables and external aerodynamic control inputs.
If a model of another aircraft is implemented within the Simulink framework of the ‘Beaver’ model,
this masked subsystem block must be updated, which shouldn’t be too difficult due to its black-box
structure. In many aircraft models, aerodynamic forces and moments are computed by reading out
data from multi-dimensional tables, which can be implemented by means of Lookup Table blocks from
the standard Simulink-libraries. Note: the aerodynamic model of the ‘Beaver’ as implemented within
Aeromod does not take into account contributions to the forces and moments due to the propeller
slipstream. This is done in the masked subsystem block Engmod within the subsystem Engine Group.

Equations
The aerodynamic model of the ‘Beaver’ expresses the aerodynamic force and moment coefficients in
terms of non-linear polynomial functions of the state variables and aerodynamic control inputs. The
model includes longitudinal-lateral cross-coupling effects, as well as unsteady aerodynamics, but it
does not take into account the influence of compressibility, as airspeed is assumed to be low. See
ref.[26] for more details.

• Aerodynamic force and moment coefficients measured in the body-fixed reference frame:

CXa = CX0
+ CXαα+ CXα2α

2 + CXα3α
3 + CXq

qc

V
+ CXδr δr + CXδf δf + CXαδf αδf

C∗
Ya

= CY0
+ CYββ + CYp

p b

2V
+ CYr

rb

2V
+ CYδa δa + CYδr δr + CYδrαδrα

CZa = CZ0
+ CZαα+ CZα3α

3 + CZq
qc

V
+ CZδe δe + CZδeβ2 δeβ

2 + CZδf δf + CZαδf αδf

Cla = Cl0 + Clββ + Clp
p b

2V
+ Clr

rb

2V
+ Clδa δa + Clδr δr + Clδaαδaα

Cma
= Cm0

+ Cmα
α+ Cmα2α

2 + Cmq

qc

V
+ Cmδe

δe + Cmβ2β
2 + Cmr

rb

2V
+ Cmδf

δf

Cna = Cn0
+ Cnββ + Cnp

p b

2V
+ Cnr

rb

2V
+ Cnδa δa + Cnδr δr + Cnq

qc

V
+ Cnβ3β

3

The values of the stability and control derivatives, i.e. the coefficients of the polynomials, are listed
in table C.3. See also the description of the subroutine MODBUILD in chapter 8.

If the block Aeromod (Beaver) is unmasked and double-clicked one can see how the polynomial evalu-
ation has been implemented by means of a multiplication of the vector:

[

1 α α2 α3 β β2 β3
pb

2V

qc

V

rb

2V
δe δa δr αδf αδr αδa δeβ

2 0

]T

with the constant parameter matrix AM in which the stability and control derivatives of the ‘Beaver’
are contained. Note that the influence of β̇ upon CYa has been omitted here (the last element of
the multiplication vector is zero instead of β̇b/2V ). This was necessary in order to prevent the β̇
equation from becoming implicit which would yield an algebraic loop in the simulation model (see
section 4.2.7). The error which results from neglecting this term is corrected in the block xdotcorr.
With this omission of the β̇-contribution, CYa has been denoted as C

∗
Ya
.

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

uaero = [ δe δa δr δf ]
T aerodynamic control inputs, uaero

ydl = [ pb
2V

qc
V

rb
2V
]T non-dimensional angular velocities, ydl
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Outputs
Caero = [ CXa C

∗
Ya

CZa Cla Cma
Cna ]

T aerodynamic force and moment coefficients, Caero

Parameters
Aeromod needs the parameter matrix AM for reading out the stability and control coefficients. Use
the routine MODBUILD (section 9.2) to define this matrix, or use LOADER (section 9.3.1) to load it
into the Matlab workspace. See appendix D for the definition of the matrix AM.

Connections
in: x comes from the block Integrator (Equations of Motion); uaero is an external input vector with

aerodynamic control inputs; ydl comes from Dimless (Aerodynamics Group)
out: Caero is connected to FMdims (Aerodynamics Group)

Enter type aeromod.hlp at the command-line for on-line help.
2
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Aircraft Equations of Motion (Beaver) Level 1 / Level 2 / Equations of Motion

Type
Non-masked subsystem, largely aircraft-independent except for the block xdotcorr, essential for solving
the equations of motion.

Description
The subsystem Aircraft Equations of Motion contains the actual non-linear equations of motion in
which the time-derivatives of the state variables are determined and an Integrator-block for finding
the time-trajectories of the state variables themselves. Currently, this subsystem still contains one
aircraft-dependent element, namely xdotcorr which is needed to correct the time-derivative of the
sideslip angle for implicitness of the aerodynamic model.

Subsystems/masked blocks
There are two masked subsystems contained in the subsystem Aircraft Equations of Motion (Beaver):

uvw: computes the body-axes velocity components as a function of the true airspeed, angle of
attack, and sideslip angle

xdotcorr: makes corrections to the time-derivatives of the state variables in order to take into account
the implicit influence of these time-derivatives upon the external (aerodynamic) forces and
moments (here xdotcorr corrects the time-derivative of the sideslip angle to account for the
contribution of β̇ itself to the aerodynamic sideforce Ya)

In addition, Aircraft Equations of Motion contains one non-masked subsystem:

12 ODEs: contains the state equations which express the time-derivatives of the state variables in
terms of these states themselves and the external forces and moments

and a standard Integrator-block is included to determine the time-trajectories of the state variables as
a function of the time-derivatives and the initial condition.

Inputs
Ftot = [ Fx Fy Fz ]

T total external forces, Ftot

Mtot = [ L M N ]T total external moments, Mtot

uwind = [ uw vw ww u̇w v̇w ẇw ]
T

wind velocity components along body-axes
and their time-derivatives, uwind

yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

Outputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot

ybvel = [ u v w ]T body-axes velocity components, ybvel

Parameters
The masked subsystem block xdotcorr needs the parameter matrix AM and the vector GM1 . The
subsystem 12 ODEs needs the parameter vector GM1 and the matrix GM2 . Use the routine MOD-
BUILD (section 9.2) for defining these parameters, or use LOADER (section 9.3.1) for loading them
into the Matlab workspace. See appendix D for the definitions of AM , GM1 , and GM2 . The block
Integrator requires the initial value of the state vector, xinco, which can be computed with the trim
routine ACTRIM or loaded from file with INCOLOAD.

Connections
in: Ftot andMtot come from FMsort; uwind is an external input with wind and turbulence velocities

and their time-derivatives; yatm comes from Atmosph (Airdata Group); yhlp comes from Hlpfcn
out: x which leaves the block Integrator (Equations of Motion) is connected to many other blocks in

the system Beaver; ẋ from xfix is connected to Accel, Flpath, and uvwdot (all from the subsystem
Additional Outputs); ybvel from uvw is connected to xyHdot (Equations of Motion / 12 ODEs)

Enter type eqmotion.hlp at the command-line for on-line help.
2
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Airdata1 Level 1 / Level 2 / Airdata Group / Airdata 1

Type
Masked subsystem, aircraft-independent, necessary for solving state equations.

Description
The masked subsystem block Airdata1 is used to compute the most important airdata variables which
are often necessary for solving the equations of motion. In the ‘Beaver’ model only the dynamic
pressure qdyn is actually needed for solving the state equations, but for faster flying aircraft the Mach
number M is needed too. See Atmosph, Airdata2, and Airdata3 for other airdata (-related) equations.

Equations
• Dynamic pressure qdyn, [kgm−2]:

qdyn =
1
2
ρV 2

• Speed of sound a, [ms−1]:

a =
√

γRT

where γ = 1.4 = ratio of specific heats of air with constant pressure and constant volume, respectively,
and R = Ra/M0 = 287.05 JK

−1kg−1 = specific gas constant of the air (M0 = 28.9644 kg kmol
−1 =

molecular weight of the air at sea level).

• Mach number M , [− ]:

M =
V

a

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

Outputs
yad1 = [ a M qdyn ]

T basic airdata variables, yad1

Parameters
All parameters for Airdata1 are defined within the block itself; Airdata 1 does not use parameters from
the Matlab workspace.

Connections
in: x comes from the block Integrator (Equations of Motion); yatm comes from Atmosph (Airdata

Group)
out: yad1 is connected to the blocks Airdata2 and Airdata3 (all from the subsystem Airdata Group)

Enter type airdata1.hlp at the command-line for on-line help.
2
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Airdata2 Level 1 / Level 2 / Airdata Group / Airdata 2

Type
Masked subsystem, aircraft-independent, in general not necessary for solving the equations of motion.

Description
The masked subsystem Airdata2 is used to compute the impact pressure qc, the calibrated airspeed Vc,
and the equivalent airspeed Ve. For most aircraft, these airdata (-related) variables are not necessary
for actually solving the equations of motion, but they may be useful for other purposes. For this
reason, the block Airdata2 can be deleted from the Simulink model without affecting the solutions of
the ODEs. The equations from this block are independent of the aircraft under consideration.

Equations
• Impact pressure qc, [Nm−2]:

qc = ps

{(

1 +
γ − 1
2

M2

) γ
γ−1

− 1
}

where γ is the ratio of specific heats of air with constant pressure and constant volume respectively
(γ = 1.4).

• Calibrated airspeed Vc, [ms−1]:

Vc =

√
√
√
√ 2γ

γ − 1
p0
ρ0

{(

1 +
qc
p0

) γ−1
γ

− 1
}

where p0 = 101325 Nm
−2 = air pressure at sea level and ρ0 = 1.225 kgm

−3 = air density at sea level.

• Equivalent airspeed Ve, [ms−1]:

Ve = V

√
ρ

ρ0
=

√

2qdyn
ρ0

Inputs
yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

yad1 = [ a M qdyn ]
T basic airdata variables, yad1

Outputs
yad2 = [ qc Ve Vc ]

T additional airdata (-related) variables, yad2

Parameters
All parameters for Airdata2 are defined within the block itself; Airdata 2 does not use parameters from
the Matlab workspace.

Connections
in: yatm comes from the block Atmosph (Airdata Group); yad1 comes from Airdata1 (Airdata Group)
out: yad2 is not connected to any other block in the system Beaver

Enter type airdata2.hlp at the command-line for on-line help.
2
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Airdata3 Level 1 / Level 2 / Airdata Group / Airdata 3

Type
Masked subsystem, aircraft-independent, in general not necessary for solving the equations of motion.

Description
The masked subsystem Airdata3 is used to compute the Reynolds number Rc, which refers to the
mean aerodynamic chord of the aircraft, the Reynolds number per unit length Re, and the total
temperature Tt. Usually, these airdata (-related) variables are not necessary for actually solving the
equations of motion, but they may be useful for other purposes, such as comparing simulations with
windtunnel measurements or tests in real flight. The block Airdata3 can be deleted from the Simulink
model of the aircraft without affecting the solutions of the ODEs. The equations from this block are
independent of the aircraft under consideration.

Equations
• Total temperature Tt, [K]:

Tt = T

(

1 +
γ − 1
2

M2

)

• Reynolds number Rc, [− ]:

Rc =
ρV c

µ

• Reynolds number per unit length Re, [m−1]:

Re =
ρV

µ

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

yad1 = [ a M qdyn ]
T basic airdata variables, yad1

Outputs
yad3 = [ Tt Re Rc ]

T additional airdata (-related) variables, yad3

Parameters
Airdata3 needs the parameter vector GM1 in order to read out the mean aerodynamic chord c. Use
the routine MODBUILD (section 9.2) to define this vector, or use LOADER (section 9.3.1) to load it
into the Matlab workspace. See appendix D for the definition of GM1.

Connections
in: x comes from the block Integrator (Equations of Motion); yatm comes from Atmosph (Airdata

Group); yad1 comes from Airdata1 (Airdata Group)
out: yad3 is not connected to any other block in the system Beaver

Enter type airdata3.hlp at the command-line for on-line help.
2

83



Airdata Group Level 1 / Level 2 / Airdata Group

Type
Non-masked subsystem, aircraft-independent, partly necessary for solving the equations of motion,
see the description of the masked subsystems within Airdata Group.

Description
The subsystem Airdata Group is used to compute airdata (-related) variables, of which some are needed
for solving the equations of motion, while others are included as ’additional outputs’. Obviously,
the latter variables may be deleted from the Simulink model without affecting the solutions of the
equations of motion.

Subsystems/masked blocks
There are four masked subsystem blocks contained in the subsystem Airdata Group:

Atmosph: computes basic atmospheric properties (air-temperature, pressure, density), using the
ICAO Standard Atmosphere model, as well as the dynamic viscosity of the air and the
gravitational acceleration

Airdata1: computes the most important airdata variables which usually are needed for solving the
equations of motion of aircraft

Airdata2: computes more airdata (-related) variables which may be useful for such purposes as com-
paring simulations with real flight experiments, windtunnel measurements, etc.

Airdata3: computes still more airdata (-related) variables

The blocks Airdata2 and Airdata3 can be deleted from the Simulink model of the aircraft without
affecting the solution of the equations of motion; the other two blocks cannot.

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Outputs
yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

yad1 = [ a M qdyn ]
T basic airdata variables, yad1

yad2 = [ qc Ve Vc ]
T additional airdata (-related) variables, yad2

yad3 = [ Tt Re Rc ]
T additional airdata (-related) variables, yad3

Parameters
The blocks Airdata1, Airdata2, and Atmosph all define their own parameters without reading them from
theMatlab workspace. Airdata3 needs the parameterGM1 . Use the routineMODBUILD (section 9.2)
to define this parameter matrix, or use LOADER (section 9.3.1) to load it into theMatlab workspace.
See appendix D for the definition of GM1.

Connections
in: x comes from the block Integrator (Equations of Motion)
out: yatm which leaves the block Atmosph is connected to the blocks Airdata1, Airdata2, and Airdata3

(all from the subsystem Airdata Group), Power (Engine Group), Gravity, and xdotcorr (Equations of
Motion); yad1 from Airdata1 is connected to Airdata2 (Airdata Group), Airdata3 (Airdata Group),
and FMdims (Aerodynamics Group or Engine Group); yad2 from Airdata2 and yad3 from Airdata3
are not connected to any other block in the system Beaver

Enter type adgrp.hlp at the command-line for on-line help.
2
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Atmosph Level 1 / Level 2 / Airdata Group / Atmosph

Type
Masked subsystem, aircraft-independent, necessary for solving state equations.

Description
The block Atmosph is used to compute some basic atmospheric properties, using the ICAO Standard
Atmosphere model (see for instance ref.[23] for a description of that model). Atmosph also computes
the gravitational acceleration g and the dynamic viscosity µ. The outputs from Atmosph are used
by the block Airdata1 for the calculation of airdata variables that need to be known for solving the
equations of motion. Therefore, Atmosph should not be deleted from the Simulink model of the
aircraft!

Equations
• Air temperature T in the troposphere, according to the ICAO Standard Atmosphere model, [K]:

T = T0 + λH

where T0 = 288.15 K = air temperature at sea level and λ = −0.0065 Km−1 = temperature gradient
in troposphere. In this equation the small difference between the geometrical altitude h and the
geopotential altitude H has been neglected in view of the altitudes considered; see section 3.2.4.

• Static air pressure in Standard Atmosphere ps, [Nm−2]:

ps = p0

(
T0
T

) g
λR

where p0 = 101325 Nm
−2 = air pressure at sea level and R = Ra/M0 = 287.05 JK

−1kg−1 = specific
gas constant of the air (M0 = 28.9644 kg kmol

−1 = molecular weight of the air at sea level).

• Air density ρ, [kgm−3], according to the gas law for ideal gasses:

ρ =
ps
RT

• Coefficient of the dynamic viscosity µ, [kgm−1s−1], according to Sutherland’s equation (see ref.[23]):

µ =
1.458 · 10−6 T 3

2

T + 110.4

• Gravitational acceleration g, [ms−2]:

g = g0

(
REarth

REarth + h

)2

where g0 = 9.80665 ms
−2 = gravitational acceleration at sea level and REarth = 6371020 m = radius

of the Earth. Note: although this equation uses the radius of the Earth, the state equations in the
block 12 ODEs are still based upon a flat-Earth model! This equation only takes into account the
altitude-dependency of the gravitational acceleration.

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Outputs
yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

Parameters
All parameters for Atmosph are defined within the block itself; Atmosph does not use parameters from
the Matlab workspace.

Connections
in: x comes from the block Integrator (Equations of Motion)
out: yatm is connected to the blocks Airdata1, Airdata2, Airdata3 (all from the subsystem Airdata

Group), Power (Engine Group), Gravity, and xdotcorr (Equations of Motion)

Enter type atmosph.hlp at the command-line for on-line help.
2
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Dimless Level 1 / Level 2 / Aerodynamics Group / Dimless

Type
Masked subsystem, aircraft-independent, necessary for solving the equations of motion.

Description
The masked subsystem block Dimless is used to obtain non-dimensional roll, pitch, and yaw rates,
needed by the aerodynamic model of the ‘Beaver’. If you plan to implement a model of another aircraft
within the structure of the ‘Beaver’ model, be sure to compare the definitions of non-dimensional
variables with the equations given below. Many textbooks use different expressions for making the
angular velocities non-dimensional; the definitions used here are typical for most models developed
within the section Stability and Control of the Faculty of Aerospace Engineering. Apart from this,
the equations are independent of the aircraft under consideration.

Equations
• Non-dimensional roll rate:

p → p b

2V

• Non-dimensional pitch rate:

q → qc

V

• Non-dimensional yaw rate:

r → r b

2V

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Outputs
ydl = [ pb

2V
qc
V

rb
2V
]T non-dimensional angular velocities, ydl

Parameters
Dimless needs the parameter vector GM1 for reading out the wing span b and mean aerodynamic chord
c. Use the routine MODBUILD (section 9.2) to define this vector, or use LOADER (section 9.3.1) to
load it into the Matlab workspace. See appendix D for the definition of GM1.

Connections
in: x comes from the block Integrator (Equations of Motion)
out: ydl is connected to Aeromod (Aerodynamics Group)

Enter type dimless.hlp at the command-line for on-line help.
2
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Engine Group (Beaver) Level 1 / Level 2 / Engine Group

Type
Non-masked subsystem, aircraft-dependent, necessary for solving state equations.

Description
The subsystem Engine Group contains blocks which determine the engine power of the ‘Beaver’ and
compute the resulting forces and moments due to operation of the powerplant, including contributions
of the propeller slipstream. Naturally, this subsystem is dependent of the aircraft under consideration.
Users who want to adapt the system Beaver for the implementation of a model of another aircraft
need to replace the engine model from this subsystem.

Subsystems/masked blocks
There are three masked subsystems contained within the subsystem Engine Group:

Power: computes the engine power and the non-dimensional pressure increase across the propeller
for the ‘Beaver’ aircraft

Engmod: computes non-dimensional force and moment coefficients which are caused by the operation
of the powerplant, including slipstream effects

FMdims: makes the non-dimensional force and moment coefficients dimensional

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

uprop = [ n pz ]
T external propulsion inputs, uprop

yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

yad1 = [ a M qdyn ]
T basic airdata variables, yad1

Outputs
ypow = [ dpt P ]T engine power related variables, ypow

Cprop = [ CXp CYp Czp Clp Cmp
Cnp ]

T propulsive force and moment coefficients, Cprop

FMprop= [ Xp Yp Zp Lp Mp Np ]
T dimensional propulsive forces and moments, FMprop

Parameters
The block Engmod needs the engine model parameter matrix EM; FMdims needs the parameter vector
GM1. Use the routine MODBUILD (section 9.2) to define these parameters, or use LOADER (sec-
tion 9.3.1) to load them into the Matlab workspace. See appendix D for the definitions of EM and
GM1.

Connections
in: x comes from the block Integrator (Equations of Motion); uprop is an external input vector with

engine inputs; yatm comes from Atmosph (Airdata Group); yad1 comes from Airdata1 (Airdata
Group)

out: ypow which leaves Power (Engine Group) is connected to the block Engmod (Engine Group); Cprop

from Engmod (Engine Group) is connected to FMdims (Engine Group); FMprop from FMdims
(Engine Group) is connected to FMsort

Enter type enggrp.hlp at the command-line for on-line help.
2
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Engmod (Beaver) Level 1 / Level 2 / Engine Group / Engmod

Type
Masked subsystem, aircraft-dependent, necessary for solving the equations of motion.

Description
The masked subsystem block Engmod (Beaver) contains the engine forces and moments model for
the ‘Beaver’ aircraft, according to ref.[26]. It computes the force and moment coefficients which are
caused by the operation of the powerplant, including the contribution of the propeller slipstream. This
engine forces and moments model can be used as a typical example for other propeller-driven aircraft.
Obviously, this block is aircraft-dependent, which implies that it must be replaced if a model of another
aircraft is to be implemented within the FDC structure. Due to the black-box character of this block,
this is not too difficult, even if the structure of the engine model itself differs considerably from the
polynomial structure of the ‘Beaver’ model (e.g. a model which is based upon multi-dimensional look-
up tables), or if the aircraft has another type of engine (e.g. a jet engine instead of a piston-driven
propeller) or more than one engine.

Equations
• Non-dimensional force and moment coefficients along the body axes due to operation of the power-
plant, including the influence of the propeller slipstream (see ref.[26]):

CXp = CXdpt
dpt + CX

αdpt2
α dpt2

CYp = 0

CZp = CZdpt
dpt

Clp = Cl
α2dpt

α2dpt

Cmp
= Cmdpt

dpt

Cnp = Cndpt3
dpt3

See table C.4 in appendix C for the values of the stability derivatives from the polynomial equations
for the non-dimensional propulsive forces and moments. See also the description of MODBUILD in
chapter 4.

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

ypow = [ dpt P ]T engine power related variables, ypow

Outputs
Cprop = [ CXp CYp Czp Clp Cmp

Cnp ]
T propulsive force and moment coefficients, Cprop

Parameters
Engmod needs the parameter matrix EM for reading out the stability coefficients of the engine forces
and moments model. Use the routineMODBUILD (section 9.2) for defining this matrix, or use LOADER
(section 9.3.1) to load it into the Matlab workspace. See appendix D for the definition of EM.

Connections
in: x comes from the block Integrator (Equations of Motion); ypow comes from Power (Engine Group)
out: Cprop is connected to FMdims (Engine Group)

Enter type engmod.hlp at the command-line for on-line help.
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Eulerdot Level 1 / Level 2 / Aircraft Equations of Motion / 12 ODEs / Eulerdot

Type
Masked subsystem, aircraft-independent, contains three state equations.

Description
The masked subsystem block Eulerdot is used to compute the time-derivatives of the Euler angles, i.e.
the yaw angle ψ, pitch angle θ, and roll angle ϕ, which belong to the twelve time-derivatives of the
state variables of the non-linear aircraft model. Eulerdot is contained within the subsystem 12 ODEs,
which itself is contained within the subsystem Aircraft Equations of Motion. In 12 ODEs the three
outputs from Eulerdot are Muxed together with the time-derivatives of the other nine state variables.

Equations
• Time-derivatives of the Euler angles ψ, θ, and ϕ, [rad s−1]:

ψ̇ =
q sinϕ+ r cosϕ

cos θ

θ̇ = q cosϕ− r sinϕ
ϕ̇ = p+ ψ̇ sin θ

Inputs
ueul = [ xT Ftot

T Mtot
T yhlp

T ]T input vector to Eulerdot, ueul

where:

x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Ftot = [ Fx Fy Fz ]
T total external forces, Ftot

Mtot = [ L M N ]T total external moments, Mtot

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

Outputs
yeul = [ ψ̇ θ̇ ϕ̇ ]T (part of ẋ) time-derivatives of the Euler angles, yeul

Parameters
none

Connections
in: x comes from the block Integrator (Equations of Motion); Ftot and Mtot come from FMsort; yhlp

comes from Hlpfcn
out: yeul isMuxed together with the time-derivatives of the other state variables into the vector ẋ (not

corrected for the implicit nature of the β̇-equation), which is connected to xdotcorr (Equations of
Motion)

Enter type eulerdot.hlp at the command-line for on-line help.
2
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Flpath Level 1 / Level 2 / Additional Outputs / Flpath

Type
Masked subsystem, aircraft-independent, not necessary for solving the equations of motion.

Description
The masked subsystem Flpath is used to compute some flight-path (-related) variables. Its outputs
are not used by any other block from the non-linear aircraft model, hence they are not essential for
solving the equations of motion. For this reason, the block Flpath has been put in the subsystem
Additional Outputs, which may be deleted from the non-linear aircraft model at any time. You are
free to add or delete equations to/from this subsystem according to your own needs.

Equations
• Flight-path angle γ, [rad ]:

γ = arcsin

(

Ḣ

V

)

• Flight-path acceleration fpa = acceleration in the direction of the true airspeed vector V, [g ]:

fpa =
V̇

g0

with g0 = 9.80665 ms
−1 = gravitational acceleration at sea level.

• Azimuth angle χ, [rad ]:

χ = β + ψ

• Bank angle Φ, [rad ]:

Φ = ϕ cos(θ − α0)

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot

Outputs
yfp = [ γ fpa χ Φ ]

T flight-path variables, yfp

Parameters
Flpath needs the steady-state value of the angle of attack α0 for computing the bank angle. This initial
value is extracted from the vector xinco, which can be computed with the aircraft trim routine ACTRIM
(section 8.2) or loaded into the Matlab workspace from a file, using INCOLOAD (section 9.3.2). The
gravity constant g0, which is used to normalize the flight-path acceleration fpa is defined within the
block Flpath itself.

Connections
in: x comes from the block Integrator (Equations of Motion); ẋ comes from xfix (Equations of Motion)
out: yfp is not connected to any other block in the system Beaver

Enter type flpath.hlp at the command-line for on-line help.
2
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FMdims Level 1 / Level 2 / Aerodynamics Group / FMdims

Level 1 / Level 2 / Engine Group / FMdims

Type
Masked subsystem, aircraft-independent, necessary for solving state equations.

Description
For the ‘Beaver’ aircraft, both the aerodynamic model and the engine forces and moments model
express the forces and moments in terms of non-dimensional coefficients. The masked subsystem block
FMdims is used to obtain dimensional forces and moments from these non-dimensional coefficients.
The equations used here are typical for most aircraft models used within the section Stability and
Control of the Faculty of Aerospace Engineering, but other textbooks may use different equations.

Equations
• Dimensional forces, [N ]:

Xa = CXa qdyn S
Ya = CYa qdyn S
Za = CZa qdyn S

• Dimensional moments, [Nm]:

La = Cla qdyn S b
Ma = Cma

qdyn S c
Na = Cna qdyn S b

(replace the index a by p for FMdims in the subsystem Engine Group).

Inputs
yad1 = [ a M qdyn ]

T basic airdata variables, yad1

Caero = [ CXa CYa Cza Cla Cma
Cna ]

T aerodynamic force and moment coefficients, Caero

or:

Cprop = [ CXp CYp Czp Clp Cmp
Cnp ]

T propulsive force and moment coefficients, Cprop

Outputs
FMaero= [ Xa Ya Za La Ma Na ]

T dimensional aerodynamic forces and moments, FMaero

or:

FMprop= [ Xp Yp Zp Lp Mp Np ]
T dimensional propulsive forces and moments, FMprop

Parameters
FMdims needs the parameter vector GM1 for reading out the mean aerodynamic chord c, the wing
span b, and the wing surface S. Use the routine MODBUILD (section 9.2) to define this vector, or use
LOADER (section:9.3.1) for loading it into the Matlab workspace. See appendix D for the definition
of GM1.

Connections
in: yad1 comes from Airdata1 (Airdata Group); Caero comes from Aeromod (Aerodynamics Group);

Cprop comes from Engmod (Engine Group)
out: FMaero or FMprop are connected to FMsort

Enter type fmdims.hlp at the command-line for on-line help.
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FMsort Level 1 / Level 2 / FMsort

Type
Masked subsystem, aircraft-independent, necessary for solving state equations.

Description
The masked subsystem block FMsort is used to compute the resulting forces and moments and to sort
them in two separate vectors. Its inputs are vectors from the blocks Aerodynamics Group, Engine Group,
Gravity, and Fwind, in which the different contributions to the external forces and moments acting upon
the aircraft are computed. By using a separate block FMsort for sorting these forces and moments and
adding the different contributions to each other, it becomes easy to implement other contributions to
these forces and moments within the model, e.g. forces from the landing gear for taxiing aircraft. For
such enhancements the user must include the appropriate subsystem(s) for computing the additional
contributions to the body-axes forces and moments and make the appropriate changes to the block
FMsort (after unmasking this block).

Equations
• Resulting forces along the body-axes, [N ]:

Fx = Xa +Xp +Xgr +Xw

Fy = Ya +Yp +Ygr +Yw
Fz = Za +Zp +Zgr +Zw

• Resulting moments about the body-axes, [Nm]:

L = La +Lp
M = Ma +Mp

N = Na +Np

Inputs
FMaero= [ Xa Ya Za La Ma Na ]

T dimensional aerodynamic forces and moments, FMaero

FMprop= [ Xp Yp Zp Lp Mp Np ]
T dimensional propulsive forces and moments, FMprop

Fgrav = [ Xgr Ygr Zgr ]
T gravity force components along body-axes, Fgrav

Fwind = [ Xw Yw Zw ]
T corrections to body-axes forces in non-steady atmosphere, Fwind

Outputs
Ftot = [ Fx Fy Fz ]

T total external forces, Ftot

Mtot = [ L M N ]T total external moments, Mtot

Parameters
none

Connections
in: FMaero comes from Aeromod (Aerodynamics Group); FMprop comes from Engmod (Engine Group);

Fgrav comes from Gravity; Fwind comes from Fwind
out: Ftot andMtot are both connected to Vabdot, pqrdot, Eulerdot, and xyHdot (all from the subsystem

Equations of Motion / 12 ODEs); Ftot is also connected to Accel (Additional Outputs)

Enter type fmsort.hlp at the command-line for on-line help.
2
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Fwind Level 1 / Level 2 / Fwind

Type
Masked subsystem, aircraft-independent, necessary for solving the equations of motion in a non-steady
atmosphere.

Description
The masked subsystem block Fwind is used to compute correction terms which are to be added to the
forces along the aircraft’s body-axes if flight in non-steady atmosphere is considered. These correction
terms depend upon the components of the wind velocity vector Vw along the aircraft’s body-axes, the
time-derivatives of these wind components, and the roll, pitch, and yaw rates of the aircraft.

Equations
• Correction terms to the body-axes forces in non-steady atmosphere, [N ]:

Xw = −m (u̇w + qww − rvw)
Yw = −m (v̇w − pww + ruw)
Zw = −m (ẇw + pvw − quw)

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

uwind = [ uw vw ww u̇w v̇w ẇw ]
T

wind velocity components along body-axes
and their time-derivatives, uwind

Outputs
Fwind = [ Xw Yw Zw ]

T corrections to body-axes forces in non-steady atmosphere, Fwind

Parameters
Fwind needs the parameter vector GM1 in order to extract the mass m of the aircraft (the mass
has been implemented as a parameter, i.e. it is assumed that it is constant during the relative short
time intervals considered). Use the routine MODBUILD (section 9.2) to define GM1, or use LOADER
(section 9.3.1) to load it into the Matlab workspace. See appendix D for the definition of GM1.

Connections
in: x comes from the block Integrator (Equations of Motion); uwind is an external input vector with

wind and turbulence velocities and the time-derivatives of these velocity components
out: Fwind is connected to FMsort

Enter type fwind.hlp at the command-line for on-line help.
2
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Gravity Level 1 / Level 2 / Gravity

Type
Masked subsystem, aircraft-independent, necessary for solving state equations.

Description
The masked subsystem block Gravity computes the contribution of the aircraft’s weight W along the
body-axes. In order to do so, the Euler angles ψ, θ, and ϕ need to be known. In the current model,
the gravitational acceleration varies with height. This variable is obtained from the block Atmosph.

Equations
• Contribution of the aircraft weight to the forces along the body-axes, [N ]:

Xgr = − W sin θ
Ygr = W cos θ sinϕ
Zgr = W cos θ cosϕ

with: W = mg = weight of the aircraft, [N ].

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

Outputs
Fgrav = [ Xgr Ygr Zgr ]

T gravity force components along body-axes, Fgrav

Parameters
Gravity needs the parameter vector GM1 in order to read out the massm (which has been implemented
as a parameter, i.e. it is assumed to be constant during the relatively short time interval considered).
Use the routine MODBUILD (section 9.2) to define GM1, or use LOADER (section 9.3.1) to load it
into the Matlab workspace. See appendix D for the definition of GM1.

Connections
in: x comes from the block Integrator (Equations of Motion); yatm comes from Atmosph (Airdata

Group)
out: Fgrav is connected to FMsort

Enter type gravity.hlp at the command-line for on-line help.
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Hlpfcn Level 1 / Level 2 / Hlpfcn

Type
Masked subsystem, aircraft-independent help-function block, necessary for solving the equations of
motion due to the current model structure.

Description
The masked subsystem block Hlpfcn is used to compute some frequently used sines and cosines of
the angle of attack, sideslip angle, and Euler angles. These computations have been combined in one
block for reasons of efficiency; in this way many double computations have been eliminated in the
simulation model. The outputs from this blocks are used by several other subsystems. For this reason,
the block Hlpfcn has been included in a feedback loop within the system Beaver.

Equations
Hlpfcn simply computes the required sines and cosines, and puts the results into one vector.

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Outputs
yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

Parameters
none

Connections
in: x comes from the block Integrator (Equations of Motion)
out: yhlp is connected to uvw, xdotcorr (Equations of Motion), Eulerdot, pqrdot, Vabdot, xyHdot (all

from the subsystem Equations of Motion / 12 ODEs, and uvwdot (Additional Outputs)

Enter type hlpfcn.hlp at the command-line for on-line help.
2
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Integrator Level 1 / Level 2 / Aircraft Equations of Motion / Integrator

Type
Standard Simulink block, necessary for solving the equations of motion.

Description
The block Integrator is used to obtain the time-trajectories of the twelve state variables from their
time-derivatives. It expects the initial values of the state variables to be defined within the Matlab
workspace before starting a new simulation.

Equations
• Update of the state vector for the current time-step:

x(tn+1) = x(tn) +

∫ tn+1

tn

ẋ(t)dt; n = 0, 1, . . .

where the integral is approximated by a numerical integration method as explained in section 4.2.

Inputs
ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot

Outputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Parameters
The initial value of the state vector must be defined in the vector xinco. A steady-state initial value
can be computed with the aircraft trim routine ACTRIM (section 8.2), or it can be loaded into the
Matlab workspace from a file, using INCOLOAD (section 9.3.2). Of course, it is also possible to
manually define xinco.

Connections
in: ẋ comes from the block xdotcorr (Equations of Motion)
out: x is connected to most other blocks in the system Beaver 2
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Level 1 Level 1

Type
First level of aircraft model (graphical Simulink system which contains the input/output blocks for
the aircraft model.

Description
The first level of the system Beaver fulfills the input/output functions of this system. All inputs and
outputs are sent to the workspace by means of To Workspace blocks. A time-signal is also sent to the
workspace in order to make it possible to plot the simulation results. The most important outputs
are connected to Outport blocks. These outputs can be used by other Simulink systems. Inputs from
other Simulink systems are sent through by means of twelve Inport blocks (six control inputs, and six
Inports for atmospheric disturbances). Unfortunately, Simulink does not allow passing vector signals
through the Inports and Outports in the first level of a graphical system. This is why only a subset
of the outputs from Beaver leave the system through these Outport blocks. All results are available
in the workspace, however. The signals which are passed through the Inports and Outports are called
S-function inputs and outputs, respectively in all help-files for the FDC toolbox.

Subsystems/masked blocks
The first level of the system Beaver contains Inport, Outport, Mux, Demux, and To Workspace blocks
to manipulate the inputs and outputs from this system. A clock block has been included to provide
a time-basis for plotting purposes in the Matlab workspace. The actual aircraft model is contained
in the subsystem Beaver dynamics and output equations, which has shortly been denoted by Level 2 in
this report.

Inputs
The inputs to Level 1 are the twelve S-function inputs to the system Beaver: δe, δa, δr, δf , n, pz, uw,
vw, ww, u̇w, v̇w, and ẇw. These inputs are connected to scalar Inport blocks and Muxed in order to
obtain the three external input vectors uaero , uprop , and uwind . See the description of Level 2 for the
definitions of these vectors. See also figure 5.2 from section 5.1.

Outputs
Level 1 has sixteen S-function outputs, which are connected to scalar Outport blocks: V , α, β, p, q, r,
ψ, θ, ϕ, xe, ye, H, Ḣ,

pb
2V
, qc
V
, and rb

2V
. These outputs are obtained from the output vectors x, ẋ, and

ydl, as shown in figure 5.2 from section 5.1. In addition, all output signals from the subsystem Level
2 are sent to the Matlab workspace by means of To Workspace blocks. See the description of Level
2 for the definitions of the output vectors.

Parameters
The subsystem Beaver dynamics and output relations (Level 2) needs the variables AM , EM , GM1 ,
GM2 , xfix , and xinco, which contain the model parameters for the ‘Beaver’, to be defined in the
Matlab workspace. See the description of Level 2 for more details.

Connections

Level 1 is the I/O level of the system Beaver, where all input and output vectors areMuxed together and
sent to theMatlab workspace by means of To Workspace blocks (see the on-line help files inputs.hlp
and outputs.hlp for more details). All inputs are sent to and all outputs are extracted from the
subsystem Level 2.

Enter type level1.hlp at the command-line for on-line help.
2
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Level 2 Level 1 / Level 2

Type
Subsystem of Level 1 which contains the actual modular non-linear aircraft model.

Description
The second level of the system Beaver contains the actual implementation of the non-linear aircraft
model. Its block-diagram is shown in figure 5.1 in section 5.1 (compare this diagram with the scheme
from figure 3.2 in chapter 3).

Subsystems/masked blocks
There are four masked subsystem blocks contained in Level 2:

FMsort: adds the different contributions to the external forces and moments and sorts out separate
vectors with the force and moment components along the aircraft’s body-axes

Fwind: computes the contributions to the external forces and moments due to non-steady atmos-
phere (wind and turbulence)

Gravity: computes the gravitational forces along the aircraft’s body-axes

Hlpfcn: computes sines and cosines of α, β, ψ θ, and ϕ, needed by other blocks from Beaver

In addition, Level 2 contains five non-masked subsystems:

Additional outputs: computes some ‘additional’ output variables which are not necessary for the so-
lution of the equations of motion themselves (in this case, additional accelerations and flight-path
variables are determined)

Aerodynamics Group (Beaver): computes the aerodynamic forces and moments for the ‘Beaver’ aircraft

Aircraft equations of motion (Beaver): contains the general differential equations for the rigid-body
dynamics plus an aircraft-dependent correction for the time-derivatives of the state variables

Airdata Group: computes airdata (-related) variables

Engine Group (Beaver): computes the propulsive forces and moments for the ‘Beaver’ aircraft

See figure 5.1 in section 5.1 for more details.

Inputs
uaero = [ δe δa δr δf ]

T aerodynamic control inputs, uaero

uprop = [ n pz ]
T external propulsion inputs, uprop

uwind = [ uw vw ww u̇w v̇w ẇw ]
T

wind velocity components along body-axes
and their time-derivatives, uwind

Outputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot

ybvel = [ u v w ]T body-axes velocity components, ybvel

yuvw = [ u̇ v̇ ẇ ]T time-derivatives of body-axes velocities, yuvw

ydl = [ pb
2V

qc
V

rb
2V
]T non-dimensional angular velocities, ydl

yfp = [ γ fpa χ Φ ]
T flight-path variables, yfp

ypow = [ dpt P ]T engine power related variables, ypow

yacc = [ Ax Ay Az ax,k ay,k az,k ]
T specific forces and accelerations, yacc

Caero = [ CXa CYa CZa Cla Cma
Cna ]

T aerodynamic force and moment coefficients, Caero

Cprop = [ CXp CYp Czp Clp Cmp
Cnp ]

T propulsive force and moment coefficients, Cprop

FMaero= [ Xa Ya Za La Ma Na ]
T dimensional aerodynamic forces and moments, FMaero

FMprop= [ Xp Yp Zp Lp Mp Np ]
T dimensional propulsive forces and moments, FMprop

Fgrav = [ Xgr Ygr Zgr ]
T gravity forces, Fgrav
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Fwind = [ Xw Yw Zw ]
T corrections to body-axes forces in non-steady atmosphere, Fwind

yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

yad1 = [ a M qdyn ]
T basic airdata variables, yad1

yad2 = [ qc Ve Vc ]
T additional airdata (-related) variables, yad2

yad3 = [ Tt Re Rc ]
T additional airdata (-related) variables, yad3

Parameters
The subsystems from Level 2 require the variables AM , EM , GM1 , GM2 , xfix , and xinco to be defined
in the Matlab workspace. The following list shows which variables are needed by which (masked or
non-masked) subsystem from Level 2:

AM: Aerodynamics Group (Beaver),Aircraft Equations of Motion (Beaver)

EM: Engine Group (Beaver)

GM1: Additional Outputs, Aerodynamics Group (Beaver), Aircraft Equations of Motion (Beaver),
Airdata Group, Engine Group (Beaver), Fwind, Gravity

GM2: Aircraft Equations of Motion (Beaver)

xfix: Aircraft Equations of Motion (Beaver)

xinco: Additional Outputs, Aircraft Equations of Motion (Beaver)

The variables AM , EM , GM1 , and GM2 can be defined by the routine MODBUILD (section 9.2) or
retrieved from file by LOADER (section 9.3.1). The variable xfix can be used to fix state variables
artificially to their initial values. It is defined by LOADER and can be altered by FIXSTATE (section 9.5)
if required. The initial value of the state vector is obtained from xinco, which can be computed with
the trim routine ACTRIM (section 8.2), or loaded from file with INCOLOAD (section 9.3.2).

Connections
in: all input vectors are obtained from Level 1 by means of Inport blocks in Level 2
out: all output vectors from the aircraft model (except for some very trivial results such as the help

vector yhlp are sent to Level 1 by means of standard Outport blocks

Enter type level2.hlp at the command-line for on-line help.
2
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Power (Beaver) Level 1 / Level 2 / Engine Group / Power

Type
Masked subsystem block, aircraft-dependent, necessary for solving state equations.

Description
The masked subsystem block Power (Beaver) is used to compute the engine power P and the non-
dimensional increase in total pressure across the propeller dpt. For the ‘Beaver’, there is a simple
relation between P , dpt , and the airspeed V . Moreover, the engine power itself is expressed by only
one simple equation, which made it very easy to implement the engine model of the ‘Beaver’ in the
masked Simulink subsystem Power. See also ref.[26]. The non-dimensional pressure-increase is used
to compute the contribution of the engine to the external forces and moments and the influence of
changes in airspeed. Obviously, the block Power (Beaver) will need to be replaced by another engine
model if the FDC model structure is used to implement a model of another aircraft. In that case, it
may be necessary to use more complex solutions, such as a table lookup routine instead of the simple
equations used here. Due to the black-box structure of the model, this shouldn’t be a problem.

Equations
• Non-dimensional pressure increase across the propeller dpt, [− ]:

dpt =
∆pt
1
2
ρV 2

= C1 + C2

(
P

1
2
ρV 3

)

with P
1
2
ρV 3 measured in [kW kg−1 s3] and: C1 = 0.08696, C2 = 191.18, see ref.[26].

• Engine power P , [Nms−1]:

P = 0.7355

{

−326.5 +
(

0.00412(pz + 7.4)(n+ 2010) + (408.0− 0.0965n)
(

1.0− ρ

ρ0

))}

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

uprop = [ n pz ]
T external propulsion inputs, uprop

yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

Outputs
ypow = [ dpt P ]T engine power related variables, ypow

Parameters
Power does not use parameters from theMatlab workspace; it defines all required parameters within
the block itself.

Connections
in: x comes from the block Integrator (Equations of Motion); uprop is an external input vector with

engine inputs; yatm comes from Atmosph (Airdata Group)
out: ypow is connected to Engmod (Engine Group)

Enter type power.hlp at the command-line for on-line help.
2
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pqrdot Level 1 / Level 2 / Aircraft Equations of Motion / 12 ODEs / pqrdot

Type
Masked subsystem block, aircraft-independent, contains three state equations.

Description
The masked subsystem block pqrdot is used to compute the time-derivatives of the roll rate p, pitch
rate q, and the yaw rate r. These time-derivatives are functions of the angular velocities themselves
and the external moments about the body-axes of the aircraft, as shown in the equations below. The
coefficients Ppp, Ppq, Ppr, ... , Rm, and Rn are inertia parameters, see table B.2 in appendix B.
The block pqrdot is contained in the subsystem 12 ODEs, which itself is contained in the subsystem
Aircraft Equations of Motion. In 12 ODEs the three outputs from pqrdot are Muxed together with the
time-derivatives of the other nine state variables.

Equations
• Time-derivatives of the angular velocities along the body-axes, [rad s−2]:

ṗ = Pppp
2 + Ppqpq + Pprpr + Pqqq

2 + Pqrqr + Prrr
2 + PlL+ PmM + PnN

q̇ = Qppp
2 +Qpqpq +Qprpr +Qqqq

2 +Qqrqr +Qrrr
2 +QlL+QmM +QnN

ṙ = Rppp
2 +Rpqpq +Rprpr +Rqqq

2 +Rqrqr +Rrrr
2 +RlL+RmM +RnN

Inputs
upqr = [ xT Ftot

T Mtot
T yhlp

T ]T input vector to pqrdot, upqr

where:

x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Ftot = [ Fx Fy Fz ]
T total external forces, Ftot

Mtot = [ L M N ]T total external moments, Mtot

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

Outputs
ypqr = [ ṗ q̇ ṙ ]T (part of ẋ) time-derivatives of the angular velocities, ypqr

Parameters
The block pqrdot needs the parameter matrix GM2 for reading out the inertia parameters (note: the
moments and products of inertia are considered to be constant during the motions of interest). Use
the routine MODBUILD (section 9.2) to define this matrix, or use LOADER (section 9.3.1) to load it
into the Matlab workspace. See appendix D for the definition of GM2.

Connections
in: x comes from the block Integrator (Equations of Motion); Ftot and Mtot come from the block

FMsort; yhlp comes from the block Hlpfcn
out: ypqr is Muxed together with the time-derivatives of the other state variables into the vector ẋ

(not corrected for implicit nature of the β̇-equation), which is connected to xdotcorr (Equations
of Motion)

Enter type pqrdot.hlp at the command-line for on-line help.
2
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uvw Level 1 / Level 2 / Aircraft Equations of Motion / uvw

Type
Masked subsystem block, aircraft-independent, necessary for solving state equations.

Description
The block uvw is used to compute the body-axes velocity components from the angle of attack α,
sideslip angle β, and true airspeed V . This is necessary for determining the coordinates xe and ye
and the altitude H of the aircraft.

Equations
• Velocity component u along the XB-axis, [ms

−1]:

u = V cosα cosβ

• Velocity component v along the YB-axis, [ms−1]:

v = V sinβ

• Velocity component w along the ZB-axis, [ms−1]:

w = V sinα cosβ

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

Outputs
ybvel = [ u v w ]T body-axes velocity components, ybvel

Parameters
none

Connections
in: x comes from the block Integrator (Equations of Motion); yhlp comes from Hlpfcn
out: ybvel is connected to xyHdot (Equations of Motion / 12 ODEs)

Enter type uvw.hlp at the command-line for on-line help.
2
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uvwdot Level 1 / Level 2 / Additional Outputs / uvwdot

Type
Masked subsystem block, aircraft-independent, not necessary for solving the equations of motion (does
not contain any state equations itself, because it is an additional-output block).

Description
For some purposes it may be useful to know the time-derivatives of the body-axes velocity components
u, v, and w in addition to the body-axes velocity components themselves. Since u, v, and w are not
used as state variables of the aircraft model – they were replaced by V , α, and β – their time-derivatives
are not needed for solving the equations of motion themselves. (The velocity components u, v, and w
are computed in the block uvw as a function of V , α, and β; uvw is contained in the subsystem Aircraft
Equations of Motion.) Therefore a separate block uvwdot is used to compute these time-derivatives.
This block has been included in the subsystem Additional Outputs (!) in order to make clear that this
block can be deleted from the system without affecting the solutions of the equations of motion.

Equations
• Time-derivative of the velocity component along the XB-axis, [ms

−2]:

u̇ = V̇ cosα cosβ − V (α̇ sinα cosβ + β̇ cosα sinβ)

• Time-derivative of the velocity component along the YB-axis, [ms−2]:

v̇ = V̇ sinβ + V β̇ cosβ

• Time-derivative of the velocity component along the ZB-axis, [ms−2]:

ẇ = V̇ sinα cosβ + V (α̇ cosα cosβ − β̇ sinα sinβ)

Inputs
x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

Outputs
yuvw = [ u̇ v̇ ẇ ]T time-derivatives of the body-axes velocity components, yuvw

Parameters
none

Connections
in: x comes from the block Integrator (Equations of Motion); ẋ comes from the block xfix (Equations

of Motion); yhlp comes from the block Hlpfcn;
out: yuvw is not connected to any other block from the system Beaver (!)

Enter type uvwdot.hlp at the command-line for on-line help.
2
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Vabdot Level 1 / Level 2 / Aircraft Equations of Motion / 12 ODEs / Vabdot

Type
Masked subsystem block, aircraft-independent, contains three state equations.

Description
The masked subsystem block Vabdot computes the time-derivatives of the true airspeed V , angle of
attack α, and sideslip angle β. Since V , α, and β are state variables of the dynamic model, their time-
derivatives are essential for solving the equations of motion. The block Vabdot is contained within the
subsystem 12 ODEs, which itself is a subsystem of Aircraft Equations of Motion. In 12 ODEs the three
outputs from Vabdot are Muxed together with the time-derivatives of the other nine state variables.

Equations
• Time-derivative of the true airspeed V , [ms−2]:

V̇ =
1

m
(Fx cosα cosβ + Fy sinβ + Fz sinα cosβ)

• Time-derivative of the angle of attack α, [rad s−1]:

α̇ =
1

V cosβ

{
1

m
(−Fx sinα+ Fz cosα)

}

+ q − (p cosα+ r sinα) tanβ

• Time-derivative of the sideslip angle β, [rad s−1]:

β̇ =
1

V

{
1

m
(−Fx cosα sinβ + Fy cosβ − Fz sinα sinβ)

}

+ p sinα− r cosα

Inputs
uVab = [ xT Ftot

T Mtot
T yhlp

T ]T input vector to Vabdot, uVab

where:

x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Ftot = [ Fx Fy Fz ]
T total external forces, Ftot

Mtot = [ L M N ]T total external moments, Mtot

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

Outputs
yVab = [ V̇ α̇ β̇ ]T (part of ẋ) time-derivatives of V , α, and β, yVab

Parameters
Vabdot needs the parameter vector GM1 in order to retrieve the mass m (the mass is used as a
parameter, i.e. it is assumed to be constant during the relatively short time-interval considered). Use
the routine MODBUILD (section 9.2) to define this vector, or use LOADER (section 9.3.1) to load it
into the Matlab workspace. See appendix D for the definition of GM1.

Connections
in: x comes from the block Integrator (Equations of Motion); Ftot and Mtot come from FMsort; yhlp

comes from Hlpfcn
out: yVab is Muxed together with the time-derivatives of the other state variables into the vector ẋ

(not corrected for the implicit nature of the β̇-equation), which is connected to xdotcorr (Equations
of Motion)

Enter type vabdot.hlp at the command-line for on-line help.
2
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xdotcorr (Beaver) Level 1 / Level 2 / Aircraft Equations of Motion / xdotcorr

Type
Masked subsystem block, aircraft-dependent, necessary for solving state equations.

Description
The differential equation for the sideslip angle from the ‘Beaver’ model is implicit, because β̇ appears
on both sides of the equation: β̇ is a function of the sideforce Fy, while the aerodynamic component

of this sideforce itself depends upon β̇. Since such implicit equations are difficult for Simulink to
solve (see section 4.2.7), this equation must be expanded to an explicit ODE. For the ‘Beaver’ model
this is relatively easy since both dependencies are linear, but the resulting β̇-equation then contains
an aircraft-dependent term which ruins the anticipated aircraft-independent model structure. This
problem has been solved by neglecting the β̇-term during the computation of the aerodynamic side-
force (see the description of Aeromod) and applying the appropriate corrections to the thus computed
value of β̇ in a separate correction block xdotcorr. Here, the correction block has been configured
for the ‘Beaver’ model. The block xdotcorr is the only block in the subsystem Aircraft Equations of
Motion that needs to be replaced if a model of another aircraft is to be implemented. Still, this one
aircraft-dependent block is one too many, so in future versions of the FDC toolbox this problem should
be solved differently.

Equations
The β̇-equation for the ‘Beaver’ can be written as:

β̇ =
1

V m

(

−Fx cosα sinβ + Fy∗ cosβ − Fz sinα sinβ +
1

2
ρV 2SCYβ̇

β̇b

2V
cosβ

)

+ p sinα− r cosα

where Fy
∗ is the side-force without the contribution of β̇. The β̇-term on the right hand side

of this equation is moved to the left-hand side:

β̇∗ ≡ β̇

(

1− ρSb

4m
CYβ̇ cosβ

)

=
1

V m
(−Fx cosα sinβ + Fy∗ cosβ − Fz sinα sinβ) + p sinα− r cosα

Based upon this equation the following calculation sequence has been used in the system
Beaver:

1. the external forces and moments are computed as usual, except for the β̇-contribution
to the aerodynamic side-force,

2. the thus obtained forces and moments are substituted into the general β̇ equation,
yielding β̇∗ instead of β̇,

3. the true value of β̇ is computed with the expression β̇ = β̇∗
(

1− ρSb
4mCYβ̇

)−1
.

The last step represents a correction to the originally computed value of β̇, which was denoted
as β̇∗; this correction is contained in xdotcorr. See also sectionsec:implicit.

Inputs
ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot (uncorrected for β̇)

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

yatm = [ ρ ps T µ g ]T basic atmospheric properties, yatm

Outputs
ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot (corrected for β̇)

Parameters
The block xdotcorr needs the parameter vector GM1 in order to extract the wing span, wing surface,
and mass of the aircraft (the mass has been implemented as a parameter, i.e. it assumed to be constant
during the relatively short time-intervals considered). It also needs the parameter matrix AM for
reading out the stability derivative CYβ̇ . Use MODBUILD (section 9.2) for defining these parameters,

or use LOADER (section 9.3.1) to load them into the Matlab workspace. See appendix D for the
definitions of GM1 and AM.
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Connections
in: ẋ (not corrected for the implicit nature of the β̇-equation) comes from the subsystem 12 ODEs;

yhlp comes from the block Hlpfcn; yatm comes from the block Atmosph (Airdata Group)

out: ẋ (with β̇-correction) is connected to the block xfix (Equations of Motion)

Enter type xdotcorr.hlp at the command-line for on-line help.
2
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xfix Level 1 / Level 2 / Aircraft Equations of Motion / xfix

Type
Masked Gain block, aircraft-independent, not necessary for solving the equations of motion themselves
but quite useful for purposes such as autopilot design and analysis.

Description
Sometimes it is useful to artificially fix state variables to their initial values by simply setting their
time-derivatives to zero, thus totally disregarding the values of the time-derivatives resulting from the
model equations. For instance, it may be useful to analyze longitudinal-lateral cross-coupling effects
by comparing results from the full model with results obtained by artificially neglecting longitudinal
or lateral motions of the aircraft. Another application is for the design of an ’autothrottle’ which
serves to maintain a constant airspeed by means of power-inputs to the engine. Comparing results
with a system where the airspeed V is artificially fixed to its initial value can help in assessing the
performance of the controller.

The block xfix is a masked Gain block from the Simulink library Linear, which multiplies the time-
derivatives of all state variables with a value of either one (use the computed time-derivative) or zero
(artificially fix the state variable).

Equations
• Modified time-derivative of the state vector, obtained by multiplying the computed value element-
by-element with the vector xfix:

ẋnew = ẋold ∗ xfix =























V̇
α̇

β̇
ṗ
q̇
ṙ

ψ̇

θ̇
ϕ̇
ẋe
ẏe
Ḣ























∗























xfix(1)

xfix(2)

xfix(3)
...
...
...
...
...

xfix(12)























where: xfix(i) =

{
0

1
i ∈ {1, 2, . . . , 12}

Inputs
ẋold = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot (true value)

Outputs
ẋnew = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]T time-derivative of state vector, xdot (partially fixed value)

Parameters
The block xfix requires the multiplication factor of the gain block to be defined in the variable xfix in
theMatlab workspace. This variable is automatically set to 1 by the routine LOADER (section 9.3.1)
if the other system parameters are loaded from file. If it is required to fix individual states, xfix can
either be defined by hand or by calling the routine FIXSTATE (section 9.5).

Connections
in: ẋ comes from the block xdotcorr (Equations of Motion)
out: ẋ (with elements that may have been set to zero artificially) is connected to the block Integrator

(Equations of Motion)

Enter type xfix.hlp at the command-line for on-line help. See also the description of the Matlab
subroutine FIXSTATE in section 9.5 or type help fixstate at the command-line.

2
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xyHdot Level 1 / Level 2 / Aircraft Equations of Motion / 12 ODEs / xyHdot

Type
Masked subsystem block, aircraft-independent, contains three of the state equations.

Description
The masked subsystem block xyHdot computes the time-derivatives of the aircraft’sX and Y -coordinates
xe and ye, measured with respect to the Earth-fixed reference frame, and the rate of climb or descent
Ḣ. The variables xe, ye and H are all state variables of the non-linear aircraft model. For most
purposes it is possible to omit xe and ye in the simulation model, because the motions of the aircraft
are not affected by its coordinates with respect to the Earth. However, for the sake of completeness
these two variables have been included to the model; the coordinates can for instance be used in the
simulation of ILS approaches to a runway. Notice that the altitude H should not be omitted from the
simulation model because of the altitude-dependency of the air temperature, pressure, and density,
which affect the outputs of both the aerodynamic and engine models. The block xyHdot is contained
in the subsystem 12 ODEs, which itself is contained in the subsystem Aircraft Equations of Motion.
In 12 ODEs the three outputs from xyHdot are Muxed together with the time-derivatives of the other
nine state variables.

Equations
• Time-derivative of the X-coordinate xe, [ms−1]:

ẋe = {ue cos θ + (ve sinϕ+ we cosϕ) sin θ} cosψ − (ve cosϕ− we sinϕ) sinψ

• Time-derivative of the Y -coordinate ye, [ms−1]:

ẏe = {ue cos θ + (ve sinϕ+ we cosϕ) sin θ} sinψ + (ve cosϕ− we sinϕ) cosψ

• Time-derivative of the altitude H, [ms−1]:

Ḣ = −że = ue sin θ − (ve sinϕ+ we cosϕ) cos θ

Inputs
y∗bvel = [ u+ uw v + vw w + ww ]

T body-axes velocity components plus wind, ybvel∗

uxyH = [ xT Ftot
T Mtot

T yhlp
T ]T input vector to xyHdot, uxyH

where:

x = [ V α β p q r ψ θ ϕ xe ye H ]T state vector, x

Ftot = [ Fx Fy Fz ]
T total external forces, Ftot

Mtot = [ L M N ]T total external moments, Mtot

yhlp = [ cosα sinα cosβ sinβ tanβ sinψ cosψ sin θ cos θ sinϕ cosϕ ]T

often used sines and cosines, yhlp

Outputs
yxyH = [ ẋe ẏe Ḣ ]T (part of ẋ) time-derivatives of xe, ye, and H, yxyH

Parameters
none

Connections
in: x comes from the block Integrator (Equations of Motion); Ftot and Mtot come from FMsort; yhlp

comes from Hlpfcn; y∗bvel is the sum of the output from uvw (Equations of Motion) and the wind
velocity components from the external input vector uwind

out: yxyH is Muxed together with the time-derivatives of the other state variables into the vector ẋ

(not corrected for the implicit nature of the β̇-equation), which is connected to xdotcorr (Equations
of Motion)

Enter type xyhdot.hlp at the command-line for on-line help. 2
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Chapter 6

FDC implementation of the
atmospheric disturbance models

The FDC library WINDLIB contains the Simulink implementation of the wind and turbulence
models from section 3.3. Figure 6.1 shows the main window of this library, while figures 6.2
and 6.3 show the wind and turbulence sublibraries. The main library can be opened by typing
windlib at the Matlab command-line, or via the main FDC library FDCLIB, which can be
opened by typing fdclib. This chapter describes the different blocks from the library WINDLIB
in alphabetical order.

See section 5.2 for the typographical conventions used in this chapter.

Figure 6.1: Wind and turbulence library WINDLIB
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Figure 6.2: Sublibrary with wind-models

Figure 6.3: Sublibrary with turbulence models
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BLWIND Library WINDLIB / wind / BLWIND

Type
Masked subsystem block.

Description
The block BLWIND calculates components of the wind velocity along the aircraft’s body-axes in the
boundary layer of the Earth (‘BL’ = Boundary Layer), which is about 300 m high. The wind velocity
has been defined as a function of the altitude, while the wind direction can also be defined as a function
of the altitude by the user. By default, a wind profile according to ref.[1] has been implemented.

Equations
• Total wind velocity in the boundary layer of the Earth, [ms−1]:

Vw = Vw 9.15

H0.2545 − 0.4097
1.3470

(0 < h < 300m)

Vw = 2.86585Vw9.15
(h ≥ 300m)

Vw 9.15
is the wind speed at 9.15 m altitude.

• Wind velocity components along the aircraft’s body-axes, [ms−1]:

uw = Vw cos(ψw − π) cosψ + Vw sin(ψw − π) sinψ
vw = −Vw cos(ψw − π) sinψ + Vw sin(ψw − π) cosψ

where ψw is the wind direction with respect to the Earth (ψw = 0 rad if the wind is blowing to the
South).1

Inputs
H altitude, H

ψ heading, psi

Outputs
[ uw vw ww ]

T wind velocities along body-axes, [uw,vw,ww]’

Parameters
BLWIND does not require parameters to be specified, but the user can change the equations for
determining the wind velocity and direction if required by double-clicking the appropriate blocks.

Connections
in: H and ψ are usually extracted from the non-linear aircraft model (enter type outputs.hlp at

the command-line for more information about the outputs from the aircraft model)
out: the wind velocity components can be used as input signals to the aircraft model (note: due to

the non-constant wind it is necessary to enter the time-derivatives of these signals too; send the
outputs from BLWIND through Derivative blocks from the Simulink library Linear andMux these
results together with the velocity components themselves)

Enter type blwind.hlp at the command-line for on-line help.
2

1This axis transformation is performed in the subsystem Wind to body-axes within the block BLWIND.
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CWIND Library WINDLIB / wind / CWIND

Type
Masked subsystem block.

Description
The block CWIND computes components of the wind velocity along the aircraft’s body-axes for a
constant horizontal wind (‘C’ = Constant). The user must specify the wind direction (being the
direction where the wind is blowing from!) and the wind speed after double-clicking the block.

Equations
• Wind velocity components along the aircraft’s body-axes, [ms−1]:

uw = Vw cos(ψw − π) cosψ + Vw sin(ψw − π) sinψ
vw = −Vw cos(ψw − π) sinψ + Vw sin(ψw − π) cosψ

where ψw is the wind direction with respect to the Earth (ψw = 0 rad if the wind is blowing to the
South).1

Inputs
ψ heading, psi

Outputs
[ uw vw ww ]

T wind velocities along body-axes, [uw,vw,ww]’

Parameters
The user must specify the wind velocity and wind direction by double-clicking the block CWIND.

Connections
in: ψ is usually extracted from the non-linear aircraft model (enter type outputs.hlp at the

command-line for more information about the outputs from the aircraft model)
out: the wind velocity components can be used as input signals to the aircraft model

Enter type cwind.hlp at the command-line for on-line help.
2

1Contrary to the block BLWIND, CWIND does not use an additional internal masked subsystem block for the
implementation of this transformation from Earth to body-axes.
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UDRYD1 Library WINDLIB / turbulence / UDRYD1

Type
Masked subsystem block.

Description
The block UDRYD1 generates a turbulence velocity component and its time-derivative along the XB

axis of the aircraft, using a longitudinal Dryden filter with constant coefficients. The user must specify
the longitudinal scale-length of the turbulence Lug , the standard deviation σug , and the expected mean
airspeed of the aircraft. Variations of the filter coefficients with the airspeed are not taken into account
by UDRYD1. These variations usually are very small.

Equations
• Longitudinal turbulence velocity, [ms−1]:

ug(s) = Hugw1
w1(s)

where w1 is a white noise signal, generated internally within the block UDRYD1 and Hugw1
is the

transfer function of the longitudinal turbulence velocity filter.

• Transfer function of longitudinal turbulence filter:

Hugw1
(s) = σu

√

2Lu
V

1

1 + Lu
V
s

Note: the value of V used by UDRYD1 is kept constant during the simulations; it must be specified
by the user.

Inputs
none

Outputs
ug longitudinal turbulence velocity, ug

u̇g time-derivative of longitudinal turbulence velocity, ug dot

Parameters
The user must specify the scale length Lug, the standard deviation σug, and the estimated mean value
of the true airspeed for which the motions are evaluated by double-clicking the block UDRYD1.

Connections
in: no connections
out: ug and u̇g are usually Muxed together with other turbulence velocities and their time-derivatives;

they can be used as inputs to the aircraft model

Enter type udryd1.hlp at the command-line for on-line help.
2
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UDRYD2 Library WINDLIB / turbulence / UDRYD2

Type
Masked subsystem block.

Description
The block UDRYD2 generates a turbulence velocity component and its time-derivative along the XB

axis of the aircraft, using a longitudinal Dryden filter with airspeed-dependent coefficients. The user
must specify the longitudinal scale-length of the turbulence Lug and the standard deviation σug , but
no mean airspeed, since the filter coefficients are updated during the simulations as a function of the
actual airspeed, which is used as input signal.

Equations
• Longitudinal turbulence velocity, [ms−1]:

ug(s) = Hugw1
w1(s)

where w1 is a white noise signal, generated internally within the block UDRYD2 and Hugw1
is the

transfer function of the longitudinal turbulence velocity filter.

• Transfer function of longitudinal turbulence filter:

Hugw1
(s) = σu

√

2Lu
V

1

1 + Lu
V
s

Note: since the value of V used by UDRYD2 is not kept constant during the simulations, a block-
diagram equivalent of this transfer function has been created using the theory from section 4.2.6 in
chapter 4. The gains from this block-diagram equivalent are ‘scheduled’ as a function of the current
value of the airspeed V .

Inputs
V true airspeed, V

Outputs
ug longitudinal turbulence velocity, ug

u̇g time-derivative of longitudinal turbulence velocity, ug dot

Parameters
The user must specify the scale length Lug and the standard deviation σug by double-clicking the
block UDRYD2.

Connections
in: V is usually extracted from the non-linear aircraft model
out: ug and u̇g are usually Muxed together with other turbulence velocities and their time-derivatives;

they can be used as inputs to the aircraft model

Enter type udryd2.hlp at the command-line for on-line help.
2
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VDRYD1 Library WINDLIB / turbulence / VDRYD1

Type
Masked subsystem block.

Description
The block VDRYD1 generates a turbulence velocity component and its time-derivative along the YB
axis of the aircraft, using a lateral Dryden filter with constant coefficients. The user must specify the
lateral scale-length of the turbulence Lvg , the standard deviation σvg , and the expected mean airspeed
of the aircraft. Variations of the filter coefficients with the airspeed are not taken into account by
VDRYD1. These variations usually are very small.

Equations
• Lateral turbulence velocity, [ms−1]:

vg(s) = Hvgw2
w2(s)

where w2 is a white noise signal, generated internally within the block VDRYD1 and Hvgw2
is the

transfer function of the lateral turbulence velocity filter.

• Transfer function of lateral turbulence filter:

Hvgw2
(s) = σv

√

2Lv
V

1 +
√
3Lv
V
s

(
1 + Lv

V
s
)2

Note: the value of V used by VDRYD1 is kept constant during the simulations; it must be specified
by the user.

Inputs
none

Outputs
vg lateral turbulence velocity, vg

v̇g time-derivative of lateral turbulence velocity, vg dot

Parameters
The user must specify the scale length Lvg, the standard deviation σvg, and the estimated mean value
of the true airspeed for which the motions are evaluated by double-clicking the block VDRYD1.

Connections
in: no connections
out: vg and v̇g are usually Muxed together with other turbulence velocities and their time-derivatives;

they can be used as inputs to the aircraft model

Enter type vdryd1.hlp at the command-line for on-line help.
2
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VDRYD2 Library WINDLIB / turbulence / VDRYD2

Type
Masked subsystem block.

Description
The block VDRYD2 generates a turbulence velocity component and its time-derivative along the YB
axis of the aircraft, using a lateral Dryden filter with airspeed-dependent coefficients. The user must
specify the lateral scale-length of the turbulence Lvg and the standard deviation σvg , but no mean
airspeed, since the filter coefficients are updated during the simulations as a function of the actual
airspeed, which is used as input signal.

Equations
• Lateral turbulence velocity, [ms−1]:

vg(s) = Hvgw2
w2(s)

where w2 is a white noise signal, generated internally within the block VDRYD2 and Hvgw2
is the

transfer function of the lateral turbulence velocity filter.

• Transfer function of lateral turbulence filter:

Hvgw2
(s) = σv

√

2Lv
V

1 +
√
3Lv
V
s

(
1 + Lv

V
s
)2

Note: since the value of V used by VDRYD2 is not kept constant during the simulations, a block-
diagram equivalent of this transfer function has been created using the theory from section 4.2.6 in
chapter 4. The gains from this block-diagram equivalent are ‘scheduled’ as a function of the current
value of the airspeed V .

Inputs
V true airspeed, V

Outputs
vg lateral turbulence velocity, vg

v̇g time-derivative of lateral turbulence velocity, vg dot

Parameters
The user must specify the scale length Lvg and the standard deviation σvg by double-clicking the
block VDRYD2.

Connections
in: V is usually extracted from the non-linear aircraft model
out: vg and v̇g are usually Muxed together with other turbulence velocities and their time-derivatives;

they can be used as inputs to the aircraft model

Enter type vdryd2.hlp at the command-line for on-line help.
2
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WDRYD1 Library WINDLIB / turbulence / WDRYD1

Type
Masked subsystem block.

Description
The block WDRYD1 generates a turbulence velocity component and its time-derivative along the ZB
axis of the aircraft, using a vertical Dryden filter with constant coefficients. The user must specify
the vertical scale-length of the turbulence Lwg , the standard deviation σwg , and the expected mean
airspeed of the aircraft. Variations of the filter coefficients with the airspeed are not taken into account
by WDRYD1. These variations usually are very small.

Equations
• Vertical turbulence velocity, [ms−1]:

wg(s) = Hwgw3
w3(s)

where w3 is a white noise signal, generated internally within the block WDRYD1 and Hwgw3
is the

transfer function of the vertical turbulence velocity filter.

• Transfer function of vertical turbulence filter:

Hwgw3
(s) = σw

√

2Lw
V

1 +
√
3Lw
V
s

(
1 + Lw

V
s
)2

Note: the value of V used by WDRYD1 is kept constant during the simulations; it must be specified
by the user.

Inputs
none

Outputs
wg vertical turbulence velocity, wg

ẇg time-derivative of vertical turbulence velocity, wg dot

Parameters
The user must specify the scale length Lwg, the standard deviation σwg, and the estimated mean
value of the true airspeed for which the motions are evaluated by double-clicking the block WDRYD1.

Connections
in: no connections
out: wg and ẇg are usuallyMuxed together with other turbulence velocities and their time-derivatives;

they can be used as inputs to the aircraft model

Enter type wdryd1.hlp at the command-line for on-line help.
2
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WDRYD2 Library WINDLIB / turbulence / WDRYD2

Type
Masked subsystem block.

Description
The block WDRYD2 generates a turbulence velocity component and its time-derivative along the ZB
axis of the aircraft, using a vertical Dryden filter with airspeed-dependent coefficients. The user must
specify the vertical scale-length of the turbulence Lwg and the standard deviation σwg , but no mean
airspeed, since the filter coefficients are updated during the simulations as a function of the actual
airspeed, which is used as input signal.

Equations
• Vertical turbulence velocity, [ms−1]:

wg(s) = Hwgw3
w3(s)

where w3 is a white noise signal, generated internally within the block WDRYD1 and Hwgw3
is the

transfer function of the vertical turbulence velocity filter.

• Transfer function of vertical turbulence filter:

Hwgw3
(s) = σw

√

2Lw
V

1 +
√
3Lw
V
s

(
1 + Lw

V
s
)2

Note: since the value of V used by WDRYD2 is not kept constant during the simulations, a block-
diagram equivalent of this transfer function has been created using the theory from section 4.2.6 in
chapter 4. The gains from this block-diagram equivalent are ‘scheduled’ as a function of the current
value of the airspeed V .

Inputs
V true airspeed, V

Outputs
wg vertical turbulence velocity, wg

ẇg time-derivative of vertical turbulence velocity, wg dot

Parameters
The user must specify the scale length Lwg and the standard deviation σwg by double-clicking the
block WDRYD2.

Connections
in: V is usually extracted from the non-linear aircraft model
out: wg and ẇg are usuallyMuxed together with other turbulence velocities and their time-derivatives;

they can be used as inputs to the aircraft model

Enter type wdryd2.hlp at the command-line for on-line help.
2
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Chapter 7

FDC implementation of the
radio-navigation models

The FDC library NAVLIB contains simulation models of radio-navigation tools, described in
section 3.4. Figure 7.1 shows the main window of this library, while figures 7.2 and 7.3 show
the sublibraries with the ILS and VOR models, respectively. The main library can be opened
by typing navlib at the Matlab command-line, or via the main FDC library FDCLIB, which
can be opened by typing fdclib. This chapter describes the different blocks from the library
NAVLIB in alphabetical order.

See section 5.2 for the typographical conventions used in this chapter.

Figure 7.1: Radio-navigation library NAVLIB
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Figure 7.2: Sublibrary with ILS models

Figure 7.3: Sublibrary with VOR models
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GSERR Library NAVLIB / ILS / GSERR

Type
Masked subsystem block.

Description
The block GSERR contains the formula’s for steady-state errors in the glideslope signal. Notice that the
equations are expressed in terms of glideslope currents through the cockpit indicator in the aircraft!

Equations
• glideslope signal with steady-state errors, [µA]:

igs,actual = KSgs

(
igs,nominal +∆igs

)

where the multiplication factor KSgs takes into account the offset in the glideslope sensitivity Sgs
and ∆igs is an error signal that is caused by an offset in the nominal glideslope elevation angle γgs
(the user must specify the offset-values as percentages of the maximum allowable values, according to
table 3.2 from chapter 3; GSERR converts all signals to currents through the glideslope indicator in
the aircraft).

Inputs
igs,nominal nomimal glideslope current, igs (nominal)

Outputs
igs,actual glideslope current with steady-state errors, igs (actual)

Parameters
The user must specify the ILS performance category (1, 2, or 3), the offset in Sgs in terms of percents
of its maximum allowable error according to table 3.2, and the glideslope misalignment in terms of
percents of its maximum allowable value.

Connections
in: igs,nominal comes from the block ILS, which determines the nominal ILS signals
out: igs,actual can be connected to a sum block for adding the glideslope noise signal (the resulting

signal can be used as an input to the control laws of an automatic approach system)

Enter type gserr.hlp at the command-line for on-line help.
2

121



GSNOISE Library NAVLIB / ILS / GSNOISE

Type
Masked subsystem blocks.

Description
The GSNOISE blocks contain glideslope noise models. There are two versions: GSNOISE1, based upon
the noise models from ref.[1] (AGARD R-632), and GSNOISE2, based upon ref.[17] (NASA CR-2022).

Equations
• Glideslope noise, [µA]:

∆i∗gs(s) = Hgs w
′
1(s)

where ∆i∗gs is the glideslope noise, w
′
1 is a white noise signal, generated internally within the block

GSNOISE1 or GSNOISE2, and Hgs is the transfer function of the glideslope noise filter.

• Transfer function of the glideslope noise filter according to AGARD R-632:

Hgs(s) = σgs

√

2Lgs
V

1

1 +
Lgs
V
s

Note: the value of V used by GSNOISE1 is kept constant during the simulations. It is equaled to the
approach speed which must be specified by the user.

• Transfer function of the glideslope noise filter according to NASA CR-2022:

Hgs(s) =
3.9875

0.25 + s

Inputs
none

Outputs
∆i∗gs Glideslope noise, D igs∗

Parameters
For the AGARD R-632 version, the user must specify the scale length Lgs, the standard deviation
σgs, and the approach speed. For the NASA CR-2022 version no parameters have to entered.

Connections
in: no connections
out: ∆i∗gs must be connected to a sum block for adding it to the original glideslope current signal

igs (note: this must be done after taking into account possible steady-state errors by the block
GSERR!)

Enter type gsnoise.hlp at the command-line for on-line help.
2
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ILS Library NAVLIB / ILS / ILS

Type
Masked subsystem block.

Description
The block ILS is used to determine the nominal ILS signals for a given position of the aircraft. The
block also computes some closely associated properties, which provide more information about the
current position of the aircraft with respect to the runway and the glideslope and localizer reference
planes. The validity of the signals is checked by an included masked subsystem block, called ILSTEST.

Equations
• Currents through the ILS indicators in the cockpit, [µA]:

igs = Sgs εgs

iloc = Sloc Γloc

• Angles between nominal and current ILS planes, [rad ]:

εgs = γgs + arctan

(
Hf

Rgs

)

Γloc = arcsin

(
dloc
Rloc

)

• X and Y -coordinates of the aircraft with respect to the runway fixed reference frame, [m]:

xf = (xe − xRW ) cosψRW + (ye − yRW ) sinψRW
yf = −(xe − xRW ) sinψRW + (ye − yRW ) cosψRW

• Height of the aircraft above aerodrome level, [m]:

Hf = H −HRW

• Distance from the aircraft to the glide-path (⊥ nominal glide-path), [m]:

dgs = (Rgs tan γgs +Hf ) cos γgs

• Ground-distances from the aircraft to the glideslope and localizer transmitters, [m]:

Rgs =
√

(xgs − xf )2 + (yf − ygs)2

Rloc =
√

yf 2 + (xloc − xf )2

• Two flags which determine whether the glideslope and localizer signals can be received with sufficient
accuracy are computed by evaluating logical Boolean expressions, derived from the glideslope and
localizer coverage from figures 3.11 and 3.9 (chapter 3). The glideslope signal is valid if the flag
GS flag is equal to 1; the localizer signal is valid if LOC flag is equal to 1. If not, the aircraft flies
outside their respective ranges. Note: these flags are computed in the internal masked subsystem
block ILSTEST.

Inputs
uils = [ xe ye H ]T aircraft coordinates and altitude, uils

Outputs
yils 1 = [ igs iloc ]

T nominal currents through ILS indicators, yils1

yils 2 = [ εgs Γloc ]
T angles between nominal and current ILS planes, yils2

yils 3 = [ xf yf Hf dgs Rgs Rloc ]
T distances defining the aircraft’s approach position, yils3

yils4 = [ GS flag LOC flag ]T flags defining the validity of the ILS signals, yils4

Note: section 3.4.1 gives the exact definitions of all variables from these equations!
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Parameters
The user must define the following parameters by double-clicking the block ILS:

• runway heading ψRW
• the coordinates xRW , yRW , andHRW of the origin of the runway-fixed reference frame, measured
with respect to the Earth-axes,

• the distance xloc from the runway threshold to the localizer antenna, measured along the runway
centerline,

• the distance xgs from the threshold to the projection of the glideslope antenna upon the center-
line,

• the perpendicular distance ygs from the centerline to the glideslope antenna,
• the nominal glideslope angle γgs.

See also section 3.4.1.

Connections
in: uils is usually obtained from the non-linear aircraft model
out: yils 1 is connected to the steady-state ILS error blocks GSERR and LOCERR, because those blocks

express errors in terms of ILS currents; the other output vectors are primarily used for evaluations
of simulation results and are therefore connected to a To Workspace

Enter type ils.hlp at the command-line for on-line help about the block ILS. Enter type ilstest.hlp

for more information about the validity-check of the ILS signals in the subsystem ILSTEST.
2
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ILS example Library NAVLIB / ILS / ILS example

Type
Masked subsystem block (contents accessible without unmasking).

Description
The subsystem ILS example demonstrates how to combine the different ILS-related blocks to obtain a
realistic ILS simulation model. This block is used within the ‘Beaver’ autopilot models APILOT2 and
APILOT3 with a slightly different input definition. The nominal ILS signals are sent to the Matlab
workspace by means of a To Workspace block; it is easy to add similar blocks for noise and offset
signals if required.

Subsystems/masked blocks
The subsystem ILS example contains five masked subsystem blocks:

ILS: computes the nominal ILS signals
GSERR: takes into account steady-state errors in the glideslope signal
GSNOISE: computes glideslope noise
LOCERR: takes into account steady-state errors in the localizer signal
LOCNOISE: computes localizer noise

Notice that the disturbance models used in ILS example are all based upon ref.[1].

The values of the glideslope and localizer currents that leave the error blocks are converted back to the
error angles εgs and Γloc by means of the multiplication factors 1/Kgs and 1/Kloc, respectively. ILS
example also uses approximating differentiating filters 1

s+1
in order to determine the time-derivatives

of the ILS signals (these approximated time-derivatives were needed for the ‘Beaver’ autopilot models
APILOT2 and APILOT3, see sections 11.3.4 and 11.4.3 for more details).

Inputs
uils = [ xe ye H ]T aircraft coordinates and altitude, uils

Outputs
εgs glideslope error angle with respect to nominal glide-path, epsilon gs

ε̇gs approximated time-derivative of εgs, d(epsilon gs)/dt

Γloc localizer error angle with respect to runway centerline, Gamma loc

Γ̇loc approximated time-derivative of Γloc, d(Gamma loc)/dt

Note: all outputs from the block ILS are sent to the variable yils in the Matlab workspace by
means of a To Workspace block. For storing other signals from ILS example you must include more To
Workspace blocks. You may also want to create a time-basis by means of a Clock that is connected to
a To Workspace block, but if you connect ILS example to the non-linear aircraft model this is already
being taken care of within the aircraft model itself (see section 5.1 for more details).

Parameters
The user must specify the properties of the ILS errors by double-clicking the blocks GSERR, GSNOISE,
LOCERR, and LOCNOISE. The geometrical properties of the ILS system normally would have to be
entered by the user after double-clicking the block ILS, but for this example they are extracted from
the Matlab workspace, using the following variables:

gamgs nominal glideslope angle, [deg ] (!)
HRW elevation of the runway, [m]
psiRW heading of the runway, [deg ] (!)
xgs X-coordinate of the glideslope transmitter in runway-axes, [m]
xloc X-coordinate of the localizer transmitter in runway-axes, [m]
xRW X-coordinate of origin of runway-axes with respect to Earth-axes, [m]
ygs X-coordinate of the glideslope transmitter in runway-axes, [m]
yRW Y -coordinate of origin of runway-axes with respect to Earth-axes, [m]

Furthermore, the sensitivity of the glideslope and localizer systems must be defined in the variables
Sgs and Sloc within the Matlab workspace.1

1Although these sensitivity values were already computed in the block ILS, we also need them for recovering
the angles εgs and Γloc from the ILS currents which are obtained by the ILS error blocks. This is due to the fact
that the approach control laws of the ‘Beaver’ were based upon these angles, rather than the ILS currents.

125



In order to facilitate this definition, aMatlab macro ILSINIT has been created. Run this program by
typing ilsinit at the command-line and you will be asked automatically to specify all parameters.
You can also run APINIT and then select the option Initialize VOR and/or ILS systems. Type help
ilsinit or help apinit for on-line help. See also section 12.4.1.

Connections
in: uils is usually extracted from the non-linear aircraft model
out: the outputs from ILS example can be connected to control system blocks, as demonstrated in the

systems APILOT2 and APILOT3, or sent to the workspace by means of a To Workspace block

Enter type ilsxmpl.hlp at the command-line for on-line help.
2
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LOCERR Library NAVLIB / ILS / LOCERR

Type
Masked subsystem block.

Description
The block LOCERR contains the formula’s for steady-state errors in the localizer signal. Notice that
the equations are expressed in terms of localizer currents through the cockpit indicator in the aircraft!

Equations
• localizer signal with steady-state errors, [µA]:

iloc,actual = KSloc (iloc,nominal +∆iloc)

where the multiplication factor KSloc takes into account the offset in the localizer sensitivity Sloc and
∆iloc is an offset in the localizer reference plane, i.e. a deviation from runway centerline (the user
must specify the offset-values as percentages of the maximum allowable values, according to table 3.1
from chapter 3).

Inputs
iloc,nominal nomimal localizer current, iloc (nominal)

Outputs
iloc,actual localizer current with steady-state errors, iloc (actual)

Parameters
The user must specify the performance category (1, 2, or 3), the percentage of maximum allowable
offset in localizer sensitivity, the percentage of maximum allowable localizer misalignment and the
distance from the runway threshold to the localizer antenna by double-clicking the block LOCERR.

Connections
in: iloc,nominal comes from the block ILS, which determines the nominal ILS signals
out: iloc,actual can be connected to a sum block for adding the localizer noise signal (the resulting

signal can be used as an input to the control laws of an automatic approach system)

Enter type locerr.hlp at the command-line for on-line help.
2
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LOCNOISE Library NAVLIB / ILS / LOCNOISE

Type
Masked subsystem blocks.

Description
The LOCNOISE blocks contain glideslope noise models. There are two versions: LOCNOISE1, based
upon the noise models from ref.[1] (AGARD R-632), and LOCNOISE2, based upon ref.[17] (NASA
CR-2022).

Equations
• Localizer noise, [µA]:

∆i∗loc(s) = Hloc w
′
2(s)

where ∆i∗loc is the localizer noise, w
′
2 is a white noise signal, generated internally within the block

LOCNOISE1 or LOCNOISE2, and Hloc is the transfer function of the localizer noise filter.

• Transfer function of the localizer noise filter according to AGARD R-632:

Hloc(s) = σloc

√

2Lloc
V

1

1 + Lloc
V
s

Note: the value of V used by LOCNOISE1 is kept constant during the simulations. It is equaled to
the approach speed which must be specified by the user.

• Transfer function of the localizer noise filter according to NASA CR-2022:

Hloc(s) =
5 (1.5 + s)

(0.35 + s)(10 + s)

Inputs
none

Outputs
∆i∗loc Localizer noise, D iloc∗

Parameters
For the AGARD R-632 version, the user must specify the scale length Lloc, the standard deviation
σloc, and the approach speed. For the NASA CR-2022 version, no parameters have to entered.

Connections
in: no connections
out: ∆i∗loc must be connected to a sum block for adding it to the original localizer current signal

iloc (note: this must be done after taking into account possible steady-state errors by the block
LOCERR!)

Enter type locnoise.hlp at the command-line for on-line help.
2
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VOR Library NAVLIB / VOR / VOR

Type
Masked subsystem block.

Description
The block VOR computes the nominal VOR signals which an aircraft will receive if it flies at a certain
position with respect to the VOR station. In addition, the ground-distance to the VOR station, two
flags which define if the VOR signal is valid, and a To/From flag are computed.

Equations
• current VOR bearing on which the aircraft is flying, [rad ]:

QDR = arctan

(
ye − yVOR

xe − xVOR

)

• deviation from desired VOR bearing, [rad ]:

ΓVOR = CD −QDR

• ground-distance from the aircraft to the VOR station, [m]:

RVOR =
√

(xe − xVOR)2 + (ye − yVOR)2

• the cone of silence flag is set to 1 if the aircraft enters the cone of silence, i.e. if:

arctan

(
H −HVOR

RVOR

)

> 90◦ − (40◦ to 60◦)

• the range flag is set to 1 if the aircraft flies outside the area where the VOR signals can be received
with appropriate accuracy, i.e. if:

RVOR > Range

where:

Range = 1000
(
−2.3570 · 10−6(H −HVOR)

2 + 5.7087 · 10−2(H −HVOR) + 80.8612
)

• the To/From flag is set to 1 if the aircraft flies to the VOR station, i.e. if:

|ψ −QDR| > 90◦

Inputs
uVOR = [ xe ye H ]T coordinates of the aircraft with respect to the Earth, uVOR

ψ heading of the aircraft, psi

Outputs
yVOR1 = ΓV OR nominal VOR angle, Gamma VOR

yVOR2 = RV OR ground distance from aircraft to VOR station, R VOR

yVOR3 = [ Cone-of-silence flag, Range flag ]T flags specifying VOR validity, yVOR3

yVOR4 = ToFrom To/From flag, ToFrom

Parameters
The user must specify the X and Y coordinates of the VOR station, measured relative to the initial
position of the aircraft, the elevation of the VOR station, and the Course Datum (reference bearing
on which the aircraft should fly).

Connections
in: uVOR and ψ are usually extracted from the non-linear aircraft model
out: yVOR1 is connected to the block VORERR to take into account steady-state errors in the VOR

signal; the other outputs can be used by control law blocks and/or sent to the workspace by
means of To Workspace blocks

Enter type vor.hlp at the command-line for on-line help. 2
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VORERR Library NAVLIB / VOR / VORERR

Type
Masked subsystem block.

Description
The block VORERR implements a steady-state error in the VOR signal by multiplying the VOR signal
with a gain value that slightly differs from 1. Note: FDC 1.2 currently does not contain more accurate
steady-state error models for the VOR system, nor does it contain VOR noise models.

Equations
• VOR signal with steady-state error, [rad ]:

ΓVOR,actual = KVORerr · ΓVOR,nominal

where KVORerr is equal to 1 plus the overall percentile VOR system error.

Inputs
ΓVOR,nominal nominal VOR signal, Gamma VOR (nominal)

Outputs
ΓVOR,actual VOR signal with steady-state errors, Gamma VOR (actual)

Parameters
The user must specify the overall percentile VOR system error by double-clicking the block VORERR.

Connections
in: ΓVOR,nominal is retrieved from the block VOR, which computes the nominal VOR signals
out: ΓVOR,actual will usually be connected to some control law, or sent to the Matlab workspace

Enter type vorerr.hlp at the command-line for on-line help.
2
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VOR example Library NAVLIB / VOR / VOR example

Type
Masked subsystem block (contents accessible without unmasking).

Description
The subsystem VOR example shows how to combine the different VOR-related blocks into one complete
VOR simulation model.

Equations
The subsystem VOR example contains two masked subsystem blocks:

VOR: computes the nominal VOR signal
VORERR: takes into account steady-state errors in the VOR signal

Inputs
uVOR = [ xe ye H ]T aircraft coordinates and altitude, uVOR

ψ heading of the aircraft, psi

Outputs
ΓV OR nominal VOR angle, Gamma VOR

Note: all outputs from the block VOR are sent to the variable yvor in the Matlab workspace by
means of a To Workspace block. For storing other signals you must include more To Workspace blocks.
You may also want to create a time-basis by means of a Clock that is connected to a To Workspace
block, but if you connect VOR example to the non-linear aircraft model this is already being taken
care of within the aircraft model (see section 5.1 for more details).

Parameters
The user must specify the properties of the steady-state errors in the VOR signal by double-clicking
the block VORERR. The geometrical data which determine the nominal VOR signal would normally
have to be entered by the user after double-clicking the block VOR, but for this example they are
extracted from the Matlab workspace, using the following variables:

CD Course Datum (reference value for the VOR radial), [deg ] (!)
HVOR altitude of the VOR transmitter above sea level, [m]
xVOR X-coordinate of VOR transmitter relative to the aircraft at t = 0 sec, [m]
yVOR Y -coordinate of VOR transmitter relative to the aircraft at t = 0 sec, [m]

Connections
in: uVOR and ψ are usually extracted from the non-linear aircraft model
out: the output signal from VOR example can be connected to control system blocks, as demonstrated

in the systems APILOT2 and APILOT3, or sent to the workspace by means of a To Workspace
block

Enter type vorxmpl.hlp at the command-line for on-line help.
2
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Chapter 8

Implementation of the analytical
tools in FDC 1.2

8.1 Introduction

This chapter describes the trimming program ACTRIM and the linearization tool ACLIN. The
first program is a real trimming tool which actually contains the aircraft trim algorithm from
figure 4.9, while the latter program uses the Simulink routine LINMOD to do the actual linea-
rization. For the simulations, FDC uses the standard built-in Runge-Kutta and Adams/Gear
methods of Simulink, so no additional programs were developed for that purpose. See chapter 4
for the theoretical backgrounds.

8.2 The trimming facility

8.2.1 Program structure of ACTRIM

The program ACTRIM contains the trimming algorithm from section 4.3, which was specially
tailored for the search of steady-state flight conditions. The source-code of this program has
been stored in the file actrim.m in the subdirectory tools. ACTRIM uses two subroutines:
(i) ACCONSTR, which contains the flight-path constraints and kinematic relationships, and (ii)
ACCOST, which evaluates the cost-function for the minimization algorithm. The source-codes of
these subroutines are stored in the files acconstr.m and accost.m in the subdirectory tools.
ACTRIM uses the Matlab minimization routine FMINS for the numerical determination of the
trimmed flight condition. This routine is based upon the Simplex search method; type help

fmins for more details about this function. The basic program-structure of ACTRIM and its
subroutines ACCONSTR and ACCOST is shown in figures 8.1 to 8.3. This structure closely
resembles the diagram from figure 4.9.

The user must first choose a flight condition from the main menu and specify those motion
variables that cannot be derived directly from the specified flight condition and which are not
adjusted by the trim algorithm itself. ACTRIM then creates two vectors:

1. ctrim, which contains the user-specified values of the states, inputs, and some time-
derivatives of state variables,

2. vtrim, which contains the independent input and state variables that will be adjusted
numerically by the trim algorithm
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Obviously, the c in ctrim denotes constant values, while the v in vtrim denotes variables. The
current version of ACTRIM, designed for the ‘Beaver’ aircraft, defines these vectors as follows:

ctrim =

[

V H ψ (γ)
ψ̇V

g0
ψ̇ θ̇ ϕ̇ δf n ϕ

]T

vtrim = [ α β δe δa δr pz (or γ) ]
T

The minimization routine FMINS is used to search the values of the independent motion variables
gathered in vtrim, which minimize the cost function from the subroutine ACCOST. ACCOST
itself calls the subroutine ACCONSTR in order to determine the value of the state and input
vectors in accordance with the flight-path constraints from section 4.3.3. These values are
substituted in the non-linear state equation of the aircraft model:

ẋ = f(x(t),u(t), t) (8.1)

by calling the S-function Beaver in order to find the time-derivatives of the state variables. These
are substituted in the cost function J :

J = c1V̇
2 + c2α̇

2 + c3β̇
2 + c4ṗ

2 + c5q̇
2 + c6ṙ

2 (8.2)

The current implementation of ACCOST uses the following values of the weighting constants c1
to c6:

c1 = 1

c2 = c3 = 2

c4 = c5 = c6 = 5

See the source-codes actrim.m, acconstr.m, and accost.m in the FDC subdirectory tools
for more details. The source-codes contain complete lists of variables and many comments to
help you comprehending the structure of these programs.

The numerical iterations are finished if the minimum value of the cost function has been achieved
within a certain termination-tolerance of the minimization function FMINS, or if the maximum
number of iterations is reached and the user decides to stop the minimization process. Then
the subroutine ACCONSTR is called once more in order to extract the input vector u and state
vector x from ctrim and vtrim, which at this point contain the values for the trimmed flight
condition. Also the S-function Beaver is called once more to find the time-derivative of the state
vector for the trimmed condition. The results can be saved to a data file if desired.

8.2.2 Using ACTRIM in practice

ACTRIM can be started by typing actrim at the Matlab command-line. It can also be started
by clicking the ACTRIM button-blocks, which have been included in several graphical Simulink
systems from FDC 1.2. ACTRIM first loads the aircraft model parameters from the file air-
craft.dat by calling the function LOADER (see section 9.3.1). The user must enter the name
of the aircraft model (by default set to Beaver) which will then be initialized. Then a graphical
menu with several possible steady-state flight conditions will appear, see figure 8.4. Depending
upon the selection you make you will be asked to specify certain initial and/or fixed values of
the variables involved in the trimming process.1 Most often, a steady wings-level flight condition
will be evaluated. In that case you must specify the desired airspeed, altitude, heading, flap

1Notice that these variables are only valid for the ‘Beaver’ aircraft; other motion variables will be needed if
you want to apply ACTRIM to other types of aircraft. Unfortunately, this still requires re-programming of the
source codes, which is not very convenient. Future versions of the trim program should therefore be equipped
with more general ways of defining the motion variables.
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DEFINE FLIGHT-CONDITION

-Steady wings-level flight
-Steady turning flight (coordinated or uncoordinated)
-Steady pull-up or push-over
-Steady roll (in stability-axes or body-axes)

Combine all fixed states, inputs, and time-derivatives
of states in the vector ctrim

Iterate until solution is found or optimization is
cancelled by the user

Call FMINS for cost function ACCOST (see
subroutine). ACCOST itself calls ACCONSTR

Call ACCONSTR once more to find resulting trimmed
values of x and u

Call SIMULINK system Beaver once more to find time-
derivative of x for trimmed condition

Combine all independent states and inputvariables in
the vector vtrim, which will be adjusted by the
numerical optimization algorithm

Figure 8.1: Program structure of ACTRIM (main aircraft trim program)

Calculate q and j  from flight-path constraints

Compute p, q, and r, using the kinematic relations from
section B.4

Combine these results with the fixed states, which specify the
flight-condition, and the independent states, adjusted by the
minimization algorithm, into the current state vector x

Combine the fixed inputs, specified by the user to define the
aircraft-condition, with the independent inputs, adjusted by the
minimization algorithm, into the current input vector u

Return x and u

Figure 8.2: Program structure of ACCONSTR (flight-path constraints & kinematic relations)
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Call ACCONSTR to find constrained values
of x and u

Call SIMULINK model Beaver to find current
value of the time-derivative of the state vector

Compute cost function J

Return J to the minimization routine

Figure 8.3: Program structure of ACCOST (contains the cost function)

Figure 8.4: Main user-menu of ACTRIM

angle, and engine RPM of the aircraft. You may choose to define the flight-path angle or mani-
fold pressure, which leaves one of these two variables to be numerically solved by the trimming
algorithm. If you specify a value of the flight-path angle, ACTRIM will ask you to define an
initial estimate for the manifold pressure as well (usually the default values will do just fine).
After defining these variables, the numerical iteration process will be started. If the solution
has converged enough according to the trimming options specified within the source code, the
results will be displayed on the screen. If the maximum number of iterations is exceeded without
a solution having been found, a warning message will appear on the screen and you must choose
whether to perform more iterations or accept the best solution found thus far. If the solution
hasn’t converged after a few more attempts it is probably not possible to find a steady solution
within the tolerance specified in the source code of the trim program.

If you choose to save the trimmed flight condition to a file, you will be asked to specify
the destination directory (by default the FDC subdirectory data) and the filename. The file
will get the extension .tri to specify that it represents a trimmed flight condition. This will end
the program. An example of this trim process will be given in section 10.5.
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ACTRIM stores the results in the following variables:1

• xinco = x(0) is the steady-state value of the state vector from the non-linear aircraft model;
x ≡ [V α β p q r ψ θ ϕ xe ye H ]T ,

• xdot0 = ẋ(0) is the time-derivative of the state vector, valid for the current flight condition
(if a trimmed flight condition was found most elements of xdot0 will be almost equal to
zero, as explained in section 4.3),

• uaero0 = uaero(0) is the steady-state value of the input vector to the aerodynamic forces
& moment functions of the aircraft model; uaero ≡ [ δe δa δr δf ]

T ,

• uprop0 = uprop(0) is the steady-state value of the input vector to the propulsion functions
of the aircraft model; uprop ≡ [n pz ]

T ,

• trimdef is a text-matrix which contains the user-specified variables that define the flight
condition and aircraft configuration, the name of the Simulink system of the aircraft
model, the definitions of the state and input vectors used by the aircraft model, a short
explanation about the other variables, and the date and time when ACTRIM was used to
find this steady-state condition.

Although ACTRIM works perfectly well for finding initial flight conditions for non-linear simu-
lations, it is not really suited for searching large numbers of steady-state flight conditions, e.g.
in order to find the steady-state elevator-deflection as a function of airspeed. In such cases it
may be easier to write a customized trim routine, which may contain pieces of software code
from the source code actrim.m. For example, the program TRIMDEMO contains only the
trimming commands of ACTRIM, while using its own routines for defining the flight condition
and displaying results on the screen. The source code trimdemo.m has been stored in the FDC
subdirectory examples. See section 10.5 for more details about that example program. In order
to enhance the flexibility of the trimming program, it is planned to divide the separate functions
from ACTRIM into separate generalized subroutines for future versions of the FDC toolbox.
However, since the source-codes themselves contain many explanatory comment-lines and a full
list of variables, it is not very complicated to adapt the programs if required. Remember not to
violate the license agreement if you wish to distribute such adapted FDC programs...

8.3 The linearization facility

8.3.1 Program structure of ACLIN

The program ACLIN has been designed to extract linearized aircraft models from the non-linear
Simulink system Beaver (or similar models) in a user-specified operating point.2 Its main goal
is to simplify the model definitions for the user; the actual linearization process is left to the
Simulink function LINMOD. Figure 8.5 shows the general structure of this program. ACLIN
first asks which aircraft model to be used (by default Beaver). Next, the operating point needs
to be defined – either by loading it from file, manually defining it in the workspace, using an
existing operating point from the workspace, or running ACTRIM to obtain a new steady-state
trimmed-flight condition as operating point for the linearization. If the aircraft model parameters
are not yet present in the workspace, they are loaded by means of the routine LOADER (see

1Due to the fact that these vectors are often used as initial values for non-linear simulations, they use the
extensions 0 or inco in their variable names.

2ACLIN currently works only for aircraft models which use the same definitions of input and output vectors as
the system Beaver. For other types of aircraft models, the source-codes must be adapted. This again is not quite
satisfactory for future enhancements of the FDC toolbox, so a more modular approach will be needed in future
releases.
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Define operating point: - Load operating point from file, or
- Manually define operating point, or
- Use operating point defined in

workspace, or
- Run ACTRIM to find operating point

Load aircraft model parameters

Call LINMOD to obtain linearized aircraft model

Select state variables for linear aircraft model
(use all twelve states or select a subset)

Select control inputs for linear aircraft model
(use all six control inputs or select a subset)

Either add or don’t add wind & turbulence inputs

Present results and save them to a file if required

Figure 8.5: Program-structure of ACLIN

section 9.3.1). The linearization routine LINMOD then determines the full 12th-order system
matrices of the linearized aircraft model, which subsequently can be simpified by neglecting the
influence of certain state and/or input variables. If desired, the resulting matrices can be saved
to a datafile, which will get the extension .lin.

8.3.2 Using ACLIN in practice

ACLIN can be started by typing aclin at the command-line. It will also be started if you
double-click the ‘button’ blocks of ACLIN, which are contained in several graphical Simulink
systems from FDC 1.2. ACLIN first asks the user to enter the name of the aircraft model (by
default Beaver). Next, the method of defining an operating point must be selected by clicking
one of the buttons from the menu shown in figure 8.6. The operating point can be defined in
the following ways:

• It is possible to load an operating point from a file. Usually this will be a trimmed flight
condition, obtained with ACTRIM. If you choose this option, the program INCOLOAD will
be started (see section 9.3.2).

• An operating point can be defined manually. After selecting this option the user will be
asked to enter values for all state variables of the aircraft model and all control inputs, i.e.
V , α, β, p, q, r, ψ, θ, ϕ, xe, ye, H, δe, δa, δr, δf , n, and pz.

• If an operating point already exists in the Matlab workspace, that is: if the variables
xinco, uaero0 , and uprop0 are present in the workspace, it is possible to that operating
point for the linearization process.

• ACTRIM can be called in order to find an appropriate steady-state operating point for the
linearization. See section 8.2.2.

After defining the operating point, ACLIN will load the model parameters from file, using the rou-
tine LOADER (see section 9.3.1), unless these parameters are already present in the workspace.
Next, the linearization routine LINMOD will be called to find the linear aircraft model matrices
Aac, Bac, Cac, and Dac. Since the ‘Beaver’ model uses 12 state variables and 12 inputs (includ-
ing wind & turbulence), these matrices all have the dimensions 12× 12. It is possible to extract
simplified submatrices from Aac and Bac by specifying a vector with the element numbers of the
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Figure 8.6: User-menu of ACLIN, used to determine operating points

required state variables and control inputs. This option can also be used to change the order of
the state and/or input variables: just type all twelve element numbers in the required changed
order. Moreover, it is possible to eliminate the wind & turbulence inputs from the model. If
the user thus specifies a simplified model, two additional matrices will be constructed in the
Matlab workspace: Aac s and Bac s. The extension s in these variable names denotes a sim-
plified model. Of course, the exact definitions of these matrices depend upon the user-specified
element numbers from the state and input vectors. Remember that any simplification of the
model matrices yields less accurate results than the complete 12th-order model. One possible
application of this simplification is to de-couple the symmetrical and asymmetrical equations
of motion in the linearized model. In order to help you remind the definitions of all results,
including the simplified model matrices Aac s and Bac s, a text-matrix lindef is created. This
matrix also contains the definition of the operating point and the date and time when the results
were determined by ACLIN.

Finally ACLIN will ask you whether you want to save the results to a file. If you answer Y,
you will be asked to enter a directory name (by default, the FDC subdirectory data will be
used) and a filename. The file will get the extension .lin, specifying a linearized model. In
addition to the model matrices and the text-matrix lindef , it is possible to include the operating
point to this file. This will be stored in the variables xinco, uaero0 , uprop0 , and, if present
in the workspace, trimdef . See the definitions in section 8.2.2, page 137. An example of this
linearization process is given in section 10.4.
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Chapter 9

Other utilities for the FDC toolbox

9.1 The FDC initialization routine FDCINIT

The routine FDCINIT initializes the FDC package by extending the Matlab search path with
the FDC directories. The first time you run FDCINIT by typing fdcinit or fdc at the command-
line, you will get some welcome messages before being asked to specify the search path extension
(see also section 1.5). The default FDC directory structure is:

c:\fdc12 \aircraft
\apilot
\data
\doc
\examples
\help
\navigate
\tools
\wind

FDCINIT makes it easy to change the path-names, extend the search path with new directories,
or delete directories from the FDC search path if they are not needed anymore. Just answer
N to the question whether the FDC path is correct, and select the appropriate menu-items to
change the FDC path according to your wishes. The next time you start FDCINIT the new
FDC path will be displayed as default. It is possible to suppress the question to check the FDC
path for future sessions. If you still want to change the FDC path after suppressing this check
once, you must delete the file fdcinit.ini from the FDC root-directory before running FDCINIT
again. You will then be welcomed again like a first-time user. See section 1.5 for more details.

9.2 The aircraft model parameter definition macro MODBUILD

Although the aerodynamic, propulsive, and geometrical properties of different types of aircraft
can differ strongly, the structure of the aircraft model is quite generic. In theory it is, to some
extent, also possible to specify standard structures for the aircraft-dependent submodels, but this
requires clear, well defined modeling standards. In practice this is often not the case, especially
when using model data from different sources. However, for the practical use of the non-linear
aircraft model this does not matter too much since all aircraft-dependent elements from this
model can be combined in separate subsystems, which can be treated as black-boxes. In this way
it does not matter whether an aerodynamic model is being described by means of non-linear
polynomial equations with constant coefficients, or by equations with non-constant coefficients
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which are extracted from tables. It is not necessary to use standardized data formats for the
model parameters either. In the Matlab/Simulink environment it is easy to load system
parameters for the Simulink systems into the Matlab workspace, regardless of their exact
definitions.

Thus, in general, there are no restrictions to the definitions of model parameters. This
provides maximum flexibility for the implementation of other aircraft models within the frame-
work of the system Beaver. However, there is one exception to this rule: the main geometric
properties of the aircraft and its mass-distribution data must be defined in two standardized
data-matrices called GM1 and GM2 , respectively. Currently it is not possible to alter the def-
initions of these matrices without changing the contents of the subsystem Aircraft Equations of
Motion which forms the core part of the non-linear aircraft model. This is mainly due to the
fact that the current aircraft model considers the aircraft geometry and mass-distribution to be
constant during the motions of interest. Future versions of the toolbox should feature on-line
computation of these properties, which will allow us to simulate the motions of vehicles with
non-constant geometry, e.g. variable wing-sweep, or significant sudden changes in mass and/or
mass-distribution, e.g. dropping loads from flying aircraft.

For the current implementation of the ‘Beaver’ model, the model parameters are defined in
four data-matrices, including the earlier mentioned matrices for storing geometrical data and
mass distribution (GM1 and GM2 ). The matrices AM and EM contain the coefficients for
the aerodynamic model and engine forces and moments model of the ‘Beaver’, using data from
ref.[26]. Appendix D contains the exact definitions of these parameter matrices. Before start-
ing a simulation involving the system Beaver the parameter matrices need to be present in the
Matlab workspace. For this reason, they have been gathered in the datafile aircraft.dat
(stored in the subdirectory data) which can be loaded into the workspace by means of the
Matlab macro LOADER (see section 9.3.1). The datafile itself was generated by the Matlab
macro MODBUILD. This macro defines the values of all model parameters, stores the results
in the data matrices AM, EM, GM1, and GM2, and saves these matrices to the datafile air-
craft.dat. In order to obtain the inertial parameters, MODBUILD contains the equations from
tables B.1 and B.2 from appendix B.

For the FDC users it is normally not necessary to run MODBUILD, since all results are
already available in the file aircraft.dat within the FDC subdirectory data. If the user
wants to change one or more model parameters, for instance because an improved version of the
aerodynamic or engine models has been obtained, the quickest way to update the datamatrices is
to edit the source-code modbuild.m accordingly.1 Since MODBUILD also computes the inertial
parameters, changes in geometrical properties or mass-distribution also have to be taken into
account by editing modbuild.m. This may seem rather complicated, but due to the clear
structure of modbuild.m it is not that difficult. If you want to implement a model of another
aircraft within the framework of the system Beaver it is recommended to use at least the part of
MODBUILD where the matrices GM1 and GM2 are determined, in order to get the appropriate
matrix definitions. The definitions of the aerodynamic and engine model parameter matrices AM
and EM may be useful as a guideline for implementations of other aircraft models, but, as said
before, you are not restricted to the use of those parameter matrices and you are free to apply
your own data structure instead. Future versions of the FDC toolbox will probably be equipped
with more flexible parameter-definition tools. If you accidentally destroy the file aircraft.dat,
it can be retrieved by running MODBUILD again (type modbuild at the command-line).

1The file modbuild.m has been stored in the subdirectory aircraft, because it directly relates to the non-
linear aircraft model itself.
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Loading model parameters from AIRCRAFT.dat

==========================================

Specify directory (default: c:\fdc12\data): g:\mytools\fdc\data

Datamatrices AM, EM, GM1, and GM2 loaded.

Ready.

>>

Figure 9.1: The Matlab command-window when running LOADER

9.3 Routines to load data from files

9.3.1 The model-parameter load routine LOADER

The routine LOADER is used for loading the parameter matrices for the aircraft model from the
datafile aircraft.dat. In FDC 1.2, this datafile contains the model parameters for the system
Beaver, but it is planned to use a similar data structure for other aircraft models in future
versions of the toolbox. In addition to loading the model parameters, LOADER also defines the
vector xfix, which is used in the aircraft model to artificially fix elements of the state vector to
their initial values. By default, no state variables are fixed, unless you have already changed the
vector xfix yourself; see section 9.5 and the description of the block xfix in chapter 5 for more
information.

If you type loader at the Matlab command-line, or double-click a button block LOADER
in a graphical Simulink system from FDC 1.2, the program will ask you to specify the directory
in which it will search for the file aircraft.dat. Normally, the default directory (being the

FDC subdirectory data) will be correct, so you only have to press Enter . If you have saved a
customized version of aircraft.dat in another directory or if the path-definition of FDCINIT is
not correct, you must enter the correct directory name. If LOADER cannot find aircraft.dat
in the specified directory, it will asks whether to run MODBUILD to create this file. Else, the
file will be loaded into the Matlab workspace. Figure 9.1 shows what the command-window
will look like. In this example, the directory g:\mytools\fdc\data is specified in stead of the
suggested default directory c:\fdc12\data. If you activate LOADER by means of a button-
block in a graphical Simulink system, you must activate the Matlab command-window by
yourself, which may not be obvious if the command-window is hidden behind other windows.
Therefore it is recommended to keep at least a part of the command-window in sight. This
somewhat inconvenient user-interface is an inheritage of the original version of the FDC toolbox
which ran under Matlab 3.5 for Windows where this problem did not arise. Expect a new
version of LOADER, featuring a graphical user-menu, to be released soon.

9.3.2 The load routine INCOLOAD

The routine INCOLOAD is used for loading trimmed flight conditions, system matrices of lin-
earized aircraft models, or other datafiles into the Matlab workspace. It can be started by
typing incoload at the command-line, or double-clicking an INCOLOAD button within a graph-
ical Simulink system from FDC 1.2, after which a user menu will be displayed, see figure 9.2.
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Figure 9.2: The main menu from INCOLOAD

FDC 1.2 - INCOLOAD

------------------

Load data for simulations of FDC systems.

Specify directory (default: c:\fdc12\data): g:\mytools\fdc\data

Enter filename without extension (8 characters max.):

> cr4520

Enter extension (3 characters), default = tri:

>

Loading data from file

g:\mytools\fdc\data\cr4520.tri

Your variables are:

uprop0 xdot0

trimdef xinco

uaero0

Ready.

>>

Figure 9.3: Specification of a filename for trimmed-flight condition
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Here the type of data to be loaded into the workspace must be specified. After clicking the
appropriate button you will be asked to specify the name of the directory (in the Matlab
command-window!). By default this is set to the FDC sub-directory data. Next you must enter
the filename without extension (INCOLOAD does not support filenames longer than 8 charac-
ters) and the file extension (not longer than 3 characters). By default the file extension is set
to .tri for trimmed flight conditions, .lin for linearized models, and .mat for other datafiles,
depending upon the choice made in the options menu. INCOLOAD will then try to load the
datafile into the workspace. If the file cannot be found, a warning message will be displayed;
otherwise the file will be loaded and all variables present in the workspace after loading the
file will be displayed in the command-window. Figure 9.3 shows what the command-window
will look like if you choose to load a trimmed flight condition from file. In this example, the
datafile cr4520.tri is retrieved from the directory g:\mytools\fdc\data, which differs from
the default directory c:\fdc12\data.

Note: expect an improved version of INCOLOAD which will feature a ‘real’ graphical user-
interface that bypasses the command-window to be released soon.

9.4 Programs for post-processing simulation results

9.4.1 The routine RESULTS

During simulations, all results are sent to the Matlab workspace by means of To Workspace
blocks. For the non-linear aircraft model currently time-trajectories of 89 output variables, 12
input variables, and the time-points themselves are stored in the Matlab workspace in the
output variables Out, In, and time, respectively.1 In order to facilitate the processing of these
results, a Matlab macro RESULTS has been created. This macro extracts time-trajectories of
individual variables from these matrices in easily recognizable variables such as alpha, deltae,
qdyn, Tt, etc. After running RESULTS it becomes quite easy to plot the time-trajectories of
output signals by simply typing:

plot(time,V);

plot(time,alpha);

plot(time,deltae);

and so forth. See appendix E for a complete list of software acronyms for the different symbols
used in this report. Future versions of the FDC package should include more advanced options
for selecting which output signals are to be send to the workspace and for automating the
generation of graphical presentations of the simulation results.

9.4.2 The routine RESPLOT

In order to get a quick overview of the last simulation results, the Matlab macro RESPLOT
has been created. This macro should be applied after running RESULTS. It plots the most
important output variables in a graphics window. First, the true airspeed V , angle of attack
α, sideslip angle β, and altitude H will be displayed. Pressing a key then reveals the angular
velocities p, q, and r. Next, the Euler angles ψ, θ, and ϕ are displayed. The final screen contains
the aerodynamic input signals δe, δa, and δr, as well as the wind velocity components uw, vw,
and ww. If you want to plot other output variables or change the order of appearance, you will

1Note: under some circumstances Simulink does not properly send the simulation results to the workspace.
To solve this problem, a routine RECOVER has been created; see section 9.4.3.
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Figure 9.4: Main menu of FIXSTATE

have to edit the file resplot.m in the subdirectory tools. Of course it is also possible to write
your own plotting macros or enhance the capabilities of the RESULTS utility.

It is obvious that the current version of RESPLOT lacks the desired flexibility and interactiveness
of a sophisticated plotting routine. Its sole purpose at this moment is to facilitate the first rough
analysis of simulation results, and to help novice users in visualizing simulation results from the
workspace. Future versions of the toolbox should contain more sophisticated plotting utilities
which allow users to customize the graphs, define the variables to plot, and save or print the
results in an interactive way.

9.4.3 The routine RECOVER

During simulations of the non-linear aircraft model the results are sent to the Matlab workspace
through To Workspace blocks. However, this does not always function properly due to a bug
in Simulink, which has been noticed for Simulink for MS Windows up to version 1.2c.
Luckily it is often still possible to retrieve the results if they are not present in the workspace
after running a simulation by simply calling the appropriate Simulink model once more. The
routine RECOVER simplifies this process somewhat. If you can’t find the results after a simula-
tion, type recover(’sysname’), where sysname is the name of the Simulink model, e.g. type
recover(’beaver’) for the system Beaver. The routine RESULTS automatically calls RECOVER
if it cannot find the matrices In and Out or the time-vector time.

9.5 The routine FIXSTATE to artificially fix state variables

The non-linear aircraft model contains a gain-block xfix, which is used to artificially fix state va-
riables to their initial values. This may for instance be useful if you want to neglect longitudinal-
lateral cross-coupling effects, or if you want to fix the airspeed to its initial value to simulate
an ‘ideal’ autothrottle system. In order to fix certain states, the block xfix multiplies the time-
derivative of the state vector with the vector xfix . This multiplication vector has twelve elements
that correspond with the twelve state variables. These elements are either equal to one, in which
case the actual time-derivative of the corresponding state variable is taken into account, or zero,
in which case the time-derivative of the corresponding state variable is artificially set to zero. In
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the latter case, the state variable will remain equal to its initial value. The block xfix has been
described in detail in chapter 5.

In order to facilitate the definition of the multiplication vector xfix , the routine FIXSTATE
has been designed. Figure 9.4 shows the main menu of this routine. It has the following options:

• Fix asymmetrical state variable. This yields a simplified model which takes into account
the symmetrical equations of motion only. If you select this option, FIXSTATE will ask
whether the variable ye needs to be fixed as well. It will then try to re-initialize the
aircraft model (this is only possible if the initial condition has already been defined in the
workspace by means of the trim routine ACTRIM, the load routine INCOLOAD, or manual
definition of the variable xinco) and display the fixed state variables, being: β, p, r, ψ, ϕ,
and if desired ye.

• Fix symmetrical state variables. This simplifies the aircraft model to the asymmetrical
equations of motion only. If you select this option, FIXSTATE will ask whether the variables
xe and H need to be fixed as well and it will try to re-initialize the aircraft model. It will
then display the fixed state variables, being: V , α, q, θ, and if desired also xe and H.

• Fix arbitrary state variables. If you select this option, FIXSTATE will ask you to specify
a vector with the element numbers of the state variables you want to fix. With the state
vector being x = [ V α β p q r ψ θ ϕ xe ye H ]T , you can for instance fix θ and xe by
specifying the vector [8 10].

• Don not fix any state variables. Use this option to reset the original configuration in which
all states can vary freely.

Although it is necessary to have the variable xfix defined in the Matlab workspace, it is not
necessary to run FIXSTATE if you don’t want to fix any states. The default value of xfix can
be defined manually by simply typing: xfix = 1 (which is equivalent to xfix = ones(1,12)),
but if you use LOADER to retrieve the model parameters from file, the default value of xfix will
be set automatically if the variable is not yet present in the workspace. Use FIXSTATE only if
you actually want to fix state variables or reset the model back to its original configuration.

9.6 The routine SYSTPROP to compute linear system-properties

In order to facilitate the analysis of a linear system, the utility SYSTPROP (which stands for
‘system properties’) has been included to the FDC 1.2 package. This utility can be applied to
any linear system in state space or transfer function format, although its main goal in the FDC
toolbox is to facilitate the analysis of linearized aircraft models obtained by the linearization
routine ACLIN (see section 8.3). SYSTPROP computes the following properties of a linear system:

• time constant τ ,

• natural frequency of the undamped system ω0,

• eigenfrequency of the system ωn,

• period P ,

• damping factor ζ,

• percentage overshoot P.O.,

• peak-time Tpeak ,

• settling time Tset ,

• halve-time T1/2.
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The results are displayed on the screen, using the number-formatting routine NUM2STR2, which
is a customized version of the Matlab routine NUM2STR. They are also stored in the file syst-
prop.dat. Type systprop or help systprop at the command-line to see how it works (type
help num2str2 to find out more about the number-formatting routine NUM2STR2). Refer to
ref.[28] for the theoretical backgrounds.

Note: SYSTPROP requires the Control System Toolbox to function properly!

9.7 The Simulink library FDCTOOLS

FDC 1.2 contains a library FDCTOOLS with some useful new blocks that can be applied in
graphical Simulink systems. Some of these blocks have been applied in other graphical systems
from FDC 1.2, others have been implemented for general use. The library itself is contained
in the file fdctools.m in the subdirectory tools. It can be opened by typing fdctools at
the command-line. If you want to copy the tools library separately, be sure to include the files
nswitch.m and softlim.m too (these files belong to the blocks n-switch and Soft-limiter from
the tools library).

9.7.1 Input blocks from FDCTOOLS

The library FDCTOOLS contains two new input blocks:

• Block fcn generates a block-shaped input signal. The user can specify the initial value of
the signal, the amplitude of the block, and the duration of the block-input.

• Doublet generates a doublet signal. The user can specify the initial value of the signal, the
length of the two time-intervals for the upper and lower block-shaped part of the signal, the
values of the signal during those two time-intervals, and the starting time of the doublet.

These blocks were created with the Mask utility of Simulink. Unmask these blocks to see how
they work.

9.7.2 Gain scheduling blocks from FDCTOOLS

The block Scheduled Gain makes it possible to implement a gain-scheduling system. The second
input of this block is multiplied by a signal that depends upon the first input. The user must
specify the gain-scheduling function in the internal Fcn block of Scheduled Gain. If a vector
input is used as gain-scheduling signal, it is possible to change the gain value as a function of
all vector elements. For instance, it would be possible to change gains in an autopilot system
as a function of both the airspeed and the altitude. In the systems APILOT1 to APILOT3, the
use of the gain-scheduling blocks has been demonstrated for the ‘Beaver’ autopilot. If you apply
many Scheduled Gain blocks, it is recommended to delete the internal title and More Info blocks,
leaving only the actual gain-scheduling function. This will considerably reduce the size of the
m-file that contains your graphical system. Note: if you flip or rotate Scheduled Gain blocks, the
icon of this block will not automatically change its direction. Although this may look somewhat
odd, it does not affect the results.

9.7.3 Switches from FDCTOOLS

Simulink 1.2c contains a switch block that selects which one of two input signals is passed
through, depending upon a switch-control signal. The library FDCTOOLS contains some new
switch blocks with enhanced functionality:
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• The block On/off switch, which is based upon the standard switch block from Simulink. It
has two inputs: a switch-control signal, and the main signal which is either passed through
or blocked. If the first input is equal to 1, the second input is passed through; otherwise
the output of the On/off switch is set to zero.

• The block 6-switch, which is a masked subsystem that makes it possible to select one out
of six main input signals by setting an additional seventh switch-control signal. The first
input of the block 6-switch is the switch-control signal, which must be equal to a number i,
with i ∈ {1, 2, 3, 4, 5, 6}. The output signal from the 6-switch is equal to the i+ 1th input.
If i 6∈ {1, 2, 3, 4, 5, 6}, the output signal will be equal to zero. The block 6-switch has been
created with the Matlab macro NSWITCH. If you want to make an n-switch (where n is
an arbitrary integer value which defines the number of input signals to the desired n-switch
block) you can run NSWITCH from the command-line by typing nswitch(n). If you type
nswitch without an input argument, NSWITCH itself will prompt you to enter the value
of the integer n. Although there is no upper-limit for the number of input signals, your
screen size will impose a practical limit. The time needed for building the graphical n-
switch block increases exponentially with n. Try running NSWITCH for some different
values of n to see for yourself! Type help nswitch at the command-line for on-line help.

9.7.4 Discrete signal blocks from FDCTOOLS

The block MA-filter contains a Moving Average filter. The output from this block is equal to the
average of a number of samples taken from the input signal. This number, along with the sample
time, can be specified freely by the user: double-click the MA-filter block to enter these values..
A second variant of the MA-filter block has been included for users who have the Control
System Toolbox from Matlab. The only difference between the two versions is that the
latter creates a nice graphical icon, using the Matlab function DSTEP from the Control
System Toolbox. If you double-click the button-block under which this second version of the
MA-filter has been hidden, an error message will appear if the function DSTEP can’t be found.

9.7.5 Non-linear function blocks from FDCTOOLS

The block Soft-limiter contains a limiter with a smooth transition to the limit values. The
user can specify the range of the limiter and the part of this range where the input signal
is passed through directly (linear throughput of the input signal). Values of the input signal
that exceed this linear range will be reduced to a value within the limiter-range. The signal
reduction is larger for input signals which further exceed the linear range, i.e. the output signal
asymptotically reaches the maximum or minimum allowed value, as defined by the limiter range
setting. The block Soft-limiter has been implemented as a graphical S-function block which calls
the Matlab subroutine SOFTLIM. It was not possible to use a normal Matlab subroutine-
block, because such blocks do not allow parameters to be sent from the graphical Simulink
block to the subroutine. For this reason the subroutine has been implemented as an S-function
of which only the output relation is used. See the source-code of softlim.m in the subdirectory
tools for more details.
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Chapter 10

Performing open-loop analysis with
FDC 1.2

10.1 Introduction

This chapter explains how to generate open-loop responses with the ‘Beaver’ simulation model
from chapter 5. It is useful to read this section to get acquainted with the practical use of
the FDC models and tools. Once you master this part of the report it will be much easier
to understand the description of the autopilot case-study from chapters 11 and 12. FDC 1.2
contains three open-loop simulation models:

1. OLOOP1 is used to obtain non-linear aircraft responses to control inputs,

2. OLOOP2 is used to obtain non-linear aircraft responses to atmospheric turbulence,

3. OLOOP3 is used to obtain linear aircraft responses to control inputs.

In addition, there are three corresponding ‘tutorial’ systems which explain the functions of all el-
ements within these open-loop systems. These tutorial system are called OLOOP1T, OLOOP2T,
and OLOOP3T, respectively. These open-loop systems will be treated in sections 10.2 to 10.4.
Section 10.5 describes a Matlab program which uses the aircraft trim algorithm to determine
the trimmed-flight elevator deflection curve of the aircraft.

10.2 Non-linear responses to deterministic inputs – OLOOP1

10.2.1 Structure of the system OLOOP1

The Simulink system OLOOP1 can be used to obtain open-loop simulations of the ‘Beaver’.
After initialization of the toolbox (section 1.5), it can be opened by typing oloop1 at the Matlab
command-line or by double-clicking the OLOOP1 button in the library FDCLIB. There is also
a ‘tutorial’ system OLOOP1T which explains the meaning of all blocks from OLOOP1. This
system can be opened by typing oloop1t at the command-line or double-clicking the OLOOP1T
button in FDCLIB. A picture of OLOOP1 is shown in figure 10.1.

The core of this simulation model is an S-function block which calls the system Beaver (see
chapter 5 for a description of this simulation model). As explained in section 5.1, the connections
between Beaver and other subsystems are made by means of Inport and Outport blocks within
the first level of Beaver. When calling Beaver from within another simulation model such as
OLOOP1, it is necessary to apply an input vector with as many elements as there are Inport
blocks in the first level of Beaver. Obviously, the output vector will have has as many elements
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Figure 10.1: Block-diagram of the open-loop system OLOOP1

as there are Outports in the first level of Beaver. As explained in section 5.1, these so-called
S-function outputs cover only a subset of the total number of outputs from the aircraft model,
due to the fact that Simulink does not allow the use of vector signals by the Inport and Outport
blocks in the first level of a graphical model. However, all outputs are sent to the workspace
during simulations, from where they can be accessed for further analysis. See also the definitions
of the output matrices in section E.2 of appendix E. For the system ‘Beaver’ there are sixteen
S-function outputs, which are gathered in one output vector that leaves the S-function block
within OLOOP1:

y = [ V α β p q r ψ θ ϕ xe ye H
︸ ︷︷ ︸

x

Ḣ pb
2V

qc
V

rb
2V

︸ ︷︷ ︸

ydl

]T (10.1)

The non-dimensional rotational velocities pb
2V ,

qc
V , and rb

2V were needed for the autopilot simu-
lation models, see section 12.3. For most purposes, this selection of output signals is quite
sufficient – the number of outputs can be increased by appropriate editing of the first level of
Beaver.1 There are twelve input signals, which enter the S-function block in OLOOP1 by means
of one input vector:

u = [ δe δa δr δf
︸ ︷︷ ︸

uaero

n pz
︸ ︷︷ ︸

uprop

uw vw ww u̇w v̇w ẇw
︸ ︷︷ ︸

uwind

]T (10.2)

The first six elements of this vector are the control inputs, while the latter six elements represent
atmospheric disturbances. The number of S-function inputs is equal to the total number of input

1Remember however, that any change in the Inport and Outport definitions from the system Beaver must be
taken into account in all systems and Matlab programs which contain calls to Beaver. If you plan to do this it
is therefore recommended to save the modified system under a new filename.
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signals to the system Beaver. The definitions of the input and output vectors are also given in
section E.2 of appendix E, and it can be retrieved from the command-line by typing type

inputs.hlp or type outputs.hlp.

On the output side of the S-function block, a Demux block with 16 outputs has been con-
nected. This enables us to connect Scope blocks for monitoring individual output trajectories
during the simulations. Detailed analysis of the results is also possible after finishing a simu-
lation, because all results are sent to the workspace by means of To Workspace blocks within
the system Beaver. On the input side of the S-function block, a Mux block is used to combine
the three input vectors uaero, uprop, and uwind into the vector u from equation (10.2). OLOOP1
limits itself to the control inputs, i.e. uaero and uprop, while OLOOP2 has been designed for
open-loop simulations of aircraft responses in atmospheric turbulence. For the system OLOOP1
we can therefore leave the uwind line to the Mux block unconnected. Two additional Mux blocks
are included to construct aerodynamic and propulsive input vectors from their scalar elements.

It is important to point out the fundamental difference between linear and non-linear aircraft
models. Linear models use small-perturbation signals which describe the responses of the air-
craft in terms of deviations from the nominal values of its motion variables. The input signals
to these models represent deviations from the nominal values of the control inputs. On the
other hand, non-linear models use the true values of all signals. For instance, if we want to
analyze the response of the aircraft to a block-shaped elevator input we would supply only the
change in elevator deflection in case of a linear model, while the total elevator deflection, i.e. the
initial value plus the block-shaped change in elevator deflection, must be supplied in case of a
non-linear model. Therefore it is necessary to add the initial values of the input vectors (uaero(0)
and uprop(0)) to the test-signals before they are entered into the non-linear aircraft model. This
explains the function of the two Sum blocks in OLOOP1. These Sum blocks add the initial values
of the aerodynamic and propulsive input vectors to the block-shaped test-inputs. The initial
values of the input vectors are obtained from the Matlab workspace via the variables uaero0
and uprop0 , which enter the graphical system through two Constant blocks. These initial values
can be specified manually, or obtained by means of the aircraft trim program ACTRIM, as will
be shown in the next section.

In the example system OLOOP1, the following test-signals are supplied by default:

• a block-shaped change in elevator deflection: ∆δe = 3◦ during 2 seconds,

• a block-shaped change in aileron deflection: ∆δa = 3◦ during 2 seconds,

• a block-shaped change in rudder deflection: ∆δr = 3◦ during 2 seconds,

• a ramp-shaped change in flap setting: ∆δf = 3◦ within 3 seconds,

• a ramp-shaped change in engine RPM: ∆n = 200 [RPM ] within 4 seconds,

• a ramp-shaped change in manifold pressure: ∆pz = 2 [′′Hg ] within 2 seconds.

(These signals originally were chosen to validate the simulation results by comparing them with
existing data; they trigger all important characteristic motions of the aircraft.) The block-inputs
are extracted from the FDC library FDCTOOLS, which can be opened by typing fdctools at the
command-line. See section 9.7 for a description of this block-library. The ramp-shaped inputs
are created by passing a step-input through a Rate Limiter (both are standard Simulink blocks).
A different shape of the test signals can be obtained by changing the block-parameters after
double-clicking the input blocks. Of course, it is also possible to replace these blocks by other
types of input shapes from the standard Simulink libraries or from FDCTOOLS. In figure 10.1
only the elevator test signal has actually been connected to the aircraft model. The other test
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inputs can easily be connected by drawing the corresponding signal lines.

Before starting a simulation of OLOOP1 it may be useful to take a closer look at the ‘tuto-
rial’ system OLOOP1T. This system provides a step-by-step explanation of the construction of
OLOOP1 itself, which will probably help you to comprehend this simulation model.

10.2.2 Performing simulations with OLOOP1

First, open the system OLOOP1. Suppose we want to evaluate the responses of the aircraft
to the (default) block-shaped elevator input. In that case we don’t have to edit the system on
the input side. Before we can start a simulation, it is necessary to define the system parame-
ters in the Matlab workspace. First of all, the system Beaver requires the parameter vector
GM1 and the parameter matrices AM, EM, and GM2 to be present in the Matlab workspace.
These matrices are defined in appendix D. They can be retrieved from the file aircraft.dat,
which is contained in the FDC subdirectory data by means of the utility LOADER (see sec-
tion 9.3.1). So after opening OLOOP1 first double-click the button LOADER. You must activate
the Matlab command-window yourself after double-clicking this button to specify the directory
where LOADER will search for aircraft.dat – usually the default directory will do fine. Next,
the initial flight-condition must be defined or computed. You can use ACTRIM to determine
a steady-state flight-condition (see the example in section 10.5), or use INCOLOAD to load a
flight-condition from file. The FDC subdirectory data contains at least the following two files
with steady-state initial flight conditions: cr4520.tri and cr4560.tri. The file-extension .tri
reveals that these files were created by the routine ACTRIM. Their filenames have the following
meaning: cr means ‘Cruise’ condition, 45 denotes the initial value of the true airspeed in [ms−1],
20 denotes the initial flight-level, i.e. the altitude in [ft ] divided by 100. In this case, start IN-
COLOAD by double-clicking its button in OLOOP1 or by typing incoload at the command-line.
Click the first button from the user-menu to retrieve a trimmed flight condition, and specify the
directory, filename, and extension in the command-window. If you want to keep state variables
from the aircraft model fixed to their initial values, run FIXSTATE by double-clicking its button
in the system OLOOP1 or by typing fixstate at the command-line (see section 9.5). Here we
will evaluate the complete aircraft model, so it is not necessary to run FIXSTATE.

Now start the simulation. For the systems from the FDC toolbox the simulation parame-
ters already have been defined appropriately, so you can simply select Start Simulation in the
simulation menu. By default, the system OLOOP1 sends the 8th output, being θ,1 to a Graph
Scope which will display its time-trajectory in a graphical window and automatically sets the
figure axes. This is useful for monitoring the simulation, but for real analysis of the results it is
more convenient to make plots after finishing the simulation, using the simulation results from
the workspace. If everything goes well you will see a good example of a short-period oscillation
followed by the phugoid mode of the ‘Beaver’ aircraft. If you want to monitor another variable
during simulations you must connect the Graph Scope to another output from the Demux block.

Try performing some more simulations – it is really quite simple! Notice that by default
only one of the input signals, namely a block-shaped elevator deflection, is connected to the
aircraft model. This may lead to some Matlab warnings about unconnected output lines from
the other input signal blocks, which in this case obviously can be disregarded. If you want to
analyze responses to the other input signals, simply connect their output line to the appropriate
Mux block.

1See the definition of the S-function output vector from equation 10.1 or enter type outputs.hlp at the
command-line for on-line help.
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10.2.3 Analyzing simulation results

After a complete simulation of OLOOP1, the workspace should contain the variables time, In,
and Out, which represent the time-axis, input trajectories, and output trajectories, respectively.
See section E.2 of appendix E for the definitions of In and Out, or type type inputs.hlp or
type outputs.hlp for on-line help at the command-line. It is useful to check which variables
are present in the workspace after finishing the simulation by typing who, because under certain
circumstances Simulink does not properly send the simulation results to the workspace. This
bug has been noticed for all Simulink versions for Windows up to version 1.2c. If time, In, and
Out are not present in the workspace after a simulation something has gone wrong. In that case
try to recover the simulation results by running the routine RECOVER for the system Beaver
(type recover(’beaver’) at the command-line). If this doesn’t solve the problem you have to
repeat the simulation. See also section 9.4.3.

The variables time, In, and Out may be used rightaway to plot the results, but it is
also possible to run the Matlab macro RESULTS first in order to simplify this process. Note:
RESULTS can only be applied if you haven’t changed the definitions of the input and/or output
vectors which are sent to the workspace from the system Beaver. RESULTS yields a large
number of new variables such as alpha, deltae, Hdot, etc. which can be plotted against time
by typing plot(time,alpha), plot(time,deltae), etc. The variable names are mostly literal
representations of the corresponding symbols; see appendix E or the source-code of RESULTS for
more details. RESULTS can be started by typing results at the command-line, or by double-
clicking its button block in OLOOP1. After running RESULTS you can plot the most important
time-trajectories with the Matlab macro RESPLOT. See also sections 9.4.1 and 9.4.2.

10.3 Non-linear responses to stochastic inputs – OLOOP2

10.3.1 Structure of the system OLOOP2

The system OLOOP2 (figure 10.2) contains an open-loop simulation model of the ‘Beaver’ aircraft
flying through atmospheric turbulence. The corresponding ‘tutorial’ system OLOOP2T explains
the function of each block in this system. Like OLOOP1, the core of this system is an S-function
block which calls the system Beaver. A Demux block on the right-hand side of the system extracts
the sixteen individual output signals from the S-function output vector. Each output from Demux
can be connected to a Scope block for monitoring the simulations; in the example system a Graph
Scope has been connected to the third output line which corresponds with the sideslip angle β
(the complete definition of the S-function output vector from Beaver was given in equation (10.1)
and can be displayed in the Matlab command window by typing type outputs.hlp). On the
input side a Mux block combines the two control input vectors and the vector with wind and
turbulence velocities and their time-derivatives. Due to the fact that the aircraft model is not
linear, it is necessary to enter the initial values of the control input vectors uaero and uprop into
the system, even though we only want to analyze the responses to atmospheric turbulence. The
atmospheric turbulence model was copied from the library WINDLIB, which was described in
chapter 6. Here, Dryden filters with constant coefficients are used. The parameters from these
filters can be changed by double-clicking the subsystem Atmospheric Turbulence Group and then
double-clicking each Dryden Filter block. Of course, it is possible to connect and disconnect the
Dryden Filter blocks according to your own wishes. By default the scale lengths are set to 150
m, the standard deviations are 1 ms−1, and the velocity for which the filters are determined is
45 ms−1. This velocity lies exactly between the upper and lower limits of the flight envelope of
the ‘Beaver’. On-line help for the subsystem Atmospheric Turbulence Group can be displayed by
double-clicking its title-block, or by typing type turb1.hlp at the command-line.
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Figure 10.2: Block-diagram of the open-loop system OLOOP2

10.3.2 Performing simulations with OLOOP2 and analyzing the results

First, run LOADER in order to retrieve the model parameters for the system Beaver from the file
aircraft.dat. Use INCOLOAD to retrieve an initial condition from file, e.g. load cr4520.tri
or cr4560.tri from the subdirectory data, or determine a steady-state initial condition with
ACTRIM. Run FIXSTATE if you want to artificially fix state variables from the aircraft model.
Next, start the simulation by selecting Start in the simulation menu. The results can be analyzed
by means of RESULTS and RESPLOT. It is useful to make separate simulations for longitudi-
nal, lateral, and vertical turbulence, by connecting the respective blocks within the subsystem
Atmospheric Turbulence Group.

10.4 Linear responses to deterministic inputs – OLOOP3

10.4.1 Structure of the system OLOOP3

Figure 10.3 shows the system OLOOP3, which contains a linear open-loop simulation model of
the ‘Beaver’. In stead of the non-linear S-function block from OLOOP1 and OLOOP2, it defines
the aircraft dynamics by means of a linear State-Space block, which extracts its model matrices
Aac, Bac, Cac, and Dac from the Matlab workspace. These matrices can be extracted from
the non-linear system Beaver by means of the linearization program ACLIN; see section 8.3 for
more details. The purpose of OLOOP3 is to determine linear aircraft responses to the same
control inputs as used in the non-linear system OLOOP1. Contrary to OLOOP1, OLOOP3 is a
small-perturbations model. Therefore, it was not necessary to add the initial conditions uaero(0)
and uprop(0) to the test-signals, hence the test-signals could be connected directly to a Mux
block to get the small-deviations version of the input vector from equation (10.2). For more
information about OLOOP3 you should consult the ‘tutorial’ system OLOOP3T, which can be
opened by typing oloop3t at the command-line.
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Figure 10.3: Block-diagram of the open-loop system OLOOP3

10.4.2 Performing simulations with OLOOP3 and analyzing the results

The definition of model parameters is different from the definitions for OLOOP1 and OLOOP2.
Here, it is only necessary to define the matrices of the linear aircraft model (Aac, Bac, Cac,
and Dac) in the Matlab workspace. It is not necessary to define an initial condition, because
the linearized model expresses all signals in deviations from their initial values. The aircraft
model matrices can be loaded from file by running INCOLOAD or determined by the linearization
program ACLIN. By default, the subdirectory data contains two files with linearized aircraft
models: cr4520.lin and cr4560.lin.

For this example we will use ACLIN to obtain a linear aircraft model. Double-click the
ACLIN button in OLOOP3, or type aclin at the command-line to start this program. You will
be welcomed by the message from figure 10.4 and you must enter the name of the aircraft model
(by default Beaver). Next, choose a method for defining the operating point in the workspace. In
this case, click the first button of the user-menu to retrieve a trimmed-flight condition from file.
Here we will load the file cr4560.tri from the subdirectory data, see figure 10.6. ACLIN will
then start LOADER to retrieve the model parameters for the non-linear aircraft model and start
the linearization process itself. It is then possible to select a subset of the state equations and/or
input equations, but since we need the full 12th-order model, the questions from figures 10.9
and 10.10 are answered by pressing Enter . Save the results to the file testfile.lin in the
subdirectory data.

All model matrices are now specified in the workspace and the simulation can be started
by selecting Start from the simulation menu. If you want to view the process of the simulation
itself, double-click the Scope block first before starting the simulation. Due to the fact that the
model is now linear, the simulation will be very fast.1 The results from the simulations will

1Due to the fact that it is a linear model, the integrator LINSIM was applied for simulations of the system
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>> aclin

FDC 1.2 - ACLIN

Linearize nonlinear aircraft model in SIMULINK.

===============================================

Enter name of the aircraft model in Simulink (default: BEAVER)

> beaver

Figure 10.4: When you start ACLIN you must first specify the model name

Figure 10.5: Click the first button fro the user-menu to load an operating point from file
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Specify directory (default: c:\fdc12\data):

Enter filename without extension (8 characters max.):

> cr4560

Enter extension (3 characters), default = tri:

>

Loading operating point from file

c:\fdc12\data\cr4560.tri

<<< Press a key to proceed with model definition >>>

Figure 10.6: Specify the directory, filename, and extension (here: c:\fdc12\data\cr4560.tri)

Loading model parameters from AIRCRAFT.dat

------------------------------------------

Specify directory (default: c:\fdc12\data):

Datamatrices AM, EM, GM1, and GM2 loaded.

Ready.

<<< Press a key to proceed with linearization >>>

Figure 10.7: ACLIN now calls LOADER to retrieve the model parameters

Now linearizing S-function beaver

Wait a moment, please...

Linearization succeeded.

<<< Press a key to continue >>>

Figure 10.8: Next, the linearization function LINMOD is called
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Select states

-------------

The current state vector is:

x = [ V alpha beta p q r psi theta phi xe ye H ]’

1 2 3 4 5 6 7 8 9 10 11 12

Enter vector with element numbers of states you want to use

(enter = use all states):

>

Figure 10.9: It is possible to select a subset of the state vector, but we need all state variables

Select inputs

-------------

The current control-input vector is:

u = [ deltae deltaa deltar deltaf n pz ]’

1 2 3 4 5 6

Enter vector with element numbers of control inputs that you want

to use (enter = use all control inputs):

>

Include wind & turbulence inputs (y/n)? y

Figure 10.10: We also need all input variables, including the wind and turbulence inputs
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State-space matrices of complete 12th-order system:

Aac, Bac, Cac, and Dac.

Save linear state-space model to file (y/n)? y

Enter data for storing the linear model.

Specify directory (default: c:\fdc12\data):

Enter filename without extension (8 characters max.):

> testfile

The linear state-space model will be saved to the file:

c:\fdc12\data\testfile.lin

Is this correct (y/n)? y

Include operating point {xinco,uaero0,uprop0} to file (y/n)? y

Saving linear state-space model to the file

c:\fdc12\data\testfile.lin

<<< Press a key >>>

Figure 10.11: The results can be saved to a file (here: testfile.lin)
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State-space matrices of linearized aircraft model: Aac, Bac, Cac,

and Dac (ac = aircraft). Operating point is defined by the vectors

xinco, uaero0, and uprop0.

Examine the nonlinear aircraft model in Simulink for the current

definition of the outputvector. The S-function BEAVER uses:

y = [x’ dH/dt pb/2V qc/V rb/2V]’

which contains all relevant information for the autopilot simu-

lation model APILOT.

See matrix lindef for more details!

Ready.

Figure 10.12: The final screen message at the end of the linearization process

be stored in the vector t, which contains the time-axis, and the matrices yin and yout, which
contain the time trajectories of the input and output variables, respectively. Notice that these
variables are not equal to the standard results time, In, and Out, due to the fact that OLOOP3
does not call the non-linear model Beaver which constructs the latter variables. For this reason
it is not possible to apply RESULTS and RESPLOT here. In stead you must plot individual input
and/or output trajectories by typing:

plot(t,yin(:,1));

plot(t,yin(:,2));

plot(t,yout(:,6));

and so forth. The definitions of yin and yout correspond with the definitions of the S-function
input and output vectors given in equations (10.2) and (10.1), although here only deviations
from nominal input and output values are represented.

10.5 Trim-demo: trimmed-flight elevator deflection curve

From the Simulink models we can extract quite useful information about the characteristics of
the aircraft. For example, it is easy to determine the trimmed-flight elevator deflection curve,
which provides information about the stability and control characteristics of the aircraft (see
for instance ref.[15]). Figure 10.13 shows two trimmed-flight elevator curves for the ‘Beaver’
aircraft which were extracted from the Simulink system Beaver, using the trim algorithm from
section 4.3. In the figure, these curves have been compared to flight-test results, in order to get
a general idea about the validity of the model.1 The solid line and cross-points denote computed
and measured values for low engine power; the dotted line and circle-points denote computed
and measured values for high engine power.

OLOOP3. For non-linear simulations this routine was not suitable, so RK45 or ADAMS/GEAR were applied for
all other simulation models from FDC 1.2. See section 4.2 for more details about numerical integration methods.

1These flight-test results were obtained as a part of the practical training for students in Aeronautical En-
gineering at Delft University of Technology. Due to the somewhat limited accuracy of these measurements, the
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Figure 10.13: Trimmed-flight elevator deflection curves for the ‘Beaver’

The Matlab program TRIMDEMO demonstrates how these elevator deflection curves can be
obtained. This program first asks the user to specify the altitude, flap-angle, and engine RPM for
which the elevator curve should be computed. It automatically defines the other motion variables
for wings-level flight conditions. The trim procedure from figure 4.9 is then performed for 10
different values of the airspeed, which all lay within the flight-envelope of the ‘Beaver’. The part
of trimdemo.m which actually determines the trimmed flight conditions has largely been copied
from the general trim program actrim.m (see section 8.2).1 After determination of the trimmed
flight conditions, TRIMDEMO plots the relation between the steady-state elevator deflection
δe and the true airspeed. Of course it is easy to modify trimdemo.m if you want to view
steady-state curves of different state and/or input variables. The source code of TRIMDEMO
is contained in the file trimdemo.m within the FDC subdirectory examples. It is useful to
compare this with the source-code from ACTRIM, which is stored in the file actrim.m within
the subdirectory tools.

In stead of using TRIMDEMO it is also possible to create the elevator curve with the general
aircraft trim program ACTRIM. In this case you will have to define the flight conditions manually
for each velocity that you want to include in the δe-plot. Figures 10.14 to 10.21 demonstrate the
complete trim-procedure for a velocity of 35 ms−1. Of course, it is quite cumbersome to repeat
this procedure for ten different velocities, so it is much more practical to use TRIMDEMO for
this particular task. Still, this clearly demonstrates the practical use of ACTRIM.

flight test results should be used for qualitative comparison only.
1For future versions of the toolbox it is planned to divide the ACTRIM into more separate Matlab functions,

which will make it easier to write utilities like TRIMDEMO.
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>> actrim

FDC 1.2 - ACTRIM

================

Find steady-state trimmed-flight condition for

nonlinear aircraft model in Simulink.

<<< Press a key >>>

Figure 10.14: When you start ACTRIM you get this welcome message

Loading model parameters from AIRCRAFT.dat

------------------------------------------

Specify directory (default: c:\fdc12\data):

Datamatrices AM, EM, GM1, and GM2 loaded.

Ready.

Figure 10.15: ACTRIM first calls LOADER to retrieve the model parameters

Give name of system with aircraft model (8 characters max.)

default = beaver

> beaver

Simulink will first make an internal representation of

the system beaver. Press a key...

<<< Ready, press a key >>>

Figure 10.16: Next, the name of the aircraft model must be entered
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Figure 10.17: Next, select a trim-condition (here: steady wings-level flight, see next figure

Steady wings-level flight.

==========================

Give desired airspeed [m/s], default = 45: 35

Give (initial) altitude [m], default = 0: 2000*0.3048

Give heading [deg], default = 0:

Use specified flight-path angle or manifold pressure (f/m)? m

Give flap angle [deg], default = 0:

Give engine speed [RPM], default = 1800:

Give manifold pressure pz ["Hg], default = 20:

Searching for stable solution. Wait a moment...

Iteration stopped.

<<< Press a key to get results >>>

Figure 10.18: Some starting values for the trim process must be specified
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State vector (trimmed):

x = 3.5000e+001

2.1131e-001

-2.0667e-002

0

0

0

0

1.9190e-001

0

0

0

0

Input vector (trimmed):

u = -9.3083e-002

9.6242e-003

-4.9506e-002

0

1.8000e+003

2.0000e+001

0

0

0

0

0

0

Time derivative of state vector (trimmed):

xdot = -1.8871e-004

-1.2348e-005

4.6356e-004

-2.5027e-005

-2.0660e-005

-5.2604e-005

0

0

0

3.4986e+001

-7.2330e-001

-6.7909e-001

Figure 10.19: The resulting states, inputs, and time-derivatives are shown
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Save trimmed condition to file (y/n)? y

Enter data for storing the trimmed-flight condition.

Specify directory (default: c:\fdc12\data):

Enter filename without extension (8 characters max.):

> testfile

The trimmed-flight condition will be saved to the file:

c:\fdc12\data\testfile.tri

Is this correct (y/n)? y

Saving trimmed-flight condition to the file

c:\fdc12\data\testfile.tri

<<< Press a key >>>

Figure 10.20: The results can be saved to a file (here: testfile.tri)

The results have been stored in the following variables:

xinco = [V alpha beta p q r psi theta phi xe ye H]’ = state vector

xdot0 = dx/dt(0)

uaero0= [deltae deltaa deltar deltaf]’ = initial input vector for

aerodynamic model

uprop0= [n pz]’ = initial input vector for engine model

The text-matrix ’trimdef’ contains more info about the trimmed

flightcondition.

Ready.

>>

Figure 10.21: The final screen messages at the end of the trim process
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Chapter 11

‘Beaver’ autopilot – theoretical
backgrounds

11.1 Introduction

The Simulink models from chapters 5 to 7 played an important role for the design and evaluation
of the control laws for the ‘Beaver’ autopilot at the Faculty of Aerospace Engineering, Section
Stability and Control. This project served to gain practical experience in designing an autopilot
from scratch to actual flight tests. The control laws were based upon classical control theory,
which resulted in a baseline autopilot that served as an example for similar developments for the
new Cessna Citation II ‘National Fly-by-wire Testbed’, and provided a basic reference against
which modern control design methods could be measured. In this report, the resulting control
laws will be treated as a case study which will demonstrate the power and flexibility of the FDC
toolbox. This chapter describes the required theoretical backgrounds. The implementation of
the control structure within Simulink will be treated in the next chapter. These two chapters
are intended primarily as a demonstration for the more experienced FDC users, but they also
provide a good basis for similar Automatic Flight Control System design projects in the future.
However, for a detailed description about the ‘Beaver’ autopilot project the reader is referred
to the MSc-theses of M.O. Rauw and P.N.H. Wever (refs. [22] and [29]), which, though not
published for public use, may still be available at the Section Stability and Control of the
Faculty of Aerospace Engineering.

11.2 Basic autopilot functions

The functions of an autopilot can be divided in the areas of guidance and control . These
functions are defined as follows (ref.[20]):

Guidance: the action of determining the course and speed to be followed by the vehicle, relative
to some reference system.

Control: the development and application of appropriate forces and moments to the vehicle,
which: (i) establish some equilibrium state of vehicle motion, and (ii) restore a disturbed
vehicle to its equilibrium state (operating point) and/or regulate, within desired limits, its
departure from operating point conditions.

The boundary between these two areas is seldom inherently sharp, because of functional, oper-
ational, and equipment interactions that they may share. The control loops ensure a fast and
stable response of the aircraft to the commands created by the guidance loops. They must also

169
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eliminate the influence of external disturbances such as atmospheric turbulence. As a result
of the separation between guidance and control task, the autopilot structure can be divided in
inner and outer loops. The control function is fulfilled by the inner loops (figure 11.1), which
control the pitch and roll angles of the aircraft, i.e. the aircraft’s attitude relatively to the Earth.
The actual pitch and roll commands are created by the outer loops which guide the aircraft,
equipped with the inner-loop control structure, along the desired flight-path (figure 11.2).

A combination of control loops needed to fulfill a certain guidance or control function is
called an autopilot mode. It is possible to make a distinction between lateral and longitudinal
modes, even though the lateral and longitudinal motions of the aircraft are not totally indepen-
dent. To prevent the lateral movements affecting the performance of the longitudinal guidance
and control loops, it is necessary to include some lateral/longitudinal interconnections, e.g. a
turn-compensation which compensates for lost of lift due to rolling (a lateral motion) by means
of elevator deflection (a longitudinal control input).

11.3 The longitudinal autopilot modes

11.3.1 Pitch Attitude Hold mode

The Pitch Attitude Hold mode (PAH) is the basic longitudinal autopilot mode; it controls the
pitch angle by applying appropriate deflections of the elevator if the actual pitch angle differs
from the desired reference value. Normally, the PAH mode serves as inner loop for the Altitude
Hold, Altitude Select, and Glideslope modes (after adding a filter in the θ-loop). It is also
possible to select the PAH mode separately, for instance in order to control the pitch-attitude
of the aircraft by means of longitudinal side-stick inputs (fly-by-wire control). In addition, the
longitudinal part of the Go-Around mode is based upon the PAH control laws, see section 11.3.5.
The pitch angle θ is fed back to damp the phugoid mode of the ‘Beaver’ and to ensure that the
desired pitch angle is maintained. A proportional and integrating controller is applied in order
to make sure that no steady-state errors in the pitch angle will remain. As long as the error
signal θ− θref is not equal to zero, the signal from the integrator will increase, which leads to an
increasing elevator deflection which eliminates the error. A feedback-loop of the pitch rate to the
elevator has been included to compensate for the small decrease in damping of the short-period
mode due to the θ-feedback. See refs.[6], [19], or [20].

The block-diagram of the PAH mode is shown in figure 11.3. A loop for turn-compensation
has been added later, see section 11.5. Also, some signals from this block-diagram will be lim-
ited. The feedback-signals are obtained by means of on-board sensors which have not been
drawn in this block-diagram. All gain factors are functions of the airspeed V , see table 11.3 at
the end of this chapter.

11.3.2 Altitude Hold mode

The Altitude Hold mode (ALH) is used to maintain a reference altitude which is specified by
the pilot. This mode uses the PAH mode with an additional washout filter in the θ-loop as
inner-loop. In other words: the ALH mode fulfills a basic guidance function of the ‘Beaver’
autopilot. If the reference altitude differs too much from the actual altitude, the mode controller
automatically switches to the Altitude Select mode, see section 11.3.3.

The difference between the reference altitude and the actual altitude, ∆H = Href −H, is
fed back via an amplifier to the inner loops, hence, the outer loop generates a pitch command
signal θref for the inner loops. The washout filter in the θ-loop is necessary, because as soon as
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Figure 11.1: Control function fulfilled by inner-loops of the autopilot.
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Figure 11.2: Guidance function fulfilled by outer-loops of the autopilot.
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Figure 11.3: Block-diagram of the Pitch Attitude Hold mode (without turn-compensation)
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Figure 11.4: Block-diagram of the Altitude Hold mode (without turn-compensation)

Href is reached the command signal θref will become zero, whereas the actual value of the pitch
angle in level-flight usually differs from zero. But since the signal that leaves the washout filter
will be very small if the changes in pitch angle are equal or close to zero, the inner-loop does
not try to maintain a pitch angle θ = 0 anymore.

The block-diagram of the ALH mode is shown in figure 11.4. An additional loop for turn-
compensation has been added later, see section 11.5. The feedback-signals are obtained by
means of on-board sensors which have not been drawn in this block-diagram. The gains depend
upon the airspeed V , see table 11.3 at the end of this chapter.

11.3.3 Altitude Select mode

The Altitude Select mode actually controls the rate of climb of the aircraft. The climb rate
Ḣ is fed back via a filter to the pitch channel. The PAH mode with an additional washout
filter in the θ-loop serves as inner-loop for this mode, so the ALS mode can be regarded as a
guidance mode. The mode controller of the ‘Beaver’ autopilot automatically decides which rate
of climb is to be maintained if the pilot enters a certain desired reference altitude. If the dif-
ference between the reference altitude and the actual altitude exceeds a certain value, the ALS
mode will automatically be engaged. The mode controller switches from ALS to ALH mode if
the aircraft enters a certain ‘altitude window’ around the desired altitude. It is essential that
the pilot maintains a sufficient airspeed by increasing the engine power during climbs, because
otherwise the reference value of the rate of climb cannot be reached. This is due to the fact that
the system does not include an autothrottle which would take care of selecting the right engine
power itself (this is not uncommon in simple general-aviation autopilots).

The block-diagram of the ALS mode is given in figure 11.5. Notice that the feedback-signals are
obtained by means of on-board sensors which have not been drawn in this block-diagram. The
gains depend upon the airspeed V , see table 11.3 at the end of this chapter.
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Figure 11.5: Block-diagram of the Altitude Select mode

11.3.4 Longitudinal part of the Approach mode: Glideslope

In the Approach mode, the ‘Beaver’ is guided along the reference planes of the glideslope and
localizer. These reference planes are provided by radio signals of the Instrument Landing System
(ILS), which can be detected in the aircraft (see for instance ref.[3]). The Glideslope mode
(GS) is the longitudinal part of the Approach mode which brings the aircraft from level-flight
into a descent, following the glideslope reference plane. The glideslope signal is emitted by an
antenna which is located at some 300 meters beyond the runway threshold. The angle between
the glideslope reference plane and the horizontal equals some value between 2 and 4 degrees
(refs.[1], [3], and [14]). See section 3.4.1 for a description of the ILS system.

The Glideslope mode uses a feedback signal of the error angle εgs between the line through
the aircraft and glideslope transmitter and the glideslope reference plane. An estimate of the
rate of change of this error angle is also obtained by applying a differentiating filter s

s+1 to
this feedback signal. This helps reducing the overshoot when the aircraft captures the reference
glide path. The differentiating filter is engaged as soon as the autopilot is turned on, to ensure
that the transients during the first couple of seconds after engaging the filter do not affect the
glideslope performance. The filter provides a good approximation of the actual time-derivative
due to its very small phase-lag. Both εgs and the distance from the aircraft to the glideslope
reference plane dgs are measured positive if the aircraft flies above the reference glide path.

There are two different phases during a glideslope approach:

1. Glideslope Armed. This phase is engaged as soon as the approach mode is selected by
the pilot. The longitudinal autopilot mode in which the aircraft flew before selecting
the approach mode, usually ALH, will be maintained until the aircraft has reached the
glideslope reference plane.

2. Glideslope Coupled. This phase is initiated as soon as the aircraft passes the glideslope
reference plane for the first time. In this phase the control laws of the GS mode take over
the longitudinal guidance task of the autopilot.

The block diagram of the GS Coupled mode is shown in figure 11.6. Notice that the feedback
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Figure 11.6: Block-diagram of the Glideslope Coupled mode

signals θ and q are measured by means of on-board sensors which have not been drawn in
figure 11.6. The signal from the glideslope receiver actually depends upon the geographical
position of the aircraft relatively to the runway, which in figure 11.6 has been interpreted as a
feedback of the coordinates xref and yref , and the height Href to the glideslope receiver. The
gains from this block-diagram depend upon the airspeed V , see table 11.3 at the end of this
section. In addition, the gain Kεgs is reduced as the aircraft nears the runway threshold in order
to compensate for the increasing sensitivity in the measurements of the εgs-signal. The closer
the aircraft flies with respect to the glideslope transmitter, the larger the angle εgs becomes
for a constant distance to the glideslope reference line. Since this effect is comparable with an
increasing Kεgs , it can be compensated by reducing this gain. If Kεgs is kept constant the system
would become unstable if the distance to the glideslope transmitter is reduced below a certain
limit value.

For some runways it is possible to compute the distance to the runway threshold by means
of information from the Distance Measurement Equipment (DME), but in general the distance
to the glideslope transmitter must be obtained in a different way. For the ‘Beaver’ autopilot
it was not possible to use DME information at all due to hardware limitations. Therefore, the
distance to the glideslope transmitter was computed as a function of the altitude, which yields
a satisfactory approximation if the deviation from the nominal glide-path is small:

R ≈ Href

sin |γgs|

(

=
√

Href
2 +Rgs

2

)

(11.1)

where R is the three-dimensional distance to the transmitter, Href is the height above the airfield,
and γgs is the flight-path angle which an aircraft that flies along the nominal glide path would
have. Rgs is the (unknown) ground-distance to the glideslope transmitter. It is common practice
to use a radio-altimeter to determine Href for such gain-scheduling purposes. For the ‘Beaver’
aircraft we had to use the pressure altitude above sea level, corrected for the elevation of the
airfield itself. This works well as long as the elevations of all relevant airfields are available in
some kind of database within the Flight Control or Flight Management Computer.
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Figure 11.7: Response of the aircraft if the Coupled phase is entered too soon

The mode controller takes care of switching from Armed to Coupled. It constantly evaluates
a switch-criterion which checks if the aircraft crosses the glideslope reference line for the first
time. Although this yields a small overshoot in the error angle εgs, the response of the aircraft
is far more desirable than the response shown in figure 11.7, which would have occurred if the
Coupled mode would have been switched on earlier. The differentiating filter of the Glideslope
Coupled mode also helps in achieving a satisfactory transition from Glideslope Armed to Glides-
lope Coupled. After switching from Armed to Coupled the autopilot will remain in Glideslope
Coupled mode unless the pilot completely de-selects the Approach mode. The Glideslope Coup-
led control laws only work correctly if the pilot reduces power manually after intercepting the
glide path in order to maintain the desired approach speed. See section 3.4.1 for more details
about the glideslope signals.

11.3.5 Longitudinal part of the Go Around mode

The Go Around mode is used to cancel an approach. It has both longitudinal and lateral control
loops. The longitudinal part of the GA mode in fact is a special case of the PAHmode. It uses the
same control logic and inserts a step-wise increase in reference pitch angle of 10◦. The pilot must
manually apply full engine power. Notice that this makes the Go Around mode potentially very
dangerous: if the pilot does not apply full power, the aircraft will stall! Therefore the current
longitudinal Go Around mode should be equipped with more safety measures to become actually
useful. See section 11.4.5 for a description of the lateral part of the GA mode.

11.4 The lateral autopilot modes

11.4.1 Roll Attitude Hold mode with turn-coordinator

The Roll Attitude Hold mode (RAH) is the basic lateral autopilot mode. Its main purpose is to
serve as inner-loop for the other lateral autopilot modes, but it is also possible to use the RAH
mode separately, for instance to control the roll angle by means of side-stick inputs (fly-by-wire
control). The deviation of the actual roll angle from the desired roll angle is fed back to the
ailerons via a proportional, integrating controller. The integrator ensures that the desired roll
angle is actually reached without a remaining steady-state error. The RAH control loops are
equipped with a turn-coordinator, which fulfills two functions: it must (i) suppress the sideslip
angle in turns with appropriate deflections of rudder and ailerons, and (ii) suppress the adverse
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yaw which occurs when a turn is initiated by deflecting only the ailerons.1

1. In a coordinated turn it is necessary to apply both aileron and rudder deflections, which
must have opposite signs (ref.[15]). The deflections of the ailerons and rudder depend
on the true airspeed and the yaw rate or roll angle (ref.[29]). Using linearized models
of the ‘Beaver’ from ref.[26] these deflections were determined for a number of different
airspeeds as a function of the yaw rate. Non-linear simulations in Simulink were used to
further fine-tune the aircraft responses. The resulting control structure almost completely
eliminates the sideslip-angle in turns. The turn-coordinator relations were added to the
basic roll angle controller by means of airspeed-dependent factors dar and drr which, when
multiplied with the yaw rate r, determine the turn-coordination corrections to the aileron
and rudder deflections δa and δr.

2. The suppression of the adverse yawing due to aileron deflection is based upon the following
relation which is valid only in coordinated turns:

r =
g

V
sinϕ (11.2)

If the yaw rate is too small, that is: if g
V sinϕ > r the turn obviously is not coordinated

and it is necessary to apply a larger deflection of the rudder. If g
V sinϕ < r, the aircraft

is yawing too fast and a smaller deflection of the rudder is required. Therefore the factor
g
V sinϕ has been fed back to the rudder channel via the factor Kr.

The resulting deflection of the ailerons is equal to the sum of the deflection needed according
to the actual control loop of the RAH mode and the deflection needed to maintain a zero value
of the sideslip-angle. Rudder deflection is determined by the sum of the deflection for sideslip
suppression and the corrections to suppress adverse yawing.

Figure 11.8 gives the block-diagram of the RAH mode with turn-coordinator. The feedback-
signals are obtained by means of on-board sensors which have not been drawn in this block-
diagram. The gains and correction factors in figure 11.8 all depend upon the true airspeed V ;
see table 11.3 at the end of this chapter.

11.4.2 Heading Hold/Heading Select mode

The Heading Hold / Heading Select mode (HH) is used to maintain or select a certain heading
of the vehicle. It uses the yaw angle as feedback-signal. The difference between the desired yaw
angle and the actual yaw angle determines the magnitude of the roll angles needed to turn the
aircraft to the desired heading. (Note: in practice the pilot would rather want to control the
azimuth angle χ in stead of the yaw angle ψ, but since the sideslip angle β is kept minimal the
two angles are practically the same. However, the pilot himself must make the proper corrections
for the drift-angle due to wind!) With regard to the control laws there is no difference between
Heading Hold and Heading Select. They both use the RAH control loops with turn-coordinator
as inner-loops, hence the HH mode fulfills a lateral guidance task.

Figure 11.9 shows the resulting block-diagram for the HH mode. The feedback-signals are

1‘Adverse yaw’ arises from the difference in drag of the down-aileron compared to the drag of the up-aileron.
The sign of the stability-derivative Cnδa depends mainly on the rigging of the ailerons, their profile drag charac-
teristics, and the angle of attack of the airframe. Aileron deflections can also produce side forces on the vertical
tail which can become important contributors to Cnδa (ref.[20]). A negative value of Cnδa causes the aircraft
to yaw initially in a direction opposite to that desired by the pilot; the resulting movement is therefore called
adverse yaw.
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obtained by means of on-board sensors which have not been drawn in this block-diagram. All
gains are functions of the true airspeed; see table 11.3 at the end of this chapter.

11.4.3 Lateral part of the Approach mode: Localizer

In the Approach mode the ‘Beaver’ autopilot uses localizer signals from the Instrument Landing
System (ILS) for guiding the aircraft to the runway centerline. A description of the ILS system
can be found in section 3.4.1. The vertical approach guidance is performed by the Glideslope
mode, as shown in section 11.3.4.

The Localizer mode (LOC) uses a feedback signal of the angle Γloc between the line through
the aircraft and the localizer transmitter and the centerline of the runway and its time-derivative.
In the flight-tests this signal proved to contain so much noise that an estimation of the angle
Γloc was made by comparing the heading of the aircraft with the runway heading. A ‘mix’ of
this estimated error angle and the measured angle was used in the feedback-loop in order to
get a satisfactory behavior despite the noise while maintaining enough robustness to account for
crosswind. This refinement will not be taken into account here.

There are two phases in the lateral approach guidance:

1. Localizer Armed. In this phase the autopilot keeps using the lateral autopilot mode con-
trolling the aircraft (usually Heading Hold) until the aircraft comes near enough to the
localizer reference plane. Exactly how soon the Localizer Coupled phase is entered is
determined by the rate of change of the angle Γloc in the Localizer switch-criteria.

2. Localizer Coupled. This phase is entered if Γloc and Γ̇loc satisfy the following switch-criteria:

KΓ̇loc
Γloc + Γloc > 0 ∧ Γloc < 0 (11.3)

or:

KΓ̇loc
Γloc + Γloc < 0 ∧ Γloc > 0 (11.4)

where Γloc is positive if the aircraft flies at the right-hand side of the localizer reference
plane while heading towards the runway. There are two criteria, because it must be possible
to approach the localizer reference plane from two sides.

In the ‘Beaver’ autopilot, the time-derivative of the localizer signal Γloc is approximated with a
differentiating filter s

s+1 . This filter is enabled as soon as the autopilot is turned on, to make
sure that its transient effects have been died out if the LOC mode is actually switched on. This
filter has a very small phase lag; therefore it approximates the actual time-derivative quite well.
Without the Γ̇loc-feedback the aircraft tends to fly to the localizer reference plane as fast as
possible, thereby neglecting the wish to make a smooth interception of the centerline. This has
been illustrated in figure 11.10.

There is a fixed relation between the lateral distance to the centerline dloc, the angle Γloc,
and the distance to the Localizer transmitter Rloc. If the aircraft nears the runway the latter
distance will decrease. If dloc is kept constant while reducing Rloc, the angle Γloc will increase.
This increases the sensitivity of the LOC mode, which leads to instability of the control mode
when the aircraft comes too close to the runway. In a similar way as for the Glideslope mode,
this problem has been solved by reducing the gain KΓloc as a function of the factor:

Href

sin(|γgs|+ εgs)
+ xloc

(

≈
√

Rloc
2 +Href

2

)

(11.5)

which is approximately equal to the three-dimensional distance from the aircraft to the localizer
transmitter. Href is the height of the aircraft above the field, xloc is the distance between the
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Figure 11.10: Using Γloc, Γ̇loc, or a combination of both signals as feedbacks for the LOC mode

runway-threshold and the localizer transmitter, γgs is the nominal glide-path angle, and εgs is
the error angle between the line through the aircraft and the glideslope transmitter and the
nominal glideslope reference line, which is measured by the glideslope antenna on board the
aircraft. For the ‘Beaver’ aircraft the height Href was determined from the pressure altitude
above sea level, corrected for the elevation of the airfield itself. This makes it necessary to
have information about the elevation of the runway available in the Flight Control Computer or
Flight Management Computer of the aircraft.

The block-diagram of the Localizer Coupled mode is shown in figure 11.11. The gains from
this diagram depend upon the true airspeed; see table 11.3 at the end of this chapter. Notice
that the feedback signal ϕ is measured by means of an on-board sensor which has not been drawn
in figure 11.11. The signal from the localizer receiver actually depends upon the geographical
position of the aircraft relatively to the runway, which in figure 11.11 has been interpreted as a
feedback of the coordinates xref and yref , and the height Href to the localizer receiver.

11.4.4 VOR navigation mode

In the Navigation mode (NAV), the aircraft is guided along a VOR-bearing which is selected by
the pilot. For this purpose, the angle ΓV OR between the desired VOR-bearing and the bearing
on which the aircraft actually flies is used as a feedback signal. In principle, the NAV mode
functions in a similar way as the LOC mode, the control structure of the LOC mode is not
suitable for VOR navigation, because of the small values of ΓV OR at large distances from the
VOR beacon. The heading ψ is used as a feedback signal in stead of the rate of change of
ΓV OR, because at a large distance the angle ΓV OR is too small to obtain an accurate value of
its time-derivative. The combination of ΓV OR and ψ for the NAV mode has a similar effect as
the combination of Γloc and Γ̇loc for the LOC mode for creating a better interception of a radial
(see figure 11.10).

Just like the approach modes, the NAV mode has two different phases:

1. Navigation Armed. This phase is engaged as soon as the NAV mode is turned on. The
lateral autopilot mode in which the aircraft was flying before the pilot selected the NAV
mode, usually Heading Hold, is maintained until the aircraft flies through the selected
VOR bearing. The mode controller then automatically switches to NAV Coupled.
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2. Navigation Coupled. This phase is engaged if the aircraft passes the reference VOR bearing
for the first time (then the error angle ΓV OR = 0). The NAV Coupled mode makes the
aircraft turn towards the VOR bearing and follow the selected reference line.

The Navigation Coupled control law uses the RAH mode with turn-coordination as inner loops.
The signal ΓV OR passes a first-order filter which eliminates the high-frequency components from
the VOR signal for noise suppression. In stead of the signal Γ̇V OR, the heading ψ is coupled
back. This loop is basically equal to the outer-loop of the Heading Hold / Heading Select mode,
but it contains an additional washout filter that makes it possible to ‘crab’ along a VOR bearing
if there is a side-wind component. This is due to the fact that the washout filter eliminates the
low-frequency components from ψ, which naturally includes a constant crab-angle.

The block-diagram of the Navigation Coupled mode is shown in figure 11.12. Notice that
the feedback-signals ψ and ϕ are obtained by means of on-board sensors which have not been
drawn in this block-diagram. The gain values from this diagram are scheduled as a function of
the airspeed. See table 11.3 at the end of this chapter for a comprehensive list. Contrary to the
LOC mode, it was not possible to schedule the gains as a function of the distance to the VOR
mode. In theory this would have been possible by applying DME information, since many VOR
and DME stations are co-located at the same position. For the ‘Beaver’ project this was not
possible due to hardware limitations. Therefore, the sensitivity of the NAV control law increases
if the aircraft nears the beacon and decreases if the aircraft moves away from the beacon. If
the distance to the VOR beacon is too small, the NAV mode becomes unstable. The gains were
selected such that the system will become unstable if the aircraft enters the ‘cone of silence’
when cruising at an altitude of 1500 feet. This cone of silence is an area where the VOR signals
cannot be received accurately, see section 3.4.2 and ref.[3].

11.4.5 Lateral part of the Go Around mode

The lateral part of the Go Around mode, which is activated if the pilot wants to cancel an
approach, is effectively a special case of the Roll Attitude Hold mode. It uses the RAH control
structure to maintain a roll angle of zero degrees, hence it serves as a wing-leveler for a canceled
approach. See section 11.3.5 for a description of the longitudinal part of the GA mode.

11.5 Turn-compensation

11.5.1 Introduction

The assumption that the longitudinal and lateral motions of the aircraft are independent is
no longer valid if the aircraft has a non-zero roll angle, because the lift force decreases if the
pilot does not apply an appropriate deflection of the elevator . Although the aircraft has been
equipped with an Altitude Hold control mode, it is still necessary to compensate for this effect in
order to obtain a quicker reaction to the tendency to loose height. A compensation in the Pitch
Attitude Hold mode also proved to be useful in order to obtain a smoother ride of the aircraft.
In addition to the compensation for the loss of lift in turns, a correction of the measured pitch
rate is also necessary.

11.5.2 Correction of the pitch rate in turns

If the aircraft turns with a roll angle ϕ and yaw rate r, the pitch rate gyro will measure a value
qtot = q+r cosϕ in stead of the actual pitch rate q, as is illustrated in figure 11.13. In this figure,
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Figure 11.13: Contribution r tanϕ to measured pitch rate for ϕ 6= 0

Ω is the angular velocity about the ZV -axis. The additional component r cosϕ should not be
fed back to the q-loop of the longitudinal autopilot modes, because it has nothing to do with the
longitudinal motions of the aircraft. If the measured pitch rate qtot is not corrected properly,
the term will yield a positive-valued contribution to the elevator deflection which results in an
unwanted nose-down command.

11.5.3 Correction for the loss of lift in turns

For roll angles ϕ 6= 0 the lift force in ZV -direction decreases, as shown in figure 11.14. In a
horizontal, symmetrical, stationary flight condition the lift L is equal to the total weight W of
the aircraft. If the aircraft has a roll angle ϕ, the total lift force must be increased to L +∆L
in order to maintain a lift component along the ZV -axis that equals W . From figure 11.14 we
can deduce that:

L ′ = L cosϕ

L− L ′ = L (1− cosϕ)

∆L cosϕ = L (1− cosϕ) (11.6)



11.5. TURN-COMPENSATION 183

L

LL = L (sec    -1)∆ ϕ

W = m g

L' = L cosϕ

ϕ

Figure 11.14: Loss of lift force for non-zero roll angle

So the required extra lift for a non-zero roll angle becomes:

∆L = L

(
1

cosϕ
− 1

)

= L (secϕ− 1) (11.7)

To compensate for this loss of lift, a negative (= upward) contribution to the elevator deflection
is needed. For the ‘Beaver’ aircraft, this contribution initially leads to a further decrease in the
lift force due to the negative value of the stability derivative CZδe , but this is compensated due
to the fact that the aircraft will rotate to a larger angle of attack. The overall effect is therefore
a positive contribution to the lift-force. The additional deflection of the elevator needed to
compensate for the loss of lift-force in turns can be written as:

∆δe = Ktc
∗(secϕ− 1) (11.8)

11.5.4 Total turn-compensation

It is convenient to express the compensation for the decreasing lift force in terms of a correction
of q, since this makes it easier to combine this compensation with the correction for r tanϕ. The
total correction to obtain the required pitch rate q from the measured value qtot now becomes:

q = qtot − (r tanϕ+Ktc (secϕ− 1)) (11.9)

where Ktc = −Ktc
∗/Kq. The values of the gain Ktc were obtained by means of non-linear

simulations of the aircraft flying under Pitch Attitude Hold or Altitude Hold control in com-
bination with large roll-attitude commands for the Roll Attitude Hold mode for three different
initial values of the airspeed. Table 11.3 shows the resulting gains as a function of the air-
speed. The turn-compensation for the ALH mode is stronger than the compensation for PAH,
i.e. Ktc is larger for the ALH mode than for PAH, because of the different functions of these two
longitudinal modes:
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Figure 11.15: Block-diagram of the PAH mode with turn-compensation

• The ALH mode is designed to maintain a certain reference altitude. If the actual altitude
differs from the desired value a pitch-up or pitch-down command is initiated by the outer-
loop of the ALH control law. The turn-compensation for the ALH mode has therefore
been optimized to minimize variations in altitude if the aircraft starts to roll. However,
this implies that appropriate pitch-up or pitch-down commands have to be given which
results in a non-constant value of the pitch angle.

• The PAH mode is designed to maintain a constant pitch angle. The turn-compensation
for this mode helps to minimize variations in pitch angle response to rolling motions of the
aircraft. If the compensation in PAH mode would have been equal to the ALH mode the
initiation of turns would have yielded pitch-up commands which are desirable for maintain-
ing a constant altitude, but undesirable for maintaining a constant pitch angle. In practice
the PAH mode will be used separately only in combination with side-stick control, i.e. in
fly-by-wire mode, where the pilot will generate the appropriate pitch commands to com-
pensate for a loss of altitude while the PAH turn-compensation takes care of compensating
for changes in pitch angle.

Non-linear simulations of the ‘Beaver’ aircraft revealed a noticeable asymmetrical behavior,
which made it difficult to obtain satisfactory turn-compensation behavior for both right and left
turns (corresponding with positive and negative values of the roll angle). For this reason, it was
considered to use a small offset in ϕ, which would result in a somewhat different correction of
the pitch rate in comparison to equation (11.9):

q = qtot − (r tanϕ+Ktc (sec(ϕ+∆ϕ)− 1)) (11.10)

where ∆ϕ is the offset in the roll angle. After introducing this offset, it turned out that any
improvement in the altitude responses led to larger differences in pitch angle responses for left
and right turns, and vice-versa. In the final autopilot system the offset value was therefore
only applied for the ALH mode where some differences in pitch angle responses for right and left
turns were considered to be tolerable, taking into account that this mode could not be controlled
directly via a side-stick. For the PAH mode the best compromise between matching altitude
responses and matching pitch angle responses turned out to be no offset at all. Table 11.3 at
the end of this chapter shows the value of the offset-angle for the ALH mode as a function of
the true airspeed. Figure 11.15 shows the resulting block-diagram of the Pitch Attitude Hold
mode with turn-compensation, which also serves as inner-loop for other longitudinal autopilot
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Signal Lower boundary Upper boundary

θ -10 [deg ] +20 [deg ]

ϕ -45 [deg ] +45 [deg ]

p -12 [deg s−1] +12 [deg s−1]

q -12 [deg s−1] +12 [deg s−1]

r -12 [deg s−1] +12 [deg s−1]

Table 11.1: Signal boundaries used by the mode controller

modes after adding a washout filter in the θ-loop (see section 11.3.2).

11.6 The signal limiters

For reasons of safety, the mode controller of the experimental ‘Beaver’ autopilot, used during
the flight tests constantly checked the magnitude of the feedback signals. If these values would
exceed certain upper or lower boundary values, the autopilot would automatically switch off.
These boundary values have been listed in table 11.1. In order to make sure that the aircraft will
never exceed these limits, the control laws have been equipped with signal limiters which were
tuned by means of non-linear simulations of the PAH and RAH modes. In the flight tests these
limitations proved to be sufficient to keep the aircraft within the safety margins from table 11.1.
Apart from the signal limiters in the inner-loops and the safety checks in the mode controller,
the output signals to the control surfaces were also limited, allowing only practically feasible
control surface deflections. In the simulations, the outputs from the control laws lay always
within the practical range of the control surfaces.

In the PAH mode and the inner loops of the ALH, ALS, GA, and GS modes the following
limitations were necessary:

• The reference pitch angle θref had to be limited to the maximum value from table 11.1
minus a small margin to make sure the autopilot would not switch off.

• The difference pitch angle θref − θ had to be limited to make sure that the pitch rate q
remained between the upper and lower limits from table 11.1. This limiter was tuned by
examining q-responses to large block-shaped pitch commands in PAH mode.

• The output signal from the integrator block had to be limited in order to prevent integrator
windup. Without such a limitation, it is possible that the output signal from the integrator
block becomes larger than the maximum feasible elevator deflection if the signal θref − θ
has a value unequal to zero that remains either positive or negative during a large period
of time. Without an anti-windup limiter, it can take a long time before the integrator is
‘unloaded’, which degrades the autopilot performance.

In the RAH mode and the inner loops of the HH, LOC, and NAV modes the following limitations
were necessary:

• The reference roll angle was limited in order to prevent excessive loss of lift force and
extreme values of the load factor in turns. Also the roll angle limitation made it possible
to turn without increasing the engine power, except for turns at very low velocities. The
resulting limits were tighter than the roll angle limits from table 11.1.
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Signal Lower limit Upper limit

θref −8◦ +18◦

θref − θ −2 V +2 V
Output of PAH integrator −10 V +10 V

ϕref −30◦ +30◦

ϕref − ϕ −3.75 V +3.75 V
Output of RAH integrator −1 V +1 V

Table 11.2: Signal limiters from the PAH and RAH loops

• The difference ϕref − ϕ had to be limited in order to keep the roll rate p within the range
from table 11.1. This limiter was tuned by examining p-responses to large block-shaped
roll commands in RAH mode.

• The output from the integrator had to be limited in order to prevent integrator wind up.
The output value had to be large enough to suppress the influence of the engine upon the
lateral motions of the aircraft (the ‘Beaver’ exhibits a pronounced asymmetrical behavior
in open-loop responses which needs to be suppressed by the RAH loops), but it had to
be limited to get a reasonably small overshoot when the reference heading in Heading
Select mode was reached. Without the anti-windup integrator, the overshoots would have
been unacceptably large due to the considerable time it would then take to ‘unload’ the
integrator.

It was not necessary to include additional signal limiters to the outer loops, because all autopilot
modes make use of the same inner-loops. Therefore, if the aircraft remains within the safe region
defined by table 11.1 for PAH and RAH modes, it can never exceed these limitations in other
modes whose outer-loops effectively create command signals for the PAH and RAH inner-loops.
The resulting limiter values for the ‘Beaver’ autopilot are listed in table 11.2. The values of the
reference angles are measured in degrees, while the other signals are converted to Volts. This
is due to the fact that the actuator deflections are functions of input Voltages. The maximum
allowable values of the command signals to the actuators are plus or minus 10 Volts, due to
physical limitations of the control system hardware. The resulting maximum and minimum
deflections of the elevator, rudder, and ailerons are smaller than the deflections which can be
applied by a human pilot.
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Longitudinal Autopilot Modes:

PAH Kθ = −0.001375V 2 + 0.1575V − 4.8031 [V deg−1]
Kq = −0.000475V 2 + 0.0540V − 1.5931 [V s deg−1]
Ki = 0.5 [s−1]
Ktc = 0.02865V 2 − 1.7189V + 53.7148 [V ]
∆ϕ = 0 [deg ]

ALH KH = −0.00010V 2 + 0.015V − 0.5975 [V m−1]
Kd = −0.0025V + 0.2875 [s−1]
Ktc = 1.7189V + 14.3239 [V ]
∆ϕtc = 2 [deg ]
Other gains & coefficients: see PAH

ALS KḢ = −0.0003875V 2 + 0.04025V − 1.1041 [V sm−1]
Kc = 0.15 [s−1]
Kd = −0.0025V + 0.2875 [s−1]
Other gains & coefficients: see PAH

GS Kεgs =
(
0.00575V 2 − 0.63V + 18.00625

) (H−HRW

sin |γgs|
+ xgs

)
1

1000 [V deg−1]

Kd = −0.0025V + 0.2875 [s−1]
Kr = 1 [ – ]
Other gains & coefficients: see PAH

Lateral Autopilot Modes:

RAH Kϕ = 0.000975V 2 − 0.108V + 2.335625 [V deg−1]
Ki = 0.25 [s−1]
Kr = −4 [V s deg−1]
dar = 0.165 [V sm−1]
drr = −0.000075V 2 + 0.0095V − 0.4606 [V s deg−1]

HH Kψ = 0.05V − 1.1 [deg deg−1]
Other gains & coefficients: see RAH

LOC KΓloc =
(
0.00775V 2 − 0.76V + 15.75625

) (H−HRW

sin |γgs|
+ xloc

)
1

1000 [deg deg−1]

Kv = 10 [ – ]
Other gains & coefficients: see RAH

NAV KΓV OR = 0.05375V 2 − 6.825V + 153.03125 [deg deg−1]
Kψ = 0.05V − 1.1 [deg deg−1]
Kl = 1 [s−1]
Kp = 15 [s]
Other gains & coefficients: see RAH

Table 11.3: Gain-factors and coefficients of the control laws as a function of airspeed and altitude
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Chapter 12

‘Beaver’ autopilot – implementation
in FDC 1.2

12.1 Introduction

There are several ways to implement control laws of an Automatic Flight Control System in
Simulink. In practice there will be a gradual increase in model complexity during the AFCS
design process. In this chapter two different implementation methods will be described. The first
method is to obtain a literal ‘translation’ of the block-diagrams from chapter 11 in Simulink.
Due to the straightforward manner of implementing the control laws, this method is very suitable
for quick evaluations, but the resulting Simulink systems are rather inflexible and do not match
the software structure needed for actual application in a Flight Control Computer. This method
will be demonstrated for the basic control modes of the ‘Beaver’ autopilot in section 12.2. The
second method integrates all control laws in one subsystem, yielding a structure like figure 3.1,
which makes it easier to convert graphical block-diagrams to a high-level programming language
for use in a real-time flight-simulator or in the FCC’s of the actual aircraft. In section 12.3 this
second method will be demonstrated for the complete ‘Beaver’ autopilot.

12.2 Implementing separate control laws in Simulink

12.2.1 Structure of the control-law simulation models

The first steps in a control system design usually require application of linear control system
design tools such as the control system design toolboxes of Matlab. The linear results must
be validated by means of non-linear simulations, which should take place directly after finishing
the linear system design in order to provide direct feed-back of possible errors in the design at
an early stage of the design process. Within the Matlab environment this can be achieved
by converting the original block-diagrams of the control laws, e.g. the block-diagrams from
chapter 11, into corresponding graphical Simulink models.

During this conversion it is important to remember that the linear system analysis is
based upon small perturbations of signals around their nominal values, while the non-linear
analysis is based upon the true values of those signals. Consider for instance simulations of
a pitch-attitude control law. With a linear small-perturbations model such simulations are
straightforward, because all output signals from the control laws represent deviations from the
nominal elevator deflections, while the signals obtained from the linear aircraft model correspond
to deviations from the initial flight condition. For this reason the desired change in pitch angle
may be entered directly into the pitch controller when using a linearized aircraft model. With
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a non-linear model this signal must be superimposed upon the initial value of the pitch angle
before it can be compared with the true value of the pitch angle extracted from the aircraft
model. Moreover, the change in elevator deflection according to the pitch controller must be
added to the initial elevator deflection before it is sent to the non-linear aircraft model. This
initial value is in general not equal to zero! In general, for a non-linear simulation it is necessary
to add the outputs from control laws to the initial values of the control inputs before they may
be entered into the aircraft model, while the initial values of the outputs from the aircraft model
must be subtracted from the current outputs before sending them to the control laws.

12.2.2 Simulink implementation of the Pitch Attitude Hold mode

Figure 12.1 shows the Simulink implementation of the Pitch Attitude Hold mode of the ‘Beaver’
autopilot, which was obtained by means of a ‘literal translation’ of the PAH block-diagram from
figure 11.3. This Simulink system is called PAH. Figure 12.2 shows the signal manipulations
required to convert the inputs and outputs from the non-linear aircraft model to small pertur-
bation signals for the PAH control law and vice versa, as implemented within the subsystem
Beaver dynamics. The core of this subsystem is an S-function block which calls the system Beaver
(see chapter 5).

The aircraft model has twelve input signals, of which the first four are aerodynamic control
inputs, the fifth and the sixth signals are engine inputs, and the others are wind and turbulence
inputs. These inputs are gathered in the vectors uaero, uprop, and uwind, respectively. The first
element of uaero represents the elevator deflection δe, which is equal to the initial value δe(0)
plus the computed change in elevator deflection ∆δe, obtained from the PAH control law. Since
the other aerodynamic and engine control inputs are not used by the PAH loop, they remain
equal to their initial values. Moreover, the wind and turbulence inputs are zero in order to
simulate a no-wind condition. Thus, on the input side of the S-function block we add a vector
[ ∆δe , 0 , 0 , 0 ]T to the initial aerodynamic input vector uaero(0), called uaero0 in figure 12.2.
This result is Muxed with the initial value of the engine input vector uprop(0), called uprop0 in
figure 12.2, and the atmospheric disturbance vector uwind, which equals zero in figure 12.2 due
to no wind. This results in the S-function input vector for the system Beaver, see equation (10.2)
from chapter 10.

On the output side of the S-function block the output vector is first Demuxed in two parts:
the state-vector x and a vector containing the remaining output signals. The initial value of the
state vector x0 is subtracted from x to obtain the deviations from the initial flight-condition for
the PAH control law. A second Demux block divides the resulting deviations vector into twelve
scalar signals, of which the PAH mode only needs the fifth and seventh elements, corresponding
to ∆θ = θ − θ0 and ∆q = q − q0 respectively. The Outport and Inport blocks in the subsystem
Beaver dynamics transfer the signals ∆δe, ∆θ, and ∆q to/from the top-level of the system PAH.

12.2.3 Simulink implementation of the Roll Attitude Hold mode

In a similar way the Roll Attitude Hold mode and turn-coordinator of the ‘Beaver’ autopilot
were implemented in Simulink. Figure 12.3 shows the Simulink equivalent of the block-diagram
from figure 11.8, called RAH. The block Beaver Dynamics again is a subsystem which now contains
signal manipulations for the RAH mode, shown in figure 12.4.

In figure 12.5 the Pitch and the Roll Attitude Hold modes have been combined in one
block-diagram. This scheme also includes the turn-compensation loop in the pitch-channel,
which was described in section 11.5. This Simulink model is called PAHRAH. It is obvious that
the model structure in this case already is starting to become complicated, even though this
diagram is still limited to the two basic modes of the ‘Beaver’ autopilot. Adding the guidance
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Figure 12.2: Signal manipulations for the PAH mode in a non-linear simulation model

loops (Altitude Hold, Altitude Select, Heading Hold) to this structure is feasible when more parts
of the system are ‘grouped’ together in subsystems, but it is hard to keep the complexity of the
system under control. Remember that the system from figure 12.5 does not yet contain signal
limiters, continuous gain-scheduling functions, feedback of the pitch and roll rates to the actuator
& cable models, and turn-compensation loops! Implementation of the radio-navigation modes
(Glideslope, Localizer, and Navigation) will be even more complicated because then additional
models for the generation of the radio signals are needed. For this reason, ‘literal translations’
of the block-diagrams from chapter 11 are only usable for the basic autopilot modes. The next
steps in the control-law design process require a better structured simulation model, like the
model from section 12.3. For a smooth transition between linear design and non-linear analysis
it is recommended to use both kinds of models: the simplified models of the basic modes already
yield useful results (as will be demonstrated in the next section for the PAH and RAH modes
of the ‘Beaver’ autopilot), while the sophisticated simulation structure from later design phases
is especially useful for the transition to full flight simulation and the FCC’s of the real aircraft.
The next section describes how to apply the block-diagrams from figures 12.1, 12.3, and 12.5 in
practice for non-linear simulations.
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12.2.4 Using the PAH and RAH simulation models in practice

The Simulink systems PAH, RAH, and PAHRAH can be opened by typing pah, rah, or pahrah
at the Matlab command-line. It is also possible to use the Matlab macro APMENU, which
opens up a user-menu from which to choose the appropriate autopilot simulation model. Before
starting a simulation with these systems it is necessary to initialize the system parameters and
initial conditions, which is simplified by means of the Matlab macro PRAHINIT. This routine
can be started by typing prahinit at the command-line, or by double-clicking the magenta
initialization button at the bottom of the block-diagrams. Figure 12.6 shows the user menu
from PRAHINIT. All menu items should be clicked in the indicated order, and all questions
which appear in the Matlab command-window should be answered. Item 5 (‘Fix states’) is
optional; it can be skipped if one does not want to artificially fix state variables of the aircraft
model to their initial values during a simulation.
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The system initialization thus requires the following steps to be taken:

1. First, the parameters for the non-linear aircraft model must be loaded from the file air-
craft.dat. This is done by clicking item number 1, which will start the load routine
LOADER. You will be asked to specify the directory in which this file can be found; usu-
ally the default directory will be correct. If the load routine can’t find aircraft.dat it
will ask whether or not it should run MODBUILD to create the file. This question will
also be asked if you specify a wrong directory, so before running MODBUILD you should
check the directory name again. If you return to the main menu without aircraft.dat
having been loaded the model parameters will not be present in the workspace, so you will
encounter an error message if you still try to start a simulation.

2. The second item in the main menu must be clicked to load the state-space matrices of the
cable & actuator models for the elevator, ailerons, and rudder. There are three models
available, valid for an airspeed of 35, 45, or 55 ms−1. Choose the one that lies most
closely to the airspeed for which you want to make a simulation (variations in actuator &
cable parameters due to changes in the airspeed during simulations will not be taken into
account). The actuator model for V = 45 ms−1 is usually good enough.

3. The third item in the main menu must be clicked to define the initial value of the input
and output vectors of the non-linear aircraft model. There are two options: to run the
aircraft trim-routine ACTRIM or to load the initial flight condition from file by means of
the Matlab macro INCOLOAD. For a description of the trim-routine, consult section 8.2.
If you select the second option, a menu will be shown for asking you what to load (choose
load trimmed flight condition), and you will be asked to specify the directory name (again
the default directory will usually be right), the filename (e.g. cr4520 for a symmetrical
steady-state trimmed flight condition at an airspeed of 45ms−1 and an altitude of 2000 ft),
and the extension (use the default extension .tri for a trimmed-flight condition obtained
with ACTRIM).

4. The fourth item must be clicked to define the gain values for the Pitch and Roll Attitude
Hold modes. Since the systems PAH, RAH, and PAHRAH do not contain continuous gain-
scheduling functions, it is necessary to enter a value for the airspeed for which the gains
are determined. This value of the airspeed should be chosen as close as possible to the
mean value of the airspeed anticipated for the simulation. Usually, quite accurate results
can be obtained by selecting the initial airspeed as reference value for the gains.

5. Finally, the fifth item can be clicked if for one reason or another it is necessary to artificially
fix some state variables of the aircraft model to their initial values. This option will be
used later on in an example. See also section 9.5. Under normal circumstances item 5 can
be skipped.

After having defined all system parameters, it is possible to define the reference input signals. In
the systems PAH, RAH, and PAHRAH the default pitch-command equals a 1◦ step-input, while
the default roll-command is equal to a 10◦ step-input. Double-clicking the step-signal blocks on
the left hand side of the systems makes it possible to change the magnitude of these signals.1

Replacing the step-signal blocks by other kinds of input-signal generators makes it possible to
change the shape of the input signals if desired.

1The factor π/180 in these blocks is used to transform all angles from degrees to radians.
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Figure 12.7: Pitch and roll-responses without wing-leveler

Examples:

Use the system PAH to perform simulations of block-shaped pitch commands, ranging from
1◦ to 8◦. First run PRAHINIT, then enter the desired reference pitch angle in the input block on
the left hand side of the system PAH. Do not use item 5 of the initialization menu yet. Increasing
the reference step in pitch angle eventually yields an unstable pitch-response, which is caused by
longitudinal-lateral cross-coupling effects in combination with a large decrease in airspeed (the
engine power remains constant). This is shown in figure 12.7. For large pitch-commands, the
roll angle will increase considerably, bringing the aircraft in a spiral dive. (The results of each
simulation can be plotted by means of the Matlab macros RESULTS and RESPLOT, which
should be run in this particular order; see sections 9.4.1 and 9.4.2 for more details.) Now re-run
PRAHINIT, this time selecting item 5 in the user-menu to artificially fix the asymmetrical motion
variables to their initial values. This time the instability in the pitch-response will not occur,
even for much larger reference pitch commands. This proves that the increasing roll angle was
indeed the cause of the instability in the pitch angle. Now repeat these simulations with the
system PAHRAH, using a reference roll-command of 0◦ to suppress the increase of the roll angle.
Run item 5 of PRAHINIT again and select the option ‘Don’t fix any states’ in the user-menu in
order to allow the asymmetrical state variables to vary freely this time. Now the instability in
the pitch response will be suppressed by the Roll Attitude Hold mode which serves as a ‘wing
leveler’, keeping the roll angle equal to zero. Figure 12.8 presents the results. These simulations
make clear that in practice the two basic modes of the autopilot should not be applied sepa-
rately to avoid dangerous situations. Of course there is no operational need for separate use of
either the symmetrical or asymmetrical autopilot modes, but this analysis is still useful since it
provides more insight in the overall dynamics of the system and the validity of the linear results
over a large range of pitch commands.
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Figure 12.8: Pitch and roll-responses with wing-leveler

12.3 Integral autopilot simulation model

12.3.1 General structure of the autopilot simulation model

While the basic modes of the ‘Beaver’ autopilot could be implemented quite easily in Simulink
systems that resembled the block-diagrams from chapter 11, it is quite difficult to maintain a
clear structure of the simulation model if the outer loops are also implemented in this way. This
is especially true when items such as on-line gain-scheduling, signal limiters, turn-compensation,
atmospheric turbulence, and radio-navigation signals are to be implemented. Also, conversion
from the simulation models to real-time software routines is quite difficult to achieve with the
model structure from section 12.2. The implementation of the complete ‘Beaver’ autopilot
therefore has been based upon the model structure from figure 3.1, which combines all control
logic into one subsystem in stead of constructing the control laws ‘around’ the aircraft model
like the block-diagrams from chapter 11. Reconstruction of these block-diagrams required a
repositioning of the different elements to obtain a clear input/output structure for the control
logic. A division between symmetrical and asymmetrical control laws was made, and the control
function of the inner-loops was separated from the guidance task of the outer-loops.

The systems APILOT1, APILOT2, and APILOT3 contain the resulting Simulink implemen-
tation of the ‘Beaver’ autopilot model. APILOT3 is the most comprehensive version, APILOT2
is a simplified model that does not take into account external atmospheric disturbances and
noise in radio-navigation signals, and APILOT1 contains neither atmospheric disturbances, nor
radio-navigation blocks. In this section APILOT3 will be used as a guideline to explain the gen-
eral structure of the autopilot simulation model, but APILOT1 and APILOT2 are better suited
for practical purposes, because they require less computing time and memory due to the larger
feasible step-size for the numerical integrations. For on-line help about these models, enter type
apilot.hlp at the Matlab command-line.
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Figure 12.9 shows the top-level of APILOT3; compare this with figure 3.1. This system can
be opened by typing apilot3 at the command-line (type apilot1 or apilot2 to open the sim-
plified models). The models can also be accessed by means of the Matlab macro APMENU,
which reveals a graphical user-menu for choosing the appropriate autopilot model. The the
top-level of APILOT3 contains the following subsystem blocks:

• Beaver Dynamics links the non-linear aircraft model Beaver to the autopilot simulation
model by means of an S-function block,

• Symmetrical autopilot modes and Asymmetrical autopilot modes contain the control laws,

• Actuator & cable dynamics contains linear state-space models of the dynamics of the ac-
tuators and the cables from the actuators to the control surfaces, as used in the ‘Beaver’
test aircraft,

• Computational delay & limiters takes into account the computational delay in the evaluation
of the control laws and the input limitations of the actuators,

• Mode Controller and Reference Signals define switch-settings and reference values used by
the control laws,

• Wind & Turbulence determines the components of wind and atmospheric turbulence in the
aircraft’s body-axes, along with the time-derivatives of these values,

• VOR and ILS determine radio-navigation signals for the navigation and approach modes,
using the models from chapter 7,

• Sensors gathers other sensor characteristics and is used to subtract the initial conditions
from the S-function outputs that leave the system Beaver (this is necessary, because the
autopilot control laws are based upon deviations from the initial values of the S-function
outputs while the aircraft model itself uses the full signals),

• Add initial inputs is used to add the initial values of the control inputs to the changes in
control surface deflections according the control laws (again: the aircraft model is based
upon the full signals; the control laws are based upon deviations from the initial values).

Notice that only three control inputs have been coupled to the system Beaver; the autopilot does
not manipulate the engine inputs and flap setting. But APILOT3 already has been prepared
to accommodate possible autopilot enhancements which do control those variables, e.g. an au-
tothrottle system that controls the engine in order to maintain a constant airspeed.

For on-line help about the autopilot models, enter type apilot.hlp. Information about the
color scheme from these models can be found in colors.hlp (type type colors.hlp at the
command-line).

12.3.2 Implementation of the symmetrical autopilot modes

Figure 12.10 shows the internal structure of the block Symmetrical Autopilot Modes. The control
laws themselves have been implemented separately in the subsystems ALH, ALS, GS, and PAH,
which correspond with Altitude Hold, Altitude Select, Glideslope Coupled, and Pitch Attitude
Hold modes respectively. The PAH mode serves both as an independent autopilot mode and as
inner-loop controller for the ALH, ALS, and GS modes. The additional washout-filter which was
needed in the θ-loop for the ALH, ALS, and GS modes (see sections 11.3.2, 11.3.3, and 11.3.4)
has been included in the subsystem PAH with a switch to de-activate it for the PAH mode
itself. The gain-block 1/Ktheta is a correction needed to use the PAH control law as inner-loop,
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Figure 12.9: Top-level of the autopilot simulation model

taking into account the different position of the gain Kθ in the ALH, ALS, and GS modes
compared to the PAH mode itself (compare figures 11.4, 11.5, and 11.6 with figure 11.3). In
figure 12.10 the results from the blocks ALH, ALS, and GS are added together; switches inside
these blocks determine whether the outputs from these blocks are taken into account or not (if a
control mode is not active its output is set to zero). The settings of all switches are determined
by the subsystem Mode Controller in the top-level of APILOT3 (see section 12.3.4); the block
Select symm. mode-controller signals extracts the relevant switch-settings for the symmetrical
autopilot modes. It also extracts the reference input signals for the symmetrical modes, which
are determined by the block Reference signals in the top-level of APILOT3. The block Select
symm. control variables extracts the variables used by the symmetrical control laws to determine
the change in elevator deflection from the output vectors from the aircraft model, z and z− z0,
including signals for the gain-scheduling functions. See section 12.3.6 for the definitions of these
vectors.

12.3.3 Implementation of the asymmetrical autopilot modes

The general structure of the block Asymmetrical Autopilot Modes from the top-level of APILOT3
is shown in figure 12.11. The individual asymmetrical control laws have been implemented in
the subsystems HH, NAV, LOC, and RAH, which correspond to the Heading Hold, Navigation,
Localizer, and Roll Attitude Hold modes, respectively. The RAH mode serves both as indepen-
dent autopilot mode and as the inner-loop controller for the HH, NAV and LOC modes. The
outputs from the blocks HH, NAV, and LOC are added together; switches inside these blocks
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Figure 12.10: Implementation of the symmetrical autopilot modes

determine whether or not the outputs from these blocks are taken into account. The settings
of all switches for the asymmetrical modes are extracted from the block Mode Controller (see
section 12.3.4) by the block Select asymm. mode-controller signals, which also extracts the refer-
ence input signals for the asymmetrical modes from the outputs of Reference signals. The block
Select asymm. control variables extracts the variables used by the asymmetrical control laws to
determine the change in aileron and rudder deflection from the vectors z and z− z0, including
the signals for the gain-scheduling functions. See section 12.3.6 for the definition of the vector z.

12.3.4 Implementation of the Mode Controller

Figure 12.12 shows the subsystem Mode Controller. It contains switch-criteria for the Glideslope,
Localizer, and Navigation modes, as described in sections 11.3.4, 11.4.3, and 11.4.4. The switch-
criteria themselves are contained in the Matlab subroutines GSSWITCH, LOCSWTCH, and
NAVSWTCH, respectively. The source-codes of these routines, which can be found in the FDC
subdirectory apilot, are self-explaining; compare them with the theoretical description of the
switch-criteria from chapter 11. Type help gsswitch, help locswtch, or help navswtch at
the command-line for on-line help about these subroutines.

The output signal from the subsystem Mode Controller is the vector ymode , which has ten
elements. The first five elements of this vector control the settings of the switches from the
subsystem Symmetrical autopilot modes. This part of ymode is equal to the Matlab variable
ymod1S or ymod2S, depending upon the desired symmetrical autopilot mode and the output
from the switch-function GSSWITCH. The last five elements of ymode define the switch-settings
for the subsystem Asymmetrical autopilot modes. This part of the vector is equal to the variable
ymod1A or ymod2A, depending upon the asymmetrical autopilot mode and the output from
the switch-function LOCSWTCH or NAVSWTCH. The variables ymod1S, ymod2S, ymod1A, and
ymod2A are obtained from the Matlab workspace by means of Constant blocks. They can be
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set manually or by running the Matlab routine APMODE (type apmode at the command-line
or double-click the block Select mode & reference signals). The extensions S and A in the names
of these variables refer to symmetrical and asymmetrical autopilot modes, respectively. The
numbers 1 and 2 refer to an initial and a final mode-definition, which is used for defining Armed
and Coupled phases in control modes, respectively. See section 12.4.1 for the exact definitions
of these variables.

The signs of the output signals from the Matlab functions GSSWITCH, LOCSWTCH,
and NAVSWTCH determine whether the corresponding control laws are in Armed or Coupled
phase. Consider for example the glideslope switch-function GSSWITCH. As long as its output
value is positive, the corresponding Switch block on the right-hand side of the system Mode
Controller will pass-through the symmetrical mode-setting vector for the Armed phase, ymod1S.
If the output from GSSWITCH becomes negative, the mode-setting vector for the Coupled phase,
ymod2S, will be passed instead. In order to ensure that the glideslope mode will not switch back
from Coupled to Armed, a Memory block is used to store the previous output from GSSWITCH.
The same technique has been applied for the Localizer and Navigation modes, using the routines
LOCSWTCH and NAVSWTCH, respectively. Notice that while this switching method makes it
possible to switch between an initial and second phase of the symmetrical and asymmetrical
control modes, it does not allow more than one mode-switching action per simulation run.
Of course it is possible to extend the system Mode Controller with other switches, using new
variables such as ymod3S , ymod4S , etc. but this will always limit the number of switching
actions to a finite value. For simulations of the ‘Beaver’ autopilot one switching action for the
symmetrical and asymmetrical modes is sufficient. Mode Controller does not take into account
mode-selections by the pilot; it only represents the automatic switching actions from the Mode
Controller software in the real aircraft.

Although the switch-criteria functions are evaluated regardless of which control mode is
active, their outputs are only passed through if the corresponding control mode is actually
selected by the user at the start of a simulation. If the control mode is not selected, the
outputs from the switch-functions are multiplied by zero, which causes the Switch blocks on the
right hand side of the subsystem Mode Controller to pass through the first mode-setting vector
(being ymod1S or ymod1A). This is the only mode-setting vector for all modes which don’t
have a separate Armed phase; for those modes the variables ymod2S and ymod2A are treated
as dummy variables. In the subsystem Mode Controller this has been achieved by multiplying
the outputs from GSSWITCH, LOCSWTCH, and NAVSWTCH with the output from a logical
function that is zero when the corresponding control law is not active.

12.3.5 Implementation of atmospheric disturbances

Figure 12.13 shows the structure of the block Wind & Turbulence from APILOT3. It contains
a model of atmospheric turbulence, based upon Dryden filters with velocity-dependent coeffi-
cients, and a wind-profile for the Earth’s boundary layer. These subsystems (turb2 and BLwind)
can both be found in the wind and turbulence library WINDLIB, which has been described in
chapter 6. The time-derivative block du/dt is used to obtain time-derivatives of the body-axes
wind-velocity components, extracted from BLwind, which are needed as inputs to the equations
of motion. The time-derivatives of the velocity components due to atmospheric turbulence are
computed within the subsystem turb2. See section B.3 in appendix B for more details about the
equations of motion in non-steady atmosphere.
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Figure 12.13: Internal structure of the subsystem Wind & Turbulence

12.3.6 Blocks to obtain small-deviation signals from the aircraft model

Due to the fact that the control laws are based upon small deviation models of the aircraft
motions some signal manipulations are needed on the input and output sides of the non-linear
aircraft model. On the input side the initial values of the control surface deflections must be
added to the deviations of these values according to the control laws. This is done in the masked
subsystem Add initial inputs, whose contents are displayed in figure 12.14. The three unconnected
input ports correspond with the flap deflection, the engine RPM, and the manifold pressure of
the engine. The current version of the autopilot does not use these potential control inputs
to the aircraft model, although it is theoretically possible to do so. For instance, the engine
inputs can be manipulated by an autothrottle system, and the flap extension can be used for
gust-alleviation purposes.

On the output side of the aircraft model, the difference between the initial and current
value of the output vector z is determined in the subsystem Sensors/Subtract initial conditions.
The vector z is defined as:

z =
[

V α β p q r ψ θ ϕ xe ye H Ḣ
]T

This vector is practically equal to the state vector x from the aircraft model Beaver (see chap-
ter 5), with two exceptions:

1. z contains the rate of climb or descent Ḣ as a thirteenth element,

2. z has passed the sensor models from the subsystem Sensors.

Because of this second difference, the output vector from the block Beaver Dynamics has been
denoted as [x; Ḣ] (written as [x ; Hdot ] in the graphical system from figure 12.9) in stead of z.
The initial value of the vector z is called z0. In the graphical autopilot systems these vectors
have been written as z and z0 , respectively.

Figure 12.15 shows the structure of the subsystem Sensors. On the left-hand side of
this system, the initial conditions are subtracted from the aircraft model outputs. The resulting
vector is then Demuxed into separate scalar elements, which are sent to the corresponding sensor
models. Here it is assumed that the sensor models are based upon small deviation signals too,
otherwise the original outputs from the non-linear aircraft model should be used. On the right-
hand side of the block-diagram, the outputs from the sensor models are Muxed again into one
vector, which will be used as basic input vector for the control laws. Since these small-deviation
signals are not suited for gain-scheduling purposes, a second vector is constructed. Here, the
initial conditions are added again to the small deviation signals which leave the sensor blocks.
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The difference between this signal and the original output vector from the non-linear aircraft
model is completely caused by the sensor dynamics.

12.3.7 Additional blocks on the input side of the aircraft model

The masked subsystem Computational delay & limiters takes into account the time-delay which
is caused by the sampling and computing actions of the Flight Control Computer, and the
hardware-related limitation of the command signals to the actuators. In the FCC of the ‘Beaver’,
the input signals for the control laws were sampled thirty times per second. Since the software
is fast enough to evaluate all control laws within one sample-interval, the total time-delay equals
approximately 0.03 sec.1 The maximum allowable magnitude of the input signals to the ac-
tuators is equal to plus or minus 10 V . This imposes a hard limit to the magnitude of the
output signals from the Flight Control Computer. For the ‘Beaver’ autopilot every individual
contribution to the command signals for the actuators has been carefully balanced by means of
internal limiters within the FCC software in order to keep the FCC outputs within this 10 V
range. Yet, in order to cover for possible errors in the sizing of the internal limiters from the
subsystems Asymmetrical autopilot modes and Symmetrical autopilot modes, the 10 V limit has
also been implemented separately in the subsystem Computational delay & limiters.

The block Actuator & cable dynamics contains the dynamic models of the actuators and
the cables to the control surfaces. Here, simplified linear second-order state-space models with
two inputs and one output are used. For the model of the elevator actuator these inputs are
the commanded elevator deflection and the non-dimensional pitch rate, the aileron actuator
model uses the commanded aileron deflection and the non-dimensional roll rate, and the rudder
actuator model uses the commanded rudder defection and the non-dimensional yaw rate. The
non-dimensional angular velocities, which take into account the effect of rotational movements
upon the aerodynamic effectiveness of the control surfaces, are extracted from the non-linear
aircraft model. They are contained in the S-function output vector of Beaver, see equation (10.1)
from chapter 10.

12.3.8 Additional blocks on the output side of the aircraft model

As shown in figure 12.15, the subsystem Sensors contains models of sensor dynamics. Actually
this is only partially true, because most of the sensor blocks are still empty due to a lack of
suitable models; the subsystem Sensors merely provides an easy way of extending the simulation
model should better sensor models become available. Currently Sensors only contains:

• a time-delay of 0.4 seconds in the airspeed signal, which takes into account the time needed
for changes in air-pressure to travel from the Pitot-tube to the airdata computer,

• a similar time-delay for the altitude signal, a quantizer which takes into account a Least
Significant Bit of 4 ft in the measured altitude, and a Moving Average Filter which was
implemented in the autopilot software to smoothen-out the altitude signal,

• a time-delay of 0.8 sec in the time-derivative of the altitude signal, which takes into account
the transport delay in the Pitot-static system and the computational delay caused by the
determination of the time-derivative of the altitude from different altitude samples within
the airdata computer.

1For reasons of computing speed APILOT3 does not actually use sampled signals. It is possible to simulate
the influence of sampling by means of a Zero Order Hold filter in the subsystem Sensors, but at a sampling rate
of 30 Hz , the influence of sampling proved to be negligible. The influence of the computational delay is not very
pronounced either, but contrary to the ZOH filter, this effect could be simulated easily without any penalties in
computing speed.
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Figure 12.16: Main menu of the autopilot initialization routine APINIT

The altitude sensor block contains a 3-switch, generated by the Matlab routine NSWITCH (see
section 9.7.3), which makes it possible to select one of three different altitude outputs: (i) a
continuous signal which has passed the 0.4 sec time-delay only; (ii) a discontinuous signal which
has also passed the 4 ft quantizer block; (iii) a discontinuous signal which has been smoothened
out by the Moving Average filter after passing the quantizer block first. Which option is chosen
depends upon the value of the Constant block that is connected to the 3-switch. This can be
changed after double-clicking the altitude sensor block within the subsystem Sensors/Subtract
initial conditions.

12.4 Performing simulations with the autopilot models

12.4.1 Autopilot model initialization

Before starting a simulation of one of the autopilot models it is necessary to define all parameters
from these systems. Two Matlab routines to assist the user in this initialization task:

1. APINIT. This routine sets the initial values of the control signals and initializes the aircraft
model, actuator and cable models, and radio navigation models. Moreover, it contains a
‘shortcut’ to the routine FIXSTATE that makes it possible to artificially fix one or more
state variables from the aircraft model, e.g. to neglect longitudinal-lateral cross-coupling
effects (see section 9.5). APINIT can be started by typing apinit at the command-line or
by double-clicking the button-block Initialize subsystems in the top-level of the autopilot
simulation model. Figure 12.16 shows the main menu from APINIT. The user should walk
through the menu-options in the appropriate order to make sure all system parameters
are properly set in the Matlab workspace. Item 5 is optional and has therefore been put
between brackets.

2. APMODE. This routine helps setting the longitudinal and lateral autopilot modes and
the reference inputs. These reference signals define the shape of the deviations from the
initial values of the input signals. Currently, it is possible only to specify step-shaped input
values. If this step is set to zero, we can analyze the effectiveness of the ‘Hold’ modes of the
autopilot under influence of external disturbances and longitudinal-lateral coupling effects.
Non-zero steps are used to obtain step-responses. Simulating other types of input signals
requires manual editing of the Simulink models of the autopilot. It is recommended
always to use APMODE for setting the autopilot mode, because this ensures that only
legitimate combinations of autopilot modes are selected. APMODE can be started by
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Element number: Symmetrical mode switches (ymodS ): Asymmetrical mode switches (ymodA):

1 Symmetrical mode On/Off Asymmetrical mode On/Off

2 Symmetrical outer-loops On/Off Asymmetrical outer-loops On/Off

3 ALH mode On/Off HH mode On/Off

4 ALS mode On/Off NAV mode On/Off

5 GS mode On/Off LOC mod On/Off

Table 12.1: Definition of the elements from ymodS and ymodA (1 = On, 0 = Off)

typing apmode at the command-line or by double-clicking the button-block Select mode &
reference signals in the autopilot simulation model. The user must specify the symmetrical
autopilot mode and corresponding reference input signal and the asymmetrical autopilot
mode and reference input. APMODE does not set the reference inputs for the approach
and navigation modes; those definitions will be defined by clicking item 4 of the main
menu from APINIT.

The switch-settings that define which autopilot mode is activated are stored within the Mat-
lab workspace in the variables ymod1S , ymod1A, ymod2S , and ymod2A. These variables are all
defined by APMODE. The extensions S and A refer to symmetrical and asymmetrical autopilot
modes, respectively, while the numbers 1 and 2 specify which phase the autopilot mode is in:
1 = Armed , i.e. the first phase of the control mode, and 2 = Coupled , i.e. the second phase.1

The switch-setting variables are vectors with five elements which all have a value of either 0
or 1, which determine whether a switch should be ‘opened’ or ‘closed’. Table 12.4.1 shows the
meaning of all elements from ymodS and ymodA. In order to get valid combinations of control
laws, APMODE only allows the following definitions of ymodS and ymodA:

Symmetrical: ymod1S (Armed): ymod2S (Coupled):

PAH: [ 1 0 0 0 0 ] [ 0 0 0 0 0 ]

ALH: [ 1 1 1 0 0 ] [ 0 0 0 0 0 ]

ALS: [ 1 1 0 1 0 ] [ 0 0 0 0 0 ]

GS: [ 1 1 1 0 0 ] [ 1 1 0 0 1 ]

Asymmetrical: ymod1A (Armed): ymod2A (Coupled):

RAH: [ 1 0 0 0 0 ] [ 0 0 0 0 0 ]

HH: [ 1 1 1 0 0 ] [ 0 0 0 0 0 ]

NAV: [ 1 1 1 0 0 ] [ 1 1 0 1 0 ]

LOC: [ 1 1 1 0 0 ] [ 1 1 0 0 1 ]

Moreover, APMODE determines valid combinations of symmetrical and asymmetrical modes,
which both may have an independent Armed and Coupled phase. The Go-Around mode can be
simulated by selecting the Pitch and Roll Attitude Hold modes and entering the appropriate ref-
erence values with APMODE (∆θ = 10◦, ϕ = 0◦). For the Armed phase of the Glideslope mode,
the ALH control law is used, while the Localizer and Navigation modes use the HH control law

1Although Armed and Coupled phases only apply to the radio-navigation modes, the variables ymod2S and
ymod2A must always be defined in the Matlab workspace when running simulations of the autopilot (except
for the simplified model APILOT1 which does not contain radio-navigation models altogether). If they are not
needed, their elements are set to zero by APMODE. Leaving them undefined would yield an error when starting
a simulation.
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in Armed phase.

The reference inputs to the basic control laws, being PAH, ALH, ALS, RAH, and HH, are
stored in the variables yrefS , and yrefA. These variables are defined as follows:

yrefS = [∆θref ∆Href ∆Ḣref ]
T

yrefA = [∆ϕref ∆ψref ]
T

All elements from these vectors are constants, which implies that the simulation model only
allows step-shaped changes in θ, H, Ḣ, ϕ, and ψ to be defined (all at t = 0). If you want to
change the shape of these test inputs, you must edit the block Reference Signals within APILOT1,
APILOT2, or APILOT3.

The parameters for the Glideslope, Localizer, and Navigation modes are defined separately
by APINIT, which calls the routines ILSINIT and VORINIT. Type help ilsinit or help vorinit

at the command-line for more information.

12.4.2 Examples of non-linear autopilot simulations

In this section some examples of autopilot simulation experiments will be demonstrated in or-
der to show how to use the systems APILOT1 to APILOT3 in practice. Since this report does
not intend to fully cover the behaviour of the ‘Beaver’ autopilot itself, the reader is referred
to refs.[22] and [29] for detailed information about the ‘Beaver’ autopilot project. Ref.[29] de-
scribes the linear design of the control laws, and ref.[22], treats the non-linear evaluations of the
autopilot along with the very first version of the FDC toolbox which has now become obsolete.

Example: step response of the PAH mode

Suppose we want to analyze the response of the ‘Beaver’ to a step-shaped pitch-command for the
PAH mode, similar to the analysis from section 12.2.2. Since we will not take into account wind,
turbulence, and sensor models and we don’t need the radio-navigation signals, it is possible to
use the system APILOT1 for this simulation. This model contains complete implementations
of all autopilot modes except approach and navigation. Type apilot1 at the command-line to
open APILOT1. Before starting a simulation, double-click the two button-blocks at the bottom
side of the block-diagram, or type apinit and apmode at the command-line. From the user-menu
of APINIT choose options 1 to 3 and answer the questions appearing in the command-window.
Option 4 is not necessary because APILOT3 does not contain VOR or ILS models; option 5 is
skipped because we don’t want to fix any state variables of the aircraft model. After clicking
button 2 select the actuator models for an airspeed of 45 ms−1. After clicking button 3, load an
initial trimmed flight condition from the file cr4520.tri within the FDC subdirectory data.
From the user-menu of APMODE select the Pitch Attitude Hold mode with a step input ∆θref
equal to 1◦ and the Roll Attitude Hold mode with a reference value ∆ϕref = 0. If you now
start the simulation, a time-trajectory will appear in the figure-window, generated by the Graph
scope1. By default this scope will display θ, but you may connect it to another output line if you
wish. See the definition of the S-function output vector in equation (10.1). By default, 60 sec-
onds of flight will be simulated. After the simulation, run the routines RESULTS and RESPLOT
respectively to get an overview of the results. Again it is useful to figure out how large the pitch
step may be without the response becoming unstable. Compared with the earlier result from
figure 12.8 the feasible ∆θ range is now smaller, which is probably due to the influence of the
limiters and/or continuous gain scheduling functions.

1You may get a warning message about an unconnected output line in APILOT1. Disregard this message; the
diagram was purposely designed in this way.
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Example: step response of the ALH and RAH modes with and without turn-compensation

As described in section 11.5 a turn-compensation loop was added to the pitch channel in order
to minimize the influence of the bank angle upon the pitch angle in PAH mode and the alti-
tude in ALH mode. The fine-tuning of the gains for these loops was done by means of series
of non-linear simulations; this process has been treated in more detail in ref.[22]. Here we will
briefly analyze the influence of the turn-compensation logic upon altitude responses due to roll
angle commands. Open the system APILOT1 and initialize its subsystems by double-clicking the
first button-block or running APINIT. Remember that it is not necessary to initialize the VOR
and/or ILS systems when using APILOT1. Now double-click the second button-block or run
APMODE. Select the Altitude Hold mode with reference input ∆Href = 0 in combination with
the Roll Attitude Hold mode with reference input ∆ϕref = 30◦. Run the simulation, then run
RESULTS and save the altitude response by typing: time1 = time; H1 = H; at the command-
line. This is the altitude response with turn-compensation. Next, enter the system Symmetrical
autopilot modes, double-click PAH, and delete the output line from the block Turn Compensator.
Restart the simulation and run RESULTS again. If you now type: plot(time,H,time1,H1), the
altitude responses with and without turn-compensation will be displayed. Figure 12.17 shows
the results expressed in feet. Obviously, the turn-compensator helps reducing the initial change
in altitude that occurs after initiating a turn with a roll angle of 30◦. Note: the gains for the
turn-compensation were carefully fine-tuned for both left and right turns up to a level where any
improvement in altitude response for left turns yielded a deterioration of the responses for right
turns and vice versa. Since the responses were judged to be good enough, more sophisticated
‘asymmetrical’ turn-compensation loops were not taken into account during the design process.

Example: simulation of the Approach mode

For simulations of the approach mode it is necessary to specify the parameters of the radio-
navigation models as well before starting a simulation. The user must make sure that the
aircraft is in the vicinity of the Localizer and Glideslope reference planes at the beginning of
a simulation, because the LOC and GS modes will not couple unless the aircraft passes these
reference planes. For this reason, it is also required to select an appropriate initial heading and
altitude for ILS capture. Let’s take a closer look at this problem. First open the system API-
LOT2. This system does not take into account wind, turbulence, and sensor noise, but it does
contain the required VOR and ILS models. Double click button 1 to initialize the subsystems of
APILOT2. Click the appropriate buttons in the user menu to load the aircraft model parameters,
load the actuator & cable models, load the initial flight condition from file (in this case, load
cr4520.tri from the default FDC data-directory), and initialize the ILS system. The follow-
ing parameters must be entered at the command-line for the ILS initialization: runway height,
initial X-distance from the aircraft to the runway, initial Y-distance from the aircraft to the
runway, glideslope angle, runway heading, X-distance from the runway threshold to the localizer
antenna, X-distance from the runway threshold to the glideslope antenna, and Y-distance from
the runway centerline to the glideslope antenna. Here, enter 12000 m for the initial X-distance
from the aircraft to the runway, and use default values for all other ILS parameters. Also use
default values for the VOR system (the VOR parameters are used here as dummy variables
only). Since the initial flight condition from the file cr4520.tri sets the initial altitude to
2000 ft , the X-distance of 12000 m puts the aircraft in the vicinity of the glideslope reference
plane. In this case the initial Y-position puts the aircraft on the extended runway centerline,
and the initial heading corresponds with the reference runway heading (ψ = ψRW = 0 deg).
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Now double-click the other button block, or run APMODE directly from the command-line and
specify the Glideslope and Localizer modes to be used. You may now start the simulation. By
default the Graph Scope block is coupled to the altitude. After approximately 8 seconds, the
aircraft will capture the glideslope. Run RESULTS after the simulation has finished and plot
the altitude against the coordinate xe to see the glide-path. Figure 12.18 shows the resulting
altitude response expressed in [ft]. It is also useful to plot the results which are stored in the
matrix yils; enter type ils.hlp at the command-line for the definition of this matrix, or see
table E.5 in appendix E. If you plot the airspeed V you will notice an considerable increase in
airspeed when the aircraft starts to descend on the glideslope. This is due to the fact that the
powersetting is not changed automatically for the descent. In the real aircraft the pilot would
reduce power, which can be roughly simulated by fixing the airspeed to its initial value. Use
option 5 of the initialization menu to do so, or type fixstate at the command-line. Select the
option Fix arbitrary states and specify the vector [1] at the command-line to fix the first state
variable, being the airspeed. See also section 9.5.



Chapter 13

Recommendations for future
FDC releases

13.1 Transforming the toolbox to a central model library

The current toolbox provides ample possibilities for the users to adapt and enhance the models
and tools. Combining all those new developments in a central model and tool library can
quickly enhance the flexibility and power of the FDC toolbox, provided such a library is well
maintained. Although every individual user is free to do whatever he wants with the FDC models
and tools, all entries to a central model library should comply to certain rules, in order to prevent
compatibility problems. That was also the main reason for issuing the license agreement from
section 1.3. If there is one central model library to distribute the ‘official’ FDC toolbox and its
enhancements, it will be much easier to support the toolbox and to determine who is responsible
for compatibility problems and bugs of each distributed FDC version.

An example of such a central program library is the distribution of all TEX-related pro-
grams via the Comprehensive TEXArchive Network (CTAN) on Internet.1 On a smaller scale,
the same sort of program distribution via an ftp-site could be applied to the FDC toolbox and its
future enhancements. There should be one or more ‘librarians’ which are ultimately responsible
for deciding which entries are included to the main FDC distribution and which are not. This
also makes it easier to respond to user-comments, while the user himself can easier issue own
contributions to the FDC toolbox. It depends upon the user responses to this version of the
toolbox whether such an ftp-site will ever be realized.

13.2 Porting Simulink models to other computer platforms

In theory it is possible to use an automatic code-generator for transforming graphical Simulink
systems to a subroutine written in a high-level program language that can easily be ported to
other systems. One application where this could be particularly useful is for transferring control
laws from an off-line Simulink-based simulation environment to on-line flightsimulation and
the Flight Control Computers (FCC’s) of the test aircraft. Automating these conversions will
drastically reduce the chances of making errors. It will ensure that the control laws used in
flight are exactly the same as the control laws designed within the Simulink environment.

Figure 13.1 shows what this process would look like. In the early stages of the AFCS
design process, the control laws are implemented as graphical block-diagrams in the fashion of

1This network is a set of fully-mirrored ftp-sites which provide up-to-date TEX-related software on the World
Wide Web (http://www.ora.com/homepages/CTAN-web).
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Figure 13.1: ‘Portable’ control laws

section 12.2. Next, the separate control laws are integrated within a block-diagram structure
as treated in section 12.3, taking into account all possible external errors, sensor dynamics,
actuator dynamics, discretization effects, time-delays, etc. This type of block-diagram represents
the ultimate off-line simulation model of the AFCS. At this stage it becomes necessary to make
the step towards on-line simulation. To achieve this, it is necessary to convert the part of
the block-diagram that represents the control laws to a high-level language subroutine. For
reasons of computing speed it is probably best to use the C language or take an object-oriented
approach with C ++ (in figure 13.1 it has been assumed that the block-diagrams are converted
to C ). Before porting this to the on-line flightsimulator or FCC’s of the aircraft the resulting
program should be verified thoroughly to ensure that the results match those of the graphical
block-diagram. The best way to do this is to link the C programs to the original Simulink
simulation model, thus replacing the graphical block-diagram representation of the AFCS by
the new C subroutine. In Simulink this is possible by means of so-called Matlab-executables
(mex-files).

Porting the C subroutine to the on-line flightsimulator is possible only if the simulator
software contains interface-routines for linking external subroutines to the main simulation pro-
gram. It is essential that the input/output relations between the simulator software and the
subroutine with the AFCS control laws are clearly defined and ‘compatible’ with the off-line
Simulink model. Should the Simulink model use different units of measurements, reference
frames, etc., it is necessary to put an appropriate interfacing program between the AFCS soft-
ware and the aircraft model within the simulator software. Obviously these considerations also
apply to the implementation of AFCS software within the FCC’s of the test aircraft.

Another problem that has to be solved is the pilot-interface. Obviously, the pilot must
be able to enter the AFCS mode and reference values. It is recommended to use computer
displays to represent the status of the AFCS in the aircraft or simulator, because that provides
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a large flexibility with regard to the display formats. Furthermore, the pilot needs a flexible,
standardized input device to enter settings and reference values to the AFCS. Such standardized
display and input devices make it possible to test different experimental AFCS designs in the
on-line flightsimulator and in real flight in parallel, without changing the hardware every time
a new system is developed. In the off-line environment it is relatively easy to emulate such
input/output devices from the flight-simulator and the test aircraft.

Theoretically we could also go one step beyond the automatic code generation for control laws
only, because an automatic code generator can also be applied to the complete simulation model
(i.e. aircraft model + external disturbances + AFCS control laws + sensor dynamics + actuator
dynamics + . . . ). This opens the possibility to port a complete simulation model from Simu-
link to the on-line flightsimulator. However, there are a number of fundamental problems to
be solved for achieving that level of portability. First of all, the Simulink environment is by
itself not suited for real-time simulations while the on-line flightsimulator must have real-time
capabilities. Using the converted Simulink model as a subroutine of the flightsimulator thus
requires careful control of the timing of the program. Secondly, the interfacing problem becomes
even more pronounced if the complete aircraft model is ported since the simulation model needs
to be coupled to the software subroutines which control the display, flight instruments, motion
system, etc. The interfacing problem is enlarged by the enormous flexibility of Simulink. Only
by making solid guidelines for the input/output structure of the graphical systems it will be
possible to achieve this level of portability. Thirdly, it will still be necessary to extract the
AFCS control laws separately for implementation within the FCC’s of the aircraft. All these
problems eventually can be solved, but it will require quite some programming efforts plus care-
ful application of hardware interface devices. Such extensions to the research environment can
probably best be achieved with help from experienced programmers and hardware developers.
For this reason it seems recommendable to start with a more limited approach, taking care of
the portability of the control laws first.

13.3 Other possible improvements for future FDC releases

FDC 1.2 provides the basis for future implementations of other aircraft models and their appli-
cation to a large variety of research and design tasks. However, since many of its subroutines are
still heavily leaning towards the original ‘Beaver’ model, the implementation of other aircraft
models is not as straightforward as it should be. The current tools and models are quite flexible,
but not yet flexible enough. Also, the structure of some programs has become somewhat in-
comprehensible because of the increasing complexity due to new options and safeguards for the
users, despite the highly improved on-line help facilities and documentation within the source-
codes themselves. The basic programming efforts for new FDC versions will therefore be aimed
at improving the structure of the Matlab programs and increasing their flexibility to cope with
changes in the Simulink systems. For the graphical systems themselves it is also necessary to
increase the flexibility of the package, which in particular will require a major overhaul of the
first level of the non-linear aircraft model.

Some other improvements under consideration for future FDC releases are listed below:

• In order to keep the toolbox easily accessible to the users, a further improvement of the
user-interface will have to be considered. All user-menu’s should be brought to the Mat-
lab 4.x standard, which should completely eliminate the necessity of using the Matlab
command window for entering system parameters, directory names, etc. when using FDC
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tools. In the current version it is too often necessary to switch from graphical user-menus
to the text-oriented command window, and vice versa.

• It should be possible to define units of measurements for the different variables from the
FDC models and analytical tools as global definitions. Currently, the user is often forced to
stick to the S.I. units which may be rather inconvenient in some instances (e.g. in aviation
the altitude is often expressed in [ft ] in stead of [m], and ILS deviations are expressed in
‘dots’ in stead of [µA]).

• Future versions of the toolbox should contain more flexible and user-friendly tools to
process simulation data (i.e. generalized replacements for RESULTS and RESPLOT).

• The on-line help-texts should be further developed to a windows-oriented format such as
the ‘Matlab Expo’ demonstration. Of course, a hypertext-oriented help environment
would be even better (it may be a good idea to use a HTML-based help environment,
because Internet browsers are nowadays very common for PC’s and workstations).

• It may be a good idea to couple the VOR and ILS models to animation routines that
display typical cockpit instruments, such as a Radio Magnetic Indicator, Track Deviation
Indicator, or Horizontal Situation Indicator (see ref.[3]). The current output signals from
these models tend to be rather abstract in comparison with the readings from cockpit
instruments, which may be a problem in cases where it is necessary to consult pilots. Other
animation routines may also be useful, for instance to visualize the simulated motions of
the aircraft.

At the moment of writing some of these improvements were already being implemented, so you
may find some additional, undocumented options for the FDC toolbox at your FDC installation
diskette. Consult the file readme1.txt for the latest information!



Appendix A

Symbols and definitions

In this appendix, the symbols used in this report will be defined, along with the frames of
reference and sign conventions. Due to the very large number of variables used in this report,
it sometimes has been necessary to use the same symbols for different variables. In practice,
this is not a serious problem since the meaning of a particular symbol usually follows directly
from the context in which it is used. In cases where confusion can arise, some symbols have
been overlined to make the necessary distinction. For the units of measurement in most cases
the S.I. conventions are used in order to prevent confusion. Only in a few cases where equations
from other literature has been used the units of measurements may differ from the S.I. units. A
list of variable names and acronyms has been included in appendix E. Appendix C defines the
parameters of the mathematical model of the aircraft; appendix D contains the parameters for
the Simulink implementation of this model.

A.1 List of symbols

a [ ms−1 ] speed of sound
ax,k [ g ] kinematic acceleration along XB-axis
ay,k [ g ] kinematic acceleration along YB-axis
az,k [ g ] kinematic acceleration along ZB-axis
Ax [ g ] output of accelerometer (specific force) in c.g. along XB-axis
Ay [ g ] output of accelerometer (specific force) in c.g. along YB-axis
Az [ g ] output of accelerometer (specific force) in c.g. along ZB-axis
b [ m ] wing-span
c [ m ] mean aerodynamic chord
CD [ rad ] course datum (selected VOR bearing)
C1 [ – ] engine model parameter
C2 [ – ] engine model parameter
Cl [ – ] non-dimensional moment about XB-axis (rolling moment)
Cm [ – ] non-dimensional moment about YB-axis (pitching moment)
Cn [ – ] non-dimensional moment about ZB-axis (yawing moment)
CX [ – ] non-dimensional force along XB-axis
CY [ – ] non-dimensional force along YB-axis
CZ [ – ] non-dimensional force along ZB-axis
D [ N ] total aerodynamic drag
dgs [ m ] distance from aircraft to nominal glideslope line
dloc [ m ] distance from aircraft to extended runway centerline

dpt [ – ] ∆pt
1
2
ρV 2 = non-dimensional pressure increase across propeller

FB body-fixed reference frame
FE Earth-fixed reference frame
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M, q
N, p
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Figure A.1: Definitions of (angular) velocity components p, q, and r, angle of attack α, sideslip
angle β, and external forces & moments Fx, Fy, Fz, L, M , and N

FM measurement reference frame
FR special body-fixed reference frame for the ‘Beaver’
FS stability reference frame
FV vehicle-carried vertical reference frame
FW flight-path reference frame
Fx [ N ] total external force along XB-axis, see figure A.1
Fy [ N ] total external force along YB-axis, see figure A.1
Fz [ N ] total external force along ZB-axis, see figure A.1
fpa [ g ] flight-path acceleration
g [ ms−2 ] acceleration of gravity
h [ m ] pressure altitude
h [ s ] step-size for numerical integration
H [ m ] geopotential altitude
Hf [ m ] height above aerodrome level
HRW [ m ] runway elevation above sea level
i [ – ] counter or iteration number
igs [ µA ] glideslope current (ILS)
Ii [ kgm2 ] inertia parameter (i = 1, 2, . . . , 6, see appendix B, table B.2)
iloc [ µA ] localizer current (ILS)
Ix [ kgm2 ] moment of inertia along XB-axis
Iy [ kgm2 ] moment of inertia along YB-axis
Iz [ kgm2 ] moment of inertia along ZB-axis
Jxy [ kgm2 ] product of inertia in XBYB-plane
Jxz [ kgm2 ] product of inertia in XBZB-plane
Jyz [ kgm2 ] product of inertia in YBZB-plane
k [ – ] time-step for discrete systems, t ≡ kts
K... gain factors for autopilot model, see table 11.3
L [ Nm ] total rolling moment, see figure A.1
L [ N ] total aerodynamic lift
Lg [ m ] general scale length for atmospheric turbulence
Lu [ m ] scale length for turbulence velocity along XB-axis
Lv [ m ] scale length for turbulence velocity along YB-axis
Lw [ m ] scale length for turbulence velocity along ZB-axis
m [ kg ] mass of the aircraft
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M [ – ] Mach number
M [ Nm ] total pitching moment, see figure A.1

Ma [ kg kmol−1 ] molecular weight of the air

M0 [ kg kmol−1 ] molecular weight of the air at sea level
n [ RPM ] engine speed
N [ Nm ] total yawing moment, see figure A.1
p [ rad s−1 ] angular rate of roll, see figure A.1
P [ Nms−1 ] engine power
Pl, Pm,
Pn, Ppp,
Ppq, Ppr,
Pqq, Pqr,
Prr







inertia parameters for p-equation (see appendix B, table B.2)

ps [ Nm−2 ] ambient or free-stream pressure
pz [ ′′Hg ] manifold pressure
q [ rad s−1 ] angular rate of pitch, see figure A.1
qc [ Nm−2 ] impact pressure
qdyn [ Nm−2 ] dynamic pressure
Ql, Qm,
Qn, Qpp,
Qpq, Qpr,
Qqq, Qqr,
Qrr







inertia parameters for q-equation (see appendix B, table B.2)

r [ rad s−1 ] angular rate or yaw, see figure A.1
R [ JK−1kg−1 ] Ra/M0, specific gas constant of air

Ra [ JK−1kmol−1 ] universal gas constant
Rc [ − ] Reynolds number with respect to c
Re [ m−1 ] Reynolds number per unit length
Rgs [ m ] ground distance from aircraft to glideslope transmitter (ILS)
Rloc [ m ] ground distance from aircraft to localizer transmitter (ILS)
Rl, Rm,
Rn, Rpp,
Rpq, Rpr,
Rqq, Rqr,
Rrr







inertia parameters for r-equation (see appendix B, table B.2)

S [ m2 ] wing area

Sgs [ µA rad−1 ] sensitivity of the glideslope system (ILS)

Sloc [ µA rad−1 ] sensitivity of the localizer system (ILS)
t [ s ] time
ts [ s ] sampling time (step-width for discrete systems)
T [ K ] ambient or free-stream temperature
Tt [ K ] total temperature
u [ ms−1 ] velocity component along XB-axis
ug [ ms−1 ] component of the turbulence velocity along XB-axis
uw [ ms−1 ] wind velocity component along XB-axis
uwe [ ms−1 ] wind velocity component along XE-axis
v [ ms−1 ] velocity component along YB-axis
vg [ ms−1 ] component of the turbulence velocity along YB-axis
vw [ ms−1 ] wind velocity component along YB-axis
vwe [ ms−1 ] wind velocity component along XE-axis
V [ ms−1 ] true airspeed, see figure A.1
Vc [ ms−1 ] calibrated airspeed
Ve [ ms−1 ] equivalent airspeed
Vw [ ms−1 ] wind velocity
Vw9.15

[ ms−1 ] wind velocity at 9.15 m altitude (reference velocity)
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V∆δa [ V ] command signal to actuators (change in deflection of the ailerons)
V∆δe [ V ] command signal to actuators (change in elevator deflection)
V∆δr [ V ] command signal to actuators (change in rudder deflection)
w [ ms−1 ] velocity component along ZB-axis
w1, w2, w3 [ − ] independent white noise signals
wg [ ms−1 ] component of the turbulence velocity along ZB-axis
ww [ ms−1 ] wind velocity component along ZB-axis
wwe [ ms−1 ] wind velocity component along XE-axis
W [ N ] aircraft weight
Xa [ N ] aerodynamic force along XB-axis
xe [ m ] X-coordinate in Earth-fixed reference frame FE
xf [ m ] X-coordinate in runway-fixed reference frame FF
Xgr [ N ] gravity force along XB-axis
Xp [ N ] propulsive force along XB-axis
Ya [ N ] aerodynamic force along YB-axis
ye [ m ] Y-coordinate in Earth-fixed reference frame FE
yf [ m ] Y-coordinate in runway-fixed reference frame FF
Ygr [ N ] gravity force along YB-axis
Yp [ N ] propulsive force along YB-axis
Za [ N ] aerodynamic force along ZB-axis
ze [ m ] Z-coordinate in Earth-fixed reference frame FE
zf [ m ] Z-coordinate in runway-fixed reference frame FF
Zgr [ N ] gravity force along ZB-axis
Zp [ N ] propulsive force along ZB-axis
α [ rad ] angle of attack, see figure A.1
β [ rad ] sideslip angle, see figure A.1
γ [ rad ] flight-path angle
γ [ – ] ratio of specific heats of air
γgs [ rad ] nominal glide-path angle on final approach (ILS glide-path)
Γgs [ rad ] angle between localizer reference plane and the line through the ground

position of the aircraft and the glideslope antenna
Γloc [ rad ] angle between localizer reference plane and the line through the ground

position of the aircraft and the localizer antenna
ΓV OR [ rad ] angle between selected and actual VOR radial
δa [ rad ] deflection of ailerons (δa = δaright − δaleft )
δe [ rad ] deflection of elevator
δf [ rad ] deflection of flaps
δr [ rad ] deflection of rudder
∆ increment
∆pt [ Nm−2 ] increase of total pressure over the propeller
∆δa [ rad ] change in deflection of the ailerons
∆δe [ rad ] change in elevator deflection
∆δr [ rad ] change in rudder deflection
εgs [ rad ] glideslope error angle above/below the nominal ILS glide-path
θ [ rad ] pitch angle
λ [ Km−1 ] temperature gradient (∂T/∂h)
µ [ rad ] aerodynamic angle of roll
µ [ kgm−1s−1 ] dynamic viscosity
ρ [ kgm−3 ] air density
σ standard deviation
σgs [ µA ] standard deviation of glideslope noise
σloc [ µA ] standard deviation of localizer noise
σu [ ms−1 ] standard deviation of turbulence velocity in XB-direction
σv [ ms−1 ] standard deviation of turbulence velocity in YB-direction
σw [ ms−1 ] standard deviation of turbulence velocity in ZB-direction
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ϕ [ rad ] roll angle
Φ [ rad ] bank angle
χ [ rad ] azimuth angle
ψ [ rad ] yaw angle
ψw [ rad ] wind direction (wind from the North: ψw = π)
ψRW [ rad ] runway heading
ω [ rad s−1 ] angular frequency
ω0 [ rad s−1 ] natural frequency of undamped system
ωn [ rad s−1 ] natural frequency of damped system
Ω [ radm−1 ] spatial frequency

A.2 Vectors

a body-axes acceleration vector
Caero vector with non-dimensional aerodynamic force and moment coefficients
Cprop vector with non-dimensional engine force and moment coefficients (‘propulsive’)
F resulting force vector acting on rigid body (F = [Fx Fy Fz]

T )
h resulting angular momentum of rigid body about c.g. (h = [hx hy hz]

T )
M resulting moment vector about c.g. of rigid body (M = [L M N ]T )
r position vector
u... input vectors
V true airspeed vector
Vw wind velocity vector
x state vector
y... output vectors
Ω rotational velocity vector

A.3 Matrices

A system matrix of linear state-space system
B input matrix of linear state-space system
C output matrix of linear state-space system due to x
D output matrix of linear state-space system due to u
TP→Q transformation matrix from a reference frame FP to a reference frame FQ
Θ transformation matrix for first Euler rotation from FE to FB
Φ transformation matrix for second Euler rotation from FE to FB
Ψ transformation matrix for second Euler rotation from FE to FB

A.4 Functions

f(t) general vector-equation for the time-derivatives of the state variables
g(t) general vector-equation for the output variables
H(ω) frequency response of forming filter
S(ω) power spectral density function
S(Ω) power spectral density function

A.5 Indices and subscripts

0 nominal value
0 value at sea level
a ailerons
a relative to the surrounding atmosphere (used for velocity components)
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aero aerodynamic forces and moments or force and moment coefficients
c.g. center of gravity
dpt stability derivative with respect to non-dimensional pressure increase across propeller
e elevator
e relative to Earth axes (used for velocity components)
f flaps
f referenced to runway-fixed reference frame FF , F stands for ‘field’
grav gravity force components
gs related to glideslope deviation
k ‘kinematic’ (used for accelerations)
loc related to localizer deviation
p stability derivative with respect to non-dimensional rolling speed
q stability derivative with respect to non-dimensional pitching speed
r stability derivative with respect to non-dimensional yawing speed
r rudder
RW runway, used for defining runway parameters
prop engine forces and moments or force and moment coefficients (‘propulsive’)
VOR related to VOR signals
w wind velocity and wind velocity components along body axes
wind force components due to non-steady atmosphere
we wind velocity components along Earth axes
α stability derivative with respect to angle of attack
α2 stability derivative with respect to α2

α3 stability derivative with respect to α3

αδf stability derivative with respect to αδf
α dpt2 stability derivative with respect to α dpt2

α2dpt stability derivative with respect to α2dpt
β stability derivative with respect to sideslip angle
β2 stability derivative with respect to β2

β3 stability derivative with respect to β3

β̇ stability derivative with respect to non-dimensional sideslip rate
δa stability derivative with respect to deflection of ailerons
δaα stability derivative with respect to δaα
δe stability derivative with respect to deflection of elevator
δeβ

2 stability derivative with respect to δeβ
2

δf stability derivative with respect to deflection of flaps
δr stability derivative with respect to deflection of rudder
δrα stability derivative with respect to δrα

A.6 Abbreviations

AFCS Automatic Flight Control System
ALH Altitude Hold mode of autopilot
ALS Altitude Select mode of autopilot
CACSD Computer Aided Control System Design
CD Course Datum
c.g. center of gravity
DHC De Havilland of Canada Ltd.
DME Distance Measuring Equipment
DUT Delft University of Technology
FCC Flight Control Computer
FDC Flight Dynamics and Control
GA Go Around mode of autopilot
GS Glideslope mode of autopilot
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HH Heading Hold / Heading Select mode of autopilot
ILS Instrument Landing System
LOC Localizer mode of autopilot
NAV VOR Navigation mode of autopilot
PAH Pitch Attitude Hold mode of autopilot
ODE Ordinary Differential Equation
RAH Roll Attitude Hold mode of autopilot
STOL Short Take-off and Landing
TAS True Airspeed
VOR Very high frequency Omnidirectional Range
VTOL Vertical Take-off and Landing

A.7 Reference frames and sign conventions

A.7.1 Definitions

The definitions of the reference frames used within this report are given below. The reference
frames FM and FR have been added to this list, although they will be used only in table C.2 in
appendix C. The equations for translational and angular velocities are referenced to the body
axes FB. The aircraft attitude is defined by the Euler angles ψ, θ, and ϕ, for which purpose the
vehicle-carried vertical reference frame FV is introduced. The aircraft position is defined with
respect to the Earth-fixed reference frame FE .

Measurement reference frame FM : This is a left-handed orthogonal reference frame that is
used for correcting stability and control derivatives of the aircraft if the c.g. position differs
from the one used during the flight tests. For the ‘Beaver’ aircraft, the origin OM lies in a
point, resulting from the perpendicular projection of the foremost point of the wing chord,
parallel to the OBXBZB-plane (ref.[26]). The XMOMZM -plane coincides with the OBXBZB-
plane. The positive XM -axis points backwards, the positive YM -axis points to the left, and
the positive ZM -axis points upwards.

Body-fixed reference frame FB: This is a right-handed orthogonal reference system which
has its origin OB in the center of gravity of the aircraft. The XBOBZB plane coincides with
the aircraft’s plane of symmetry if it is symmetric, or it is located in a plane, approximating
what would be the plane of symmetry if it is not (ref.[9]). The XB-axis is directed towards
the nose of the aircraft, the YB-axis points to the right wing (starboard), and the ZB-axis
points towards the bottom of the aircraft.

Special body-fixed reference frame for the ‘Beaver’, FR: This reference frame is defined
specifically for the ‘Beaver’ aircraft. It is identical to FB with one exception: its origin OR
is placed in a body-fixed reference point, which has been selected to coincide with a c.g.
position that was actually used during one flight. It has the following coordinates in FM :
x = 0.5996m, y = 0m, z = −0.8815m, see ref.[26]. FR is used only to define the moments
and products of inertia for the aircraft condition on which the aerodynamic model is based
(see table C.2 in appendix C).

Stability reference frame FS: This is a special body-fixed reference frame, used in the study
of small deviations from a nominal flight condition. The reference frames FB and FS differ
in the orientation of their respective X-axes. The XS-axis is chosen parallel to the projection
of the true airspeed vector V on the OBXBZB-plane (if the aircraft is symmetric this is the
plane of symmetry), or parallel to V itself in case of a symmetrical nominal flight condition.
The YS-axis coincides with the YB-axis.
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Flight-path or wind reference frame FW : This reference frame, also called the wind refer-
ence frame, has its origin in the c.g. of the aircraft. The XW -axis is aligned with the velocity
vector of the aircraft and the ZW -axis coincides with the ZS-axis.

Earth-fixed reference frame FE: This reference frame, also called the topodetic reference
frame (ref.[9]), is a right-handed orthogonal system which is considered to be fixed in space.
Its origin can be placed at an arbitrary position, but will be chosen to coincide with the
aircraft’s center of gravity at the start of a flight test manoeuvre. The ZE-axis points down-
wards, parallel to the local direction of gravity. The XE-axis is directed to the North, the
YE-axis to the East.

Vehicle-carried vertical reference system FV : This reference system has its origin at the
c.g. of the aircraft. The XV -axis is directed to the North, the YV -axis to the East, and the
ZV -axis points downwards (along the local direction of gravity). These reference axes are
always parallel to the Earth-fixed reference axes, although the origin OV moves relatively to
the Earth-fixed reference frame.

A.7.2 Relationships between the reference frames

In figure A.2 the relationship between the Earth-fixed and vehicle-carried vertical reference sys-
tems is shown. FE and FV differ only in the position of their respective origins. The relationship
between the vehicle-carried vertical and body-axes is shown in figure A.3. The Euler angles ψ,
θ, and ϕ define the orientation of FB with respect to FV , hence they define the attitude of the
aircraft with respect to the Earth’s surface. The transformation matrices that express each of
the Euler rotations separately are:

Ψ =






cosψ sinψ 0
− sinψ cosψ 0

0 0 1




 (A.1)

Θ =






cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ




 (A.2)

Φ =






1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ




 (A.3)

The total transformation matrix from FV to FB then becomes:

TV→B = Φ ·Θ ·Ψ =

=






cosψ cos θ sinψ cos θ − sin θ
cosψ sin θ sinϕ− sinψ cosϕ sinψ sin θ sinϕ+ cosψ cosϕ cos θ sinϕ
cosψ sin θ cosϕ+ sinψ sinϕ sinψ sin θ cosϕ− cosψ sinϕ cos θ cosϕ




 (A.4)

so the relation between a vector yB in the body reference frame and yV in the vehicle-carried
vertical reference frame is:

yB = TV→B · yV (A.5)

The orientation of the flight-path axes with respect to the vehicle-carried vertical axes can also
be expressed in terms of Euler angles, denoted by χ, γ, and µ. This is shown in figure A.4.

The relationships between the body, flight-path, and stability reference frames are shown in
figure A.5. These three reference systems all have their origin in the aircraft’s center of gravity.
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Figure A.2: Relationship between the vehicle-carried vertical reference frame FV and the Earth-
fixed reference frame FE

The XW -axis is aligned with the velocity vector of the aircraft. The orientation of the flight-
path axes with respect to the body-fixed reference frame is defined by the angle of attack α and
the sideslip angle β. The stability reference system is displaced from the flight-path axes by a
rotation β and from the body axes by a rotation −α.

A.7.3 Sign conventions for deflections of control surfaces

Figure A.6 shows the positive directions of control surface deflections. The positive elevator
deflection is measured downwards; a positive value of δe results in a pitch-down moment to the
aircraft. The deflections of the rudder and ailerons are positive if they force the aircraft to move
to the left. If one aileron deflection has a positive sign, the other one consequently is negative.
The ‘total’ aileron deflection is defined as: δa = δaright − δaleft . The flap angle is positive if the

flaps deflect downwards (which they always do), similar to the elevator deflection. A positive
value of δf results in an increase in lift and drag of the aircraft.
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Figure A.4: Relationship between the vehicle-carried vertical reference frame FV and the flight-
path reference frame FW



226 APPENDIX A. SYMBOLS AND DEFINITIONS

c.g.

αo

βo

αo

V

XB

XS

XW

BZ

S WZ   = Z

Y   = YB S

WYoβ

Figure A.5: Relationship between the body-fixed reference frame FB, flight-path reference frame
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Figure A.6: Sign conventions for control surface deflections



Appendix B

General rigid-body equations of
motion

In this appendix, the derivation of the rigid-body equations of Newton will be given. This ap-
pendix has been included since a good understanding of Newtonian mechanics is very important
for any discussion about the derivation of the equations of motion of an aircraft. One should
particularly take notice of the assumptions which shall be made during this derivation. For more
details regarding the equations of motion the reader is referred to refs.[9], [10], [15], [19], or [20]
(to name just a few).

B.1 Linear and rotational velocity equations in body-axes

B.1.1 General force equation for a rigid body

Consider a mass point δm that moves with time-varying velocity V under the influence of a
force F. Both V and F are measured relatively to a right-handed orthogonal reference frame
OXYZ. Applying Newton’s second law yields:

δF = δm · V̇ (B.1)

Applying this equation to all mass points of a rigid body and summing all contributions across
this body yields:

∑

δF =
∑

δm
dV

dt
=

d

dt

∑

Vδm (B.2)

Let the center of gravity of the rigid body have a velocity Vc.g. with components u, v, and w
along the X, Y , and Z-axes of the right-handed reference frame. The velocity of each mass
point within the rigid body then equals the sum of Vc.g. and the velocity of the mass point with
respect to this center of gravity. If the position of the mass point with respect to the c.g. is
denoted by the vector r, the following vector equation is found:

V = Vc.g. + ṙ (B.3)

therefore:
∑

Vδm =
∑

(Vc.g. + ṙ)δm = mVc.g. +
d

dt

∑

rδm (B.4)

In this equation, m denotes the total mass of the rigid body. In the center of gravity we can
write:
∑

r δm = 0 (B.5)

227
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so the equation for the total force F acting upon the rigid body, becomes:

F = mV̇c.g. (B.6)

B.1.2 General moment equation for a rigid body

The moment δM, measured about the center of gravity, is equal to the time-derivative of the
angular momentum of the mass point relative to the c.g.:

δM =
d

dt
(r×V)δm = (ṙ×V)δm+ (r× V̇)δm (B.7)

where:

ṙ = V −Vc.g. (B.8)

and:

(r× V̇)δm = r× δF = δMc.g. (B.9)

In this equation δMc.g. denotes the moment of the force δF about the center of gravity. The
angular momentum of the mass point relative to the c.g. will be denoted by δh, which is defined
as: δh ≡ (r×V)δm. Writing this out yields:

δMc.g. = δḣ− (V −Vc.g.)× δm = δḣ+Vc.g. ×Vδm (B.10)

The contributions of all mass points are once again summed across the whole rigid body, yielding:

∑

δMc.g. =
d

dt

∑

δḣ+Vc.g. ×
∑

Vδm (B.11)

The equation for the resulting moment Mc.g. about the c.g. then becomes:

Mc.g. = ḣ (B.12)

where h denotes the resulting angular momentum of the body about the center of gravity.

B.1.3 Angular momentum around the center of gravity

Consider a rigid body with angular velocity Ω, with components p, q, and r about the X, Y ,
and Z axes of the right-handed reference frame respectively:

Ω = i p+ j q + k r (B.13)

where i, j, and k are unity vectors along the X, Y , and Z-axes. The total velocity vector of a
mass point of a rigid body that both translates and rotates becomes:

V = Vc.g. +Ω× r (B.14)

hence, the angular momentum of the rigid body about the c.g. can be written as:

h ≡
∑

δh =
∑

r× (Vc.g. +Ω× r)δm =
∑

r×Vc.g.δm+
∑

r× (Ω× r)δm (B.15)

The first term of the right hand side of equation (B.15) is equal to zero:
(∑

rδm
)

×Vc.g. = 0 (B.16)

and for the second term we can write:
∑

r× (Ω× r)δm =
∑

{Ω(r · r)− r(Ω · r)}δm =
∑

{Ω‖r‖2 − r (Ω · r)}δm (B.17)

Substitution of r = ix+ j y + k z, (B.16), and (B.17) in equation (B.15) yields:

h = Ω
∑

(x2 + y2 + z2)δm−
∑

r (px+ qy + rz)δm (B.18)
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symbol definition

Ixx
∑
(y2 + z2) δm

Iyy
∑
(x2 + z2) δm

Izz
∑
(x2 + y2) δm

Jxy
∑
xy δm

Jxz
∑
xz δm

Jyz
∑
yz δm

Table B.1: Moments and products of inertia

The components of h along the X, Y, and Z axes will be denoted as hx, hy, and hz respectively,
yielding:

hx = p
∑
(y2 + z2)δm− q∑xy δm− r∑xz δm

hy = −p∑xy δm+ q
∑
(x2 + z2)δm− r∑ yz δm

hz = −p∑xz δm− q∑ yz δm+ r
∑
(x2 + y2)δm

(B.19)

The summations appearing in these equations are defined as the inertial moments and products
about theX, Y , and Z axes respectively; see table B.1.1 Using these definitions, equations (B.19)
can be written in vector notation as a product of the inertia tensor I with the angular velocity
vector Ω:

h = I ·Ω (B.20)

where I is defined as:

I =






Ixx −Jxy −Jxz
−Jyx Iyy −Jyz
−Jzx −Jzy Izz




 (B.21)

B.1.4 General equations of motion for a rigid body

When we choose a reference frame fixed to the body (OXY Z = OXBYBZB) the inertial moments
and products from the equations (B.19) become constants. The reference frame itself then rotates
with angular velocity Ω. For an arbitrary position vector r with respect to the body reference
frame we can then write:

ṙ =
∂r

∂t
+Ω× r (B.22)

Applying equation (B.22) to the general force and moment equations (B.6) and (B.12), we find:

F = m

(
∂Vc.g.

∂t
+Ω×Vc.g.

)

(B.23)

and:

Mc.g. =
∂h

∂t
+Ω× h =

∂(I ·Ω)

∂t
+Ω× (I ·Ω) (B.24)

These two vector-equations form the basis for the development of the general rigid-body dynamic
model used in the FDC toolbox. The linear and angular accelerations can be moved to the left

1The summations across the body actually have to be written as integrals, but that further refinement has
been omitted here.
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hand side of equations (B.23) and (B.24), yielding:

∂Vc.g.

∂t
=

F

m
−Ω×Vc.g. (B.25)

∂Ω

∂t
= I−1 (M−Ω× I ·Ω) (B.26)

These equations can be written-out into their components along the body-axes, yielding:

u̇ =
Fx
m
− qw + rv

v̇ =
Fy
m

+ pw − ru (B.27)

ẇ =
Fz
m
− pv + qu

and:

ṗ = Ppp p
2 + Ppq pq + Ppr pr + Pqq q

2 + Pqr qr + Prr r
2 + Pl L+ PmM + PnN

q̇ = Qpp p
2 +Qpq pq +Qpr pr +Qqq q

2 +Qqr qr +Qrr r
2 +Ql L+QmM +QnN (B.28)

ṙ = Rpp p
2 +Rpq pq +Rpr pr +Rqq q

2 +Rqr qr +Rrr r
2 +Rl L+RmM +RnN

Ppp, Ppq, . . . Rn are inertia coefficients derived from the matrix multiplications involving the
inertia tensor I; they have been listed in table B.2. Vc.g., Ω, F, and M are defined as:

Vc.g. = iu + j v + kw
Ω = i p + j q + k r
F = iFx + jFy + kFz
M = iL + jM + kN

These equations describe the motions of any rigid body relatively to the Earth under the fol-
lowing restrictive assumptions:

1. the body is assumed to be rigid during the motions considered,

2. the mass of the body is assumed to be constant during the time-interval in which its
motions are studied,

3. the Earth is assumed to be fixed in space, i.e. its rotation is neglected,

4. the curvature of the Earth is neglected.

The latter two assumptions were made in the definition of the inertial reference frame in which
the motions of the rigid body are considered. If the equations are to be applied to a moving ve-
hicle, the description of the vehicle motion under assumptions 3 and 4 are accurate for relatively
short-term guidance and control analysis purposes only. The assumptions do have practical
limitations when very long term navigation or extra-atmospheric operations are of interest, see
ref [20].

The forces and moments along the body-axes of the rigid body can be separated into
different components. For an aircraft, the most important contributions are the gravity forces,
aerodynamic forces and moments, and propulsive forces and moments. Sometimes other contri-
butions must be taken into account, e.g. ground-forces which are encountered when the aircraft
is taxiing. Those additional components will be disregarded throughout this report, i.e. the
model from this report will represent an in-flight model of the aircraft. Therefore we can write:





Fx
Fy
Fz




 =






Xgr + Xa + Xp

Ygr + Ya + Yp
Zgr + Za + Zp




 (B.29)
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symbol definition

|I| IxxIyyIzz − 2JxyJxzJyz − IxxJyz2 − IyyJxz2 − IzzJxy2
I1 IyyIzz − Jyz2
I2 JxyIzz + JyzJxz
I3 JxyJyz + IyyJxz
I4 IxxIzz − Jxz2
I5 IxxJyz + JxyJxz
I6 IxxIyy − Jxy2
Pl I1 / |I|
Pm I2 / |I|
Pn I3 / |I|
Ppp −(JxzI2 − JxyI3) / |I|
Ppq (JxzI1 − JyzI2 − (Iyy − Ixx)I3) / |I|
Ppr −(JxyI1 + (Ixx − Izz)I2 − JyzI3) / |I|
Pqq (JyzI1 − JxyI3) / |I|
Pqr −((Izz − Iyy)I1 − JxyI2 + JxzI3) / |I|
Prr −(JyzI1 − JxzI2) / |I|
Ql I2 / |I|
Qm I4 / |I|
Qn I5 / |I|
Qpp −(JxzI4 − JxyI5) / |I|
Qpq (JxzI2 − JyzI4 − (Iyy − Ixx)I5) / |I|
Qpr −(JxyI2 + (Ixx − Izz)I4 − JyzI5) / |I|
Qqq (JyzI2 − JxyI5) / |I|
Qqr −((Izz − Iyy)I2 − JxyI4 + JxzI5) / |I|
Qrr −(JyzI2 − JxzI4) / |I|
Rl I3 / |I|
Rm I5 / |I|
Rn I6 / |I|
Rpp −(JxzI5 − JxyI6) / |I|
Rpq (JxzI3 − JyzI5 − (Iyy − Ixx)I6) / |I|
Rpr −(JxyI3 + (Ixx − Izz)I5 − JyzI6) / |I|
Rqq (JyzI3 − JxyI6) / |I|
Rqr −((Izz − Iyy)I3 − JxyI5 + JxzI6) / |I|
Rrr −(JyzI3 − JxzI5) / |I|

Table B.2: Definition of inertia coefficients
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Figure B.1: Relationship between aerodynamic forces in flight-path and body-axes






L
M
N




 =






La + Lp
Ma + Mp

Na + Np




 (B.30)

The index gr denotes gravity, a denotes aerodynamics, and p denotes propulsion. In section B.3,
a fourth element will be added to the body-axes forces in order to account for a non-steady at-
mosphere.

In order to simplify the notations for the remainder of this appendix and the other chapters
in this report, the velocity vector Vc.g. will simply be denoted as V. The body-axes components
of this vector are u, v, and w, respectively, and the length of this vector is denoted as V .

B.2 Using flight-path axes for describing linear motions

B.2.1 Why flight-path axes?

In aerodynamic problems it is more convenient to use the true airspeed V , angle of attack α,
and sideslip angle β in stead of the linear velocity components u, v, and w along the body-axes
of the aircraft. Since V , α, and β can be described in terms of u, v, and w, and vice-versa, both
sets of variables can be applied for solving the equations of motion, i.e. both sets can be used as
state variables for our rigid-body model. In practice, the flight-path variables V , α, and β are
best suited for simulation purposes for two reasons:

1. From a physical point of view it is logical to express the aerodynamic forces and moments
in terms of V , α, and β. For simulation purposes it is required to write the linear force
equations as a set of explicit Ordinary Differential Equations, i.e. all time-derivatives
should be put on one side of the equations and all other terms on the other side. This
may be difficult to achieve since the aerodynamic forces and moments may depend upon
α̇ and β̇ while α̇ and β̇ themselves are not available until after the force equations have
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been evaluated. In practice it is customary to assume a linear relation between these
time-derivatives and the aerodynamic forces, which makes it relatively simple to convert
the force equations to explicit ODE’s (this has been demonstrated in section 3.2.3 for the
‘Beaver’), provided the equations are written in terms of α and β in stead of v and w.

2. It is better to use the flight-path variables in order to obtain a higher accuracy for the
numerical computations. For agile aircraft which have an upper limit of the pitch rate
q of about 2 rad s−1 and which fly at high airspeeds (e.g. V = 600 ms−1), the term
u q in equation (B.28) may become as large as 120 g ! On the other hand, the factor
Fz/m, which represents the normal acceleration due to the external force along the ZB-
axis (primarily gravity and aerodynamic lift) has an upper-limit of only a few g’s. Hence,
artificial accelerations of much greater magnitude than the actual accelerations of the
aircraft are introduced in the equations for u, v, and w, because of the high rotation rates
of the body-axes. In practice this means less favorable computer scaling and hence poorer
accuracy for a given computer precision if the simulation model is based upon u, v, and
w in stead of V , α, and β (ref.[11]).

B.2.2 Transforming forces and velocities from body to flight-path axes

The following derivation of the V , α, and β-equations is largely based upon ref.[9]. The body-
axes velocity components are equal to:





u
v
w




 = V






cosα cosβ
sinβ

sinα cosβ




 (B.31)

Hence:

V =
√

u2 + v2 + w2 (B.32)

α = arctan

(
w

u

)

(B.33)

β = arctan

(
v√

u2 + w2

)

(B.34)

Sometimes the aerodynamic forces and moments are expressed in terms of aerodynamic lift L,
drag D, and sideforce Y in stead of the body-axes force-components Xa, Ya, and Za. In that
case it is necessary to apply the proper axis-transformation to these forces (see figure B.1):





Xa

Ya
−Za




 =






− cosα 0 sinα
0 1 0

sinα 0 cosα




 ·






D
Y
L




 (B.35)

Notice the minus sign for the aerodynamic force component along the ZB-axis, which is due to
the fact that the positive ZB-axis points downwards. See also section A.7.2 in appendix A.

B.2.3 Derivation of the V̇ -equation

From equation (B.32) it can be deduced that:

V̇ =
uu̇+ vv̇ + wẇ

V
(B.36)

Substituting the definitions (B.31) for u, v, and w, and canceling terms yields:

V̇ = u̇ cosα cosβ + v̇ sinβ + ẇ sinα cosβ (B.37)
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If we substitute equations (B.28) for u̇, v̇, and ẇ, the terms involving the vehicle rotational rates
p, q, and r turn out to be identically zero and the resulting equation becomes:

V̇ =
1

m
(Fx cosα cosβ + Fy sinβ + Fz sinα sinβ) (B.38)

B.2.4 Derivation of the α̇-equation

Differentiating equation (B.33) with respect to the time yields:

α̇ =
uẇ − u̇w
u2 + w2

(B.39)

Using equation (B.31) we can re-write the denominator of this equation:

u2 + w2 = V 2 − v2 = V 2(1− sin2 β) = V 2 cos2 β (B.40)

Substituting the u and w-relations from equation (B.31) and equation (B.40) into equation (B.39)
yields:

α̇ =
ẇ cosα− u̇ sinα

V cosβ
(B.41)

Substituting for u̇ and ẇ (see equations (B.28)) and rewriting terms yields:

α̇ =
1

V cosβ

{
1

m
(−Fx sinα+ Fz cosα) + pv cosα+ qu cosα+ qw sinα− rv sinα

}

(B.42)

Using equations (B.31) for u, v, and w, we find:

α̇ =
1

V cosβ

{
1

m
(−Fx sinα+ Fz cosα)

}

+ q − (p cosα+ r sinα) tanβ (B.43)

B.2.5 Derivation of the β̇-equation

Differentiating equation (B.34) with respect to the time yields:

β̇ =
v̇(u2 + v2)− v(uu̇+ wẇ)

V 2
√
u2 + w2

(B.44)

From equations (B.31) the following relations can be derived:

u2 + w2 = V 2 cos2 β

uv = V 2 sinβ cosβ cosα

vw = V 2 sinβ cosβ sinα (B.45)

These values substituted in equation (B.44) yield:

β̇ =
1

V
(−u̇ cosα sinβ + v̇ cosβ − ẇ sinα sinβ) (B.46)

Substituting for u̇ and ẇ (see equations (B.28)) yields:

β̇ =
1

V

{
1

m
(−Fx cosα sinβ + Fy cosβ − Fz sinα sinβ) + qw cosα sinβ+

− rv cosα sinβ + pw cosβ − ru cosβ + pv sinα sinβ − qu sinα sinβ

}

(B.47)

If we substitute equations (B.31), many terms can be canceled and we find:

β̇ =
1

V

{
1

m
(−Fx cosα sinβ + Fy cosβ − Fz sinα sinβ)

}

+ p sinα− r cosα (B.48)
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B.3 Equations of motion in non-steady atmosphere

The equations of motion are valid only if the body-axes velocity components are measured with
respect to a non-rotating system of reference axes having a constant translational speed in iner-
tial space. Under the assumptions 3 and 4, mentioned in section B.1.4, it is possible to select a
reference frame that is fixed to the surrounding atmosphere as long as the wind velocity vector
Vw is constant. In that case, the components u, v, and w of the velocity vector V express the
aircraft’s velocity with respect to the surrounding atmosphere. If the wind velocity vector Vw is
not constant during the time-interval over which the motions of the aircraft are studied it is not
possible to fix the reference frame to the surrounding atmosphere. This happens for instance
during the approach and landing of an aircraft, because the wind velocity changes with altitude.
Again using assumptions 3 and 4 of section B.1.4, the most obvious choice of the reference frame
in this case turns out to be the Earth-fixed reference frame FE (ref.[14]).

In the subsequent part of this section the subscripts a and e will be used to denote veloci-
ties with respect to the surrounding atmosphere and the Earth, respectively. We can write:

Ve = Va +Vw (B.49)

or:

ue = ua + uw

ve = va + vw (B.50)

we = wa + ww

where ua, va, and wa are the body-axes components of Va, ue, ve, and we are the body-axes
components ofVe, and uw, vw, and ww are the body-axes components ofVw along the body-axes
of the aircraft. The force equations now become:

F = m

(
∂Ve

∂t
+Ω×Ve

)

(B.51)

In order to compute the aerodynamic forces and moments, it is necessary to know the values of
Va (the true airspeed), α, and β.1 Rewriting equation (B.51) yields:

∂Ve

∂t
=
F

m
−Ω×Ve (B.52)

For the individual components along the body-axes we thus find:

u̇e =
Fx
m
− qwe + rve

v̇e =
Fy
m

+ pwe − rue (B.53)

ẇe =
Fz
m
− pve + que

In a manner analogous to sections B.2.3, B.2.4, and B.2.5 expressions for the time-derivatives
of V , α, and β can be found:

V̇a =
1

m
(Fx cosα cosβ + Fy sinβ + Fz sinα sinβ) +

− (qww − rvw + u̇w) cosα cosβ + (pww − ruw − v̇w) sinβ +

− (pvw − quw + ẇw) sinα cosβ (B.54)

1Notice that expressions (B.31) to (B.34) remain valid if Va is substituted for V .
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α̇ =
1

V cosβ

{
1

m
(−Fx sinα+ Fz cosα)+

− (pvw − quw + ẇw) cosα+ (qww − rvw − u̇w) sinα
}

+

+ q − (p cosα+ r sinα) tanβ (B.55)

β̇ =
1

V

{
1

m
(−Fx cosα sinβ + Fy cosβ − Fz sinα sinβ) +

+ (qww − rvw + u̇w) cosα sinβ + (pww − ruw − v̇w) cosβ +

+ (pvw − quw + ẇw) sinα sinβ

}

+ p sinα− r cosα (B.56)

The differences between these expressions and equations (B.38), (B.43), and (B.48) can be
modeled by adding a ‘wind component’ to the forces along the aircraft’s body-axes. The resulting
force components along body-axes then become:

Fx = Xa + Xp + Xgr + Xw

Fy = Ya + Yp + Ygr + Yw
Fz = Za + Zp + Zgr + Zw

(B.57)

where Xw, Yw, and Zw represent corrections to the body-axes forces due to non-steady atmos-
phere, determined by the following equations:

Xw = −m (u̇w + qww − rvw)
Yw = −m (v̇w − pww + ruw) (B.58)

Zw = −m (ẇw + pvw − quw)
Due to these additional force components the responses of V , α, and β in non-steady atmosphere
differ from the responses in steady atmosphere. The aerodynamic forces and moments are
functions of V , α, and β, which implies that these forces and moments also differ from the
results that would have been obtained in steady atmosphere. If the wind velocity or direction
changes quickly, for instance in atmospheric turbulence, the aerodynamic model itself will need
to be enhanced with additional terms to account for aerodynamic lags, e.g. the gust penetration
effect , which is caused by the finite dimensions of the aircraft. This effect is described and
modeled for linearized aircraft models in ref.[21]. It will not be taken into account in this report,
however.1 In section 3.3 some common methods to model the atmospheric turbulence velocity
components along the body-axes of the aircraft are outlined. This section also describes the
transformation from Earth to body-axes which is necessary to convert wind given with respect
to the Earth to wind velocity components along the aircraft’s body-axes.

Corrections (B.59) again contain terms involving the vehicle angular velocities p, q, and
r. Unlike the term u q, the magnitude of uw q will not become very large when compared to
the normal acceleration Fz/m, because the maximum wind velocity usually is relatively small,
compared to the airspeed. This is especially true for cases where the aircraft is manoeuvring

1In ref.[21] the responses of an aircraft to atmospheric turbulence are modeled by adding ‘gust corrections’ to u,
α, and β. This means that α and β themselves are no longer measured relatively to the surrounding atmosphere,
as was defined within this report. Furthermore, different editions of ref.[21] having different equations for modeling
the gust penetration effect have been published, but it is not clear which version is the best. Modeling the gust
penetration effect requires knowledge about contributions of certain specific parts of the airframe to the stability
derivatives; knowledge which is not readily available for the ‘Beaver’ aircraft. It is possible to approximate these
contributions, but that introduces errors. In addition, the expressions from ref.[21] have to be adapted for the
non-linear equations used in this report. For these reasons the modeling of turbulence responses in the fashion of
ref.[21] was considered to be beyond the scope of this report. But even with this limitation of the aerodynamic
model taken into account, the general equations of motion for non-steady atmosphere derived in this section are
still valid and the responses of V , α, and β still implicitly affect the aerodynamic forces and moments.
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heavily, yielding large values of q, e.g. in case of dog-fights between fighter aircraft or aerobatic
manoeuvres. Large wind velocities are common at higher altitudes, but there manoeuvring is
limited. Hence, expressions (B.59) will not give any problems due to computer precision, as
discussed in section B.2.

B.4 Kinematic relations

So far we have derived differential equations for the true airspeed, angle of attack, sideslip angle,
and the rotational velocity components. However, to solve the equations of motion it is also
necessary to know the attitude of the aircraft relatively to the Earth and the altitude of the
aircraft, because some contributions to the external forces and moments depend upon those
quantities. Moreover, it is useful to know the coordinates of the aircraft with respect to the
Earth-fixed reference frame in order to be able to simulate navigational tasks. The attitude of
the aircraft with respect to the Earth is defined by the Euler angles ψ, θ, and ϕ, see figure A.3 in
appendix A. The kinematic relations which determine the time-derivatives of these Euler angles
are given by the following formulas:

ψ̇ =
q sinϕ+ r cosϕ

cos θ

θ̇ = q cosϕ− r sinϕ (B.59)

ϕ̇ = p+ (q sinϕ+ r cosϕ) tan θ = p+ ψ̇ sin θ

The position of the aircraft with respect to the Earth-fixed reference frame is given by the
coordinates xe, ye, and ze, defined by the following equations:

ẋe = {ue cos θ + (ve sinϕ+ we cosϕ) sin θ} cosψ − (ve cosϕ− we sinϕ) sinψ
ẏe = {ue cos θ + (ve sinϕ+ we cosϕ) sin θ} sinψ + (ve cosϕ− we sinϕ) cosψ
że = −ue sin θ + (ve sinϕ+ we cosϕ) cos θ (B.60)

These equations are a result of the following transformation:





ẋe
ẏe
że




 = TB→E ·






ue
ve
we




 (B.61)

where TB→E = TB→V = TV→B
−1 is the transformation matrix from FB to FE , see the definition

in section A.7.2 of appendix A. Often, the altitude of the aircraft is used in stead of the
coordinate ze. The relationship between the time-derivatives of H and ze is simple:

Ḣ = −że (B.62)

Note: the positive ZE-axis points downwards.

B.5 Resulting dynamic model

In the previous sections we have derived twelve scalar differential equations, namely: three
force equations, three moment equations, and six kinematic relations. These equations can be
combined in one non-linear vector equation:

ẋ = f (x,Ftot(t),Mtot(t)) (B.63)

with x defined as:

x = [ V α β p q r ψ θ ϕ xe ye H ]T (B.64)

Equation (B.63) represents the resulting dynamic model of the rigid body. It has been elaborated
further in chapter 3.
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Appendix C

Definition of the parameters of the
‘Beaver’ model

This appendix contains the definitions of the parameters used by the non-linear dynamical model
of the ‘Beaver’ and it lists some general data of this aircraft. The dynamical model itself has
been described in chapter 3. Appendix D will show how these parameters were implemented in
the FDC toolbox itself.

Manufacturer De Havilland Aircraft of Canada Ltd.
Serial no. 1244
Type of aircraft Single engine, high-wing, seven seat, all-metal aircraft
Wing span b 14.63 m
Wing area S 23.23 m2

Mean aerodynamic chord c 1.5875 m
Wing sweep 0◦

Wing dihedral 1◦

Wing profile NACA 64 A 416
Fuselage length 9.22 m
Max. take-off weight 22800 N
Empty weight 14970 N
Engine Pratt and Whitney Wasp Jr. R-985
Max. power 450 Hp at n = 2300 RPM , pz = 26

′′Hg
Propeller Hamilton Standard, two-bladed metal regulator propeller
Diameter of the propeller 2.59 m
Total contents of fuel tanks 521 l
Contents fuselage front tank 131 l
Contents fuselage center tank 131 l
Contents fuselage rear tank 95 l
Contents wing tanks 2 x 82 l
Most forward admissible c.g. position 17.36% c at 16989 N ; 29.92% c at 22800 N
Most backward admissible c.g. position 40.24% c

Table C.1: General aircraft data of the DHC-2 ‘Beaver’, PH-VTH
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Figure C.1: The De Havilland DHC-2 ‘Beaver’ aircraft

xc.g. = 0.5996 [m] in FM

yc.g. = 0.0 [m] in FM

zc.g. = -0.8851 [m] in FM

Ix = 5368.39 [kgm2] in FR

Iy = 6928.93 [kgm2] in FR

Iz = 11158.75 [kgm2] in FR

Jxy = 0.0 [kgm2] in FR

Jxz = 117.64 [kgm2] in FR

Jyz = 0.0 [kgm2] in FR

m = 2288.231 [kg]

h = 1828.8 [m] (= 6000 [ft])

ρ = 1.024 [kgm−3]

Table C.2: Aircraft data on which the aerodynamic model of the ‘Beaver’ is based
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CX CY CZ

parameter value parameter value parameter value

0 −0.03554 0 −0.002226 0 −0.05504
α 0.002920 β −0.7678 α −5.578
α2 5.459 pb

2V −0.1240 α3 3.442

α3 −5.162 rb
2V 0.3666 qc

V −2.988
qc
V −0.6748 δa −0.02956 δe −0.3980
δr 0.03412 δr 0.1158 δeβ

2 −15.93
δf −0.09447 δrα 0.5238 δf −1.377
αδf 1.106 β̇b

2V −0.1600 αδf −1.261

Cl Cm Cn

parameter value parameter value parameter value

0 0.0005910 0 0.09448 0 −0.003117
β −0.06180 α −0.6028 β 0.006719
pb
2V −0.5045 α2 −2.140 pb

2V −0.1585
rb
2V 0.1695 qc

V −15.56 rb
2V −0.1112

δa −0.09917 δe −1.921 δa −0.003872
δr 0.006934 β2 0.6921 δr −0.08265
δaα −0.08269 rb

2V −0.3118 qc
V 0.1595

δf 0.4072 β3 0.1373

Table C.3: Coefficients in the aerodynamic model of the ‘Beaver’ (TAS-range: 35-55 ms−1)

CX CY CZ

parameter value parameter value parameter value

dpt 0.1161 − − dpt −0.1563
α · dpt2 0.1453

Cl Cm Cn

parameter value parameter value parameter value

α2 · dpt −0.01406 dpt −0.07895 dpt3 −0.003026

dpt ≡ ∆pt
1
2ρV

2
= C1 + C2

P
1
2ρV

3
with:

{

C1 = 0.08696

C2 = 191.18

Table C.4: Coefficients in the engine forces & moments model of the ‘Beaver’ (35-55 ms−1)
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Appendix D

FDC implementation of the aircraft
parameters

D.1 How to define the parameters in the Matlab workspace

The Simulink models from FDC 1.2 use data from the Matlab workspace in order to define
the model parameters. This data is of course highly dependent of the aircraft under considera-
tion. For the ‘Beaver’ model, most parameters have been stored in three parameter matrices and
one parameter vector. The analytical routines from Simulink and the FDC toolbox, described
in chapter 8, can only be applied to the system Beaver if these parameters are present in the
Matlab workspace. It is possible to load them from the file aircraft.dat by means of the
routine LOADER (section 9.3.1). The file aircraft.dat itself can be created with the routine
MODBUILD (section 9.2). The definitions of the parameter vector and matrices for the system
Beaver will be given below. See appendix C for the numerical values of all parameters and for
some general information about the ‘Beaver’ aircraft.

If you plan to implement a model of another aircraft within the FDC structure, you are free to use
your own data-formats for all aircraft-dependent blocks within the systems. However, unless
you plan to enhance the model with options for non-constant mass and/or mass-distribution
properties, it is recommended not to alter the definitions of the matrices GM1 and GM2 in
which the basic geometrical properties, the mass, and the inertia parameters of the aircraft are
defined. This is because those two matrices are used by aircraft-independent subsystems as well.
With regard to these parameters, the best way of implementing a new aircraft model is to insert
the appropriate values in the routine MODBUILD by editing its source-file modbuild.m in the
FDC subdirectory aircraft and then run this routine to update GM1 and GM2 . The many
comment-lines within the source code will guide you through this process.

D.2 Definition of the parameter matrices for the system Beaver

Aerodynamic model

The stability and control derivatives used by the aerodynamic model of the ‘Beaver’ aircraft
have been combined in the parameter matrix AM . The definition of AM is given in table D.2.
The numerical values of these coefficients can be found in table C.3 from appendix C; they
have been implemented in MODBUILD to generate the datafile aircraft.dat. Equation (3.13)
in section 3.2.2 describes the general polynomial structure of the aerodynamic model of the
‘Beaver’.
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Engine forces & moments model

The coefficients used by the model of the engine forces and moments of the ‘Beaver’ aircraft
have been combined in the parameter matrix EM . The definition of EM is given in table D.2.
The numerical values of these coefficients can be found in table C.4 from appendix C; they have
been implemented in MODBUILD to generate the datafile aircraft.dat. Equation (3.17) in
section 3.2.2 describes the general polynomial structure of the engine forces and moments model
of the ‘Beaver’.

Weight & balance and geometrical data

In the aircraft model from FDC 1.2 it is assumed that the mass of the airplane and its mass-
distribution remain constant during the motions of interest. These values can therefore be
regarded as parameters for the equations of motion. The parameter vector GM1 contains the
mass, moments and products of inertia, and three geometrical properties, being: the mean
aerodynamic chord, wing span, and wing area. See appendix C for the numerical values of
these properties. The parameter matrix GM2 contains the inertia coefficients from table B.2
in appendix B. The routine MODBUILD contains the definitions of these coefficients for the
‘Beaver’ aircraft and the general (!) inertia equations from table B.2. It stores the resulting
parameter vectors in the datafile aircraft.dat. Table D.3 gives the definitions of GM1 and
GM2 .
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AM =























































CX0 CY0 CZ0 Cl0 Cm0 Cn0

CXα 0 CZα 0 Cmα 0

CX
α2 0 0 0 Cm

α2 0

CX
α3 0 CZ

α3 0 0 0

0 CYβ 0 Clβ 0 Cnβ

0 0 0 0 Cm
β2 0

0 0 0 0 0 Cn
β3

0 CYp 0 Clp 0 Cnp

CXq 0 CZq 0 Cmq Cnq

0 CYr 0 Clr Cmr Cnr

0 0 CZδe 0 Cmδe
0

CXδf
0 CZδf 0 Cmδf

0

0 CYδa 0 Clδa 0 Cnδa
CXδr

CYδr 0 Clδr 0 Cnδr
CXαδf

0 CZαδf 0 0 0

0 CYδrα 0 0 0 0

0 0 0 Clδaα 0 0

0 0 CZ
δeβ2 0 0 0

0 CYβ 0 0 0 0























































T
1
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3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1 2 3 4 5 6

Table D.1: Coefficients of the aerodynamic model of the ‘Beaver’
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EM =











CXdpt
0 CZdpt

0 Cmdpt
0

0 0 0 0 0 Cndpt

CX
αdpt2

0 0 0 0 0

0 0 0 Cl
α2dpt

0 0











T
1

2

3

4

1 2 3 4 5 6

Table D.2: Coefficients of the engine forces & moments model of the ‘Beaver’

GM1 =
[

c b S Ixx Iyy Izz Jxy Jxz Jyz m
]T

1

1 2 3 4 5 6 7 8 9 10

GM2 =







Pl Pm Pn Ppp Ppq Ppr Pqq Pqr Prr

Ql Qm Qn Qpp Qpq Qpr Qqq Qqr Qrr

Rl Rm Rn Rpp Rpq Rpr Rqq Rqr Rrr







T
1

2

3

1 2 3 4 5 6 7 8 9

Table D.3: ‘Beaver’ geometry and mass-distribution



Appendix E

Definitions of variables and
acronyms from FDC 1.2

E.1 Variables and acronyms from the graphical models

A large number of acronyms has been used in the graphical models of FDC 1.2 in order to
clarify the meaning of all signal lines. These acronyms are also used within the on-line helpfiles
(∗.hlp). The following subsections explain the meaning of these variables and acronyms. See
appendix A for the meaning of the symbols themselves. The variables from the different Matlab
subroutines from FDC 1.2 are explained within the source-codes of the subroutines themselves.
Section E.2 defines the input and output variables for the non-linear aircraft model and radio
navigation models. The model parameters for the Simulink implementation of the non-linear
aircraft model have been defined in appendix D.

E.1.1 Aircraft model (system Beaver)

a a
alpha α
alphadot α̇
Ax Ax
axk ax,k
Ay Ay
ayk ay,k
Az Az
azk az,k
beta β

betadot β̇

Caero Caero = [ CXa CYa CZa Cla Cma
Cna ]

T

chi χ
Cla Cla
Clp Clp
Cma Cma
Cmp Cmp
Cna Cna
Cnp Cnp
Cprop Cprop =

[
CXp CYp CZp Clp Cmp

Cnp
]T

CXa CXa
CXp CXp
CYa CY a
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CYp CY p
CZa CZa
CZp CZp
deltaa δa
deltae δe
deltaf δf
deltar δr
dpt dpt

Fgrav Fgrav = [ Xgr Ygr Zgr ]
T

fpa fpa

FMaero FMaero = [ Xa Ya Za La Ma Na ]
T

FMprop FMprop = [ Xp Yp Zp Lp Mp Np ]
T

Ftot Ftot = [Fx Fy Fz ]
T

Fwind Fwind = [ Xw Yw Zw ]
T

Fx Fx
Fy Fy
Fz Fz
g g
gamma γ
In matrix with time-trajectories of the inputs, see table E.3
L L
La La
Lp Lp
M M
Ma Ma

Mp Mp

Mtot Mtot = [L M N ]
T

mu µ
n n
N N
Na Na
Np Np
Out matrix with time-trajectories of the outputs, see table E.4
P P
p p

pb/2V pb
2V

pdot ṗ
Phi Φ
phi ϕ
phidot ϕ̇
ps ps
psi ψ

psidot ψ̇
pz pz
q q
qc qc
qc/V qc

V

qdot q̇
qdyn qdyn
r r
rb/2V rb

2V

Rc Rc
rdot ṙ
Re Re
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rho ρ
T T
theta θ

thetadot θ̇
time vector containing the time-axis of the simulations
Tt Tt
u u

uaero uaero = [ δe δa δr δf ]
T

udot u̇
ueul ueul, see chapter 5
upqr upqr, see chapter 5

uprop uprop = [ n pz ]
T

uVab uVab, see chapter 5
uw uw
uwdot u̇w
uwind uwind = [ uw vw ww u̇w v̇w ẇw ]

T

uxyH uxyH, see chapter 5
V V
v v
Vc Vc
Vdot V̇
vdot v̇
Ve Ve
vw vw
vwdot v̇w
w w
wdot ẇ
ww ww
wwdot ẇw
x x = [ V α β p q r ψ θ ϕ xe ye H ]

T

Xa Xa

xdot ẋ = [ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ ]
T

xe xe
xedot ẋe
Xgr Xgr

xinco initial value of x
Xp Xp

Xw Xw

Ya Ya
yacc yacc = [ Ax Ay Az ax,k ay,k az,k ]

T

yad1 yad1 =
[
a M qdyn

]T

yad2 yad2 = [ qc Ve Vc ]
T

yad3 yad3 = [ Tt Re Rc ]
T

yatm yatm = [ ρ ps T µ g ]
T

ybvel ybvel = [ u v w ]
T

ydl ydl =
[
pb
2V

qc
V

rb
2V

]T

ye ye
yedot ẏe
yeul yeul = [ ψ̇ θ̇ ϕ̇ ]T

yfp yfp = [ γ fpa χ Φ ]
T

Ygr Ygr
yhlp yhlp, see chapter 5
Yp Yp
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ypow ypow = [ dpt P ]
T

ypqr ypqr = [ ṗ q̇ ṙ ]T

yuvw yuvw = [ u̇ v̇ ẇ ]
T

yVab yVab = [ V̇ α̇ β̇ ]T

Yw Yw
yxyH yxyH = [ ẋe ẏe Ḣ ]

T

Za Za
Zgr Zgr
Zp Zp
Zw Zw

E.1.2 Autopilot models (systems APILOT1 to APILOT3)

alpha α
ALH? switch signal for Altitude Hold mode
ALS? switch signal for Altitude Select mode
asymm. mode? switch signal for asymmetrical autopilot modes
asymm. out. loop? switch signal for asymmetrical outer-loops
beta β
CD Course Datum (VOR reference bearing, see section 3.4.2)
dar gain factor dar , see table 11.3
drr gain factor drr , see table 11.3
D ail ∆δa input to cable & actuator models
D ail ref ∆δa,ref (reference value from control laws)
D elv ∆δe input to cable & actuator models
D elv ref ∆δe,ref (reference value from control laws)
D rud ∆δr input to cable & actuator models
D rud ref ∆δr,ref (reference value from control laws)
Ddeltaa ∆δa input to non-linear aircraft model
Ddeltae ∆δe input to non-linear aircraft model
Ddeltaf ∆δf input to non-linear aircraft model; here: ∆δf = 0
Ddeltar ∆δr input to non-linear aircraft model
DHr (. . . ) reference ∆H (brackets show which of the control laws determined this value)

DHdot r (. . . ) reference ∆Ḣ (brackets show which of the control laws determined this value)
Dn ∆n input to non-linear aircraft model; here: ∆n = 0
Dphir (. . . ) reference ∆ϕ (brackets show which of the control laws determined this value)
Dpsir (. . . ) reference ∆ψ (brackets show which of the control laws determined this value)
Dpz ∆pz input to non-linear aircraft model; here: ∆pz = 0
Dthetar (. . . ) reference ∆θ (brackets show which of the control laws determined this value)
epsilon gs εgs
gamgs γgs
Gamma loc Γloc
Gamma VOR ΓVOR
GS coupled? switch signal for Glideslope Coupled mode
H H

Hdot Ḣ
HH? switch signal for Heading Hold mode
HRW HRW = height of runway above sea level
HVOR HVOR = height of VOR transmitter above sea level
Kd gain factor Kd, see table 11.3
Keps gs gain factor Kεgs , see table 11.3
KGam LOC gain factor KΓloc , see table 11.3

KGam VOR gain factor KΓVOR
, see table 11.3

KH gain factor KH , see table 11.3
KHdot gain factor KḢ , see table 11.3
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Ki gain factor Ki, see table 11.3
Kphi gain factor Kϕ, see table 11.3
Kpsi gain factor Kψ, see table 11.3
Kq gain factor Kq, see table 11.3
Kr gain factor Kr, see table 11.3
Ktheta gain factor Kθ, see table 11.3
Kv gain factor Kv, see table 11.3
LOC coupled? switch signal for Localizer Coupled mode
NAV? switch signal for VOR Navigation mode
p p
phi ϕ
psi ψ
psiRW ψRW = heading of the runway centerline
psi w ψw
q q
r r
Rgs Rgs

Rloc Rloc
Sgs Sgs

Sloc Sloc
symm. mode? switch signal for symmetrical autopilot modes
symm. outer loop? switch signal for symmetrical outer-loops
theta θ

uaero uaero = [ δe δa δr δf ]
T

uaero0 initial value of uaero

uprop uprop = [ n pz ]
T

uprop0 initial value of uprop

uw uw
uwdot u̇w
uwind uwind = [ uw vw ww u̇w v̇w ẇw ]

T

V V
vw vw
vwdot v̇w
Vw Vw
ww ww
wwdot ẇw
x x = [ V α β p q r ψ θ ϕ xe ye H ]

T

xdot0 initial value of ẋ
xe xe
xgs xgs = X-distance from runway threshold to glideslope transmitter
xinco initial value of x
xloc xloc = X-distance from runway threshold to localizer transmitter
xRW xRW = initial X-distance from aircraft to runway threshold
xVOR xVOR = X-coordinate of VOR transmitter

ydl ydl =
[
pb
2V

qc
V

rb
2V

]T

ye ye
ygs ygs = Y -distance from runway threshold to glideslope transmitter
yils yils, see table E.5
ymod1A vector with initial asymmetrical mode-switches, see section 12.4.1
ymod2A vector with second asymmetrical mode-switches, see section 12.4.1
ymod1S vector with initial symmetrical mode-switches, see section 12.4.1
ymod2S vector with second symmetrical mode-switches, see section 12.4.1
ymode vector with symmetrical and asymmetrical mode-switches
yref vector with symmetrical and asymmetrical reference inputs to the control laws
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yrefA vector with asymmetrical reference inputs to the control laws, see section 12.4.1
yrefS vector with symmetrical reference inputs to the control laws, see section 12.4.1
yRW YRW = initial Y -distance from aircraft to runway threshold
yvor yvor, see table E.6
yVOR YVOR = Y -coordinate of VOR transmitter

z z = [ x , Ḣ ]T (after passing the sensor blocks)
z-z0 z− z0, with z0 the initial value of z

E.1.3 Radio-navigation models (library NAVLIB)

For more details about the symbols from the following list, see also sections 3.4.1 and 3.4.2 from
chapter 3. In particular, consult figures 3.13, 3.14, 3.15, and 3.17.

cat ILS performance category (1, 2, or 3)
CD Course Datum (VOR reference bearing, see section 3.4.2)
Cone of silence flag flag, equals 1 if aircraft enters ‘cone of silence’ above VOR station
cos gamgs cos γgs
cos psiRW cosψRW
dgs dgs
D igs ∆igs = steady state error in nominal glideslope angle
D iloc ∆iloc = steady state error due to misalignment of localizer reference plane
epsilon gs εgs
gamgs γgs = nominal glideslope angle
Gamma gs Γgs

Gamma loc Γloc
Gamma VOR ΓVOR
GS flag flag, equals 1 if glideslope can not be received accurately
H H
Hf Hf

HRW HRW = height of runway above sea level
HVOR HVOR = height of VOR transmitter above sea level
igs igs
iloc iloc
K general symbol for gain value (used for first-order transfer function)
KSgs gain for igs, used to model deviations in glideslope sensitivity
KSloc gain for iloc, used to model deviations in localizer sensitivity
KVORerr gain for ΓVOR, used to model steady-state VOR errors
Lgs Lgs = scale-length of glideslope noise
Lloc Lloc = scale-length of localizer noise
LOC flag flag, equals 1 if localizer can not be received accurately
psi ψ
psiRW ψRW = runway heading
QDR QDR = current VOR bearing
Range flag flag, equals 1 if distance to VOR transmitter exceeds range of VOR signals
Rgs Rgs

Rloc Rloc
RVOR RVOR
RWpos runway position vector [ xRW yRW HRW ]T

Sgs Sgs

sigma gs σgs = standard deviation of glideslope noise
sigma loc σloc = standard deviation of localizer noise
sin psiRW sinψRW
Sloc Sloc
tan gamgs tan γgs
tau τ = general symbol for time-constant of first-order filters
ToFrom flag, equals 1 if the aircraft flies To the VOR or 0 if it flies away From the VOR
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uils uils = [ xe ye H ]
T

uVOR uVOR = [ xe ye H ]
T

V V
xe xe
xf xf
xgs xgs = X-distance from runway threshold to glideslope transmitter
xloc xloc = X-distance from runway threshold to localizer transmitter
xRW xRW = initial X-distance from aircraft to runway threshold
xVOR xVOR = X-coordinate of VOR transmitter
ye ye
yf yf
ygs ygs = Y -distance from runway threshold to glideslope transmitter
yils yils, see table E.5

yils1 yils1 =
[
igs iloc

]T

yils2 yils2 =
[
εgs Γloc

]T

yils3 yils3 =
[
xf yf Hf dgs Rgs Rloc

]T

yils4 yils1 = [ LOC flag GS flag ]
T

yvor yvor, see table E.6
yVOR yVOR = Y -coordinate of VOR transmitter
yvor1 yvor1 = ΓVOR
yvor2 yvor2 = RVOR
yvor3 yvor3 = [Cone of silence flag, Range flag]T

yvor4 yvor4 = ToFrom
yRW yRW = initial Y -distance from aircraft to runway threshold

E.1.4 Wind and turbulence models (library WINDLIB)

a0, a1, ... a0, a1, . . . = coefficients of transfer function denominator
b0, b1, ... b0, b1, . . . = coefficients of transfer function numerator
H H
K general symbol for gain value (used for first-order transfer function)
Lug Lug = scale length of longitudinal turbulence
Lvg Lvg = scale length of lateral turbulence
Lwg Lwg = scale length of vertical turbulence
psi ψ
psi w ψw
sigma ug σug = standard deviation of longitudinal turbulence
sigma vg σvg = standard deviation of lateral turbulence
sigma wg σwg = standard deviation of vertical turbulence
tau τ = general symbol for time-constant of first-order filters
ug ug = uw due to turbulence
ugdot u̇g
uw uw
uwdot u̇w
uwind uwind = [ uw vw ww u̇w v̇w ẇw ]

T

vg vg = vw due to turbulence
vgdot v̇g
vw vw
Vw Vw
vwdot v̇w
wg wg = ww due to turbulence
wgdot ẇg
ww ww
wwdot ẇw
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E.2 Input/output variables of the simulation models

E.2.1 Aircraft model (system Beaver)

Results which are sent to the workspace

During simulations of systems which call the non-linear aircraft model Beaver, the results are
stored in the matrices In and Out within the Matlab workspace. These matrices have been
defined in tables E.3 and E.4, respectively. Each column of these matrices contains a time-
trajectory of a specific input or output signal. These matrices are obtained by combining the
input and output signals from the different subsystems of the system Beaver within its top-level.
See section 5.1 and the description of Level 1 (the top-level of the system Beaver) in chapter 5.
The time-axis itself is stored in a separate vector time, to provide the reference base against
which the time-trajectories of the inputs and outputs can be plotted. On-line help with regard
to these input and output definitions will be displayed in the command window if you enter type
level1.hlp, type inputs.hlp, or type outputs.hlp. The routines RESULTS and RESPLOT,
which have been described in chapter 9, are available for simplifying evaluations of the simulation
results. Type help results or help resplot for more details.

S-function inputs and outputs

Due to the fact that it is not possible to send vector signals through Inport and Outport blocks in
the first level of a graphical Simulink system, it was not very practical to match the definition
of the matrix Out with the output vector that connects the system Beaver to other dynamical
systems. For this reason, only a subset of all output signals from Beaver was made available
for connecting other systems. In this report, these variables have been referred to as S-function
outputs. Table E.1 shows the definition of this vector. The definition of the input which is
used to connect the system Beaver to other systems does match the definition of the matrix In,
as shown in table E.2 (compare with table E.3). For on-line help regarding these S-function
inputs and outputs enter type level1.hlp, type inputs.hlp, or type outputs.hlp at the
command-line. See also figure 5.2 in chapter 5.

E.2.2 Radio navigation models (library NAVLIB)

During simulations, the outputs from the ILS example system ILS example are stored in the
matrix yils. The outputs from the VOR example system VOR example are stored in the matrix
yvor . Tables E.5 and E.6 show the definitions of these matrices. The row-numbers are displayed
underneath the symbols. See the description of the systems ILS example and VOR example in
chapter 7 for more information.
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Definition of the ‘S-function output vector’ (the elements from this vector
have all been connected to an Outport block in the first level of Beaver)

V α β p q r ψ θ ϕ xe ye H Ḣ pb
2V

qc
V

rb
2V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table E.1: Definition of the S-function output vector of the system Beaver

Definition of the ‘S-function input vector’ (the elements from this vector
have all been connected to an Inport block in the first level of Beaver)

δe δa δr δf n pz uw vw ww u̇w v̇w ẇw

1 2 3 4 5 6 7 8 9 10 11 12

Table E.2: Definition of the S-function input vector of the system Beaver

Sub- Definition of the matrix In (the numbers correspond with the columns,
vector containing the time-trajectories of the specified input variables)

uaero δe δa δr δf
1 2 3 4

uprop n pz
5 6

uwind uw vw ww u̇w v̇w ẇw
7 8 9 10 11 12

Table E.3: Definition of the matrix In
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Sub- Definition of the matrix Out (the numbers correspond with the columns,
vector containing the time-trajectories of the specified output variables)

x V α β p q r ψ θ ϕ xe ye H
1 2 3 4 5 6 7 8 9 10 11 12

ẋ V̇ α̇ β̇ ṗ q̇ ṙ ψ̇ θ̇ ϕ̇ ẋe ẏe Ḣ
13 14 15 16 17 18 19 20 21 22 23 24

ybvel u v w
25 26 27

yuvw u̇ v̇ ẇ
28 29 30

ydl
pb
2V

qc
V

rb
2V

31 32 33

yfp γ fpa χ Φ
34 35 36 37

ypow dpt P
38 39

yacc Ax Ay Az ax,k ay,k az,k
40 41 42 43 44 45

Caero CXa CY a CZa Cla Cma Cna
46 47 48 49 50 51

Cprop CXp CY p CZp Clp Cmp Cnp
52 53 54 55 56 57

FMaero Xa Ya Za La Ma Na

58 59 60 61 62 63

FMprop Xp Yp Zp Lp Mp Np

64 65 66 67 68 69

Fgrav Xgr Ygr Zgr
70 71 72

Fwind Xw Yw Zw
73 74 75

yatm ρ ps T µ g
76 77 78 79 80

yad1 a M qdyn
81 82 83

yad2 qc Ve Vc
84 85 86

yad3 Tt Re Rc
87 88 89

Table E.4: Definition of the matrix Out
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Sub- Definition of the matrix yils (the numbers correspond with the columns,
vector containing the time-trajectories of the specified output variables)

yils1 igs iloc
1 2

yils2 εgs Γloc

3 4

yils3 xf yf Hf dgs Rgs Rloc

5 6 7 8 9 10

yils4 LOC flag GS flag
11 12

Table E.5: Definition of the matrix yils, containing outputs from ILS example

Sub- Definition of the matrix yvor (the numbers correspond with the columns,
vector containing the time-trajectories of the specified output variables)

yVOR1 ΓVOR

1

yVOR2 RVOR

2

yVOR3 Cone of silence flag Range flag
3 4

yVOR4 To/From flag
5

Table E.6: Definition of the matrix yVOR, containing outputs from VOR example
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12 ODEs, 74

Accel, 75
ACCOST, 133
ACLIN, 133, 137, 138
ACCONSTR, 133
ACTRIM, 133, 134, 154, 163
Actuator & cable dynamics, 203
ADAMS, 50, 56, 57
Additional Outputs, 69, 76
Aerodynamics Group, 69, 77
Aeromod, 78
air density, 26
air pressure, 25
Aircraft Equations of Motion, 69, 80
aircraft model, see mathematical models
aircraft model parameters, 141, 239, 243
Airdata Group, 69, 84
airdata models, 24
Airdata1, 81
Airdata2, 82
Airdata3, 83
algebraic loop, 24, 58, 60
analytical tools, 49
APILOT1, 7, 196
APILOT2, 7, 196
APILOT3, 7, 196
APINIT, 205
APMENU, 192, 197
APMODE, 199, 205
Atmosph, 85
atmosphere model, 24
atmospheric turbulence

filter design, 32, 33
filters for the Dryden spectra, 33
power spectra

Dryden, 32
Von Kármán, 31

properties of the stochastic processes, 29
attitude of the aircraft, 19
Automatic Flight Control Systems

‘Beaver’ autopilot, see autopilot
AFCS design process, 11
closed-loop model, 17, 18

autopilot
basic functions

control, 169
guidance, 169

Gain scheduling, 187
inner loops, 169
lateral modes, 175

Approach: Localizer, 177
Go Around, 180
Heading Hold/Heading Select, 176
Roll Attitude Hold, 175
Simulink implementation, 198
VOR Navigation, 179

longitudinal modes, 170
Altitude Hold, 170
Altitude Select, 172
Approach: Glideslope, 173
Go Around, 175
Pitch Attitude Hold, 170
Simulink implementation, 197

mode controller, 170, 172, 175, 185
Simulink implementation, 199

outer loops, 169
signal limiters, 185

Simulink implementation, 203
turn-compensator, 180
turn-coordinator, 175

azimuth angle, 28

bank angle, 28
Beaver, 6, 7, 69, 71, 72
Block fcn, 148
BLWIND, 111

calibrated airspeed, 26
compressibility of the air, 26
coordinates, 19
CWIND, 112

Dimless, 86
directory-tree, see FDC toolbox
Doublet, 148
Dryden spectral density functions, 32
dynamic pressure, 26
dynamic viscosity, 26

Engine Group, 69, 87
Engmod, 88
equations of motion, 18, 227
equivalent airspeed, 26
EULER, 49
Euler angles, 19, 222, 237
Eulerdot, 89
external forces, see forces and moments
external moments, see forces and moments

FDC toolbox
‘reference guide’, 68–149
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autopilot case-study, 168–210
block libraries, 6
directory-tree, 3, 6, 141
initialization, 3, 6, 141
installation instructions, 3
licence agreement, 2
open-loop examples, 150–163
system requirements, 1

FDCINIT, 3, 6, 141
fdcinit.ini, 6, 141
FDCLIB, 6, 8, 70, 109, 119
FDCTOOLS, 6, 148
FIXSTATE, 146, 154
Flight Control Computer, 12, 14, 47, 203
flight-path acceleration, 28
flight-path variables, 28
Flpath, 90
FMdims, 91
FMINS, 133
FMsort, 69, 92
forces and moments

aerodynamics, 20, 232
general force equation, 227
general moment equation, 228
gravity, 23, 232
non-steady atmosphere, 23, 236
propulsion, 22, 232

Fwind, 69, 93

Gain scheduling, 148, 187
gas law, 25
GEAR, 50, 57
glide-path, see ILS
glideslope, see ILS
gravitational acceleration, 25
Gravity, 69, 94
GSERR, 121
GSNOISE, 122
GSSWITCH, 199

Hlpfcn, 69, 95
hydrostatic equation, 25

ILS, 34
approach path, 35
deterministic interference, 42
glideslope, 34, 36, 38
glideslope coverage, 36
glideslope geometry, 40
glideslope noise, 43
glideslope steady-state error, 41
ground equipment, 35
localizer, 34, 36, 37
localizer coverage, 35
localizer geometry, 39
localizer noise, 43
localizer steady-state error, 41
noise characteristics, 41
nominal signals, 34
performance categories, 34, 37
steady-state offset errors, 40

ILS, 123

ILS example, 125, 254
ILSINIT, 207
impact pressure, 26
implicitness of state equations, 19, 23
INCOLOAD, 143, 154
inertia coefficients, see mass distribution
input/output relations of Beaver, 69
install.bat, 3
Integrator, 96

kinematic relations, 20, 237

Level 1, 70, 72, 97
Level 2, 69–71, 98
linearization facility

ACLIN, 137
theory, 64

linearized aircraft model
analysis of linear models, 147

LINMOD, 67, 137
LINSIM, 49, 57
LOADER, 142, 143, 154
localizer, see ILS
LOCERR, 127
LOCNOISE, 128
LOCSWTCH, 199

MA-filter, 149
Mach number, 26
mass-distribution, 18, 229, 230
mathematical models

actuators, 47
atmosphere and airdata models, 24
atmospheric disturbances

turbulence, 29
wind, 28

body-axes accelerations, 28
equations of motion, 18, 227
external forces and moments

aerodynamics, 20
gravity, 23
propulsion, 22

Flight Control Computer, 47
flight-path variables, 28
kinematic accelerations, 27
non-linear aircraft model, 18, 227
radio-navigation, 34

ILS, see ILS
VOR, see VOR

sensors, 47
specific forces, 27

MODBUILD, 141
Mode Controller, 199
mode-controller, see autopilot
model library

FDCLIB, see FDCLIB
future developments, 211
NAVLIB, see NAVLIB
WINDLIB, see WINDLIB

moments of inertia, see mass-distribution
Moving Average filter, 149, 203
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n-switch, 148
NAVLIB, 6, 119
NAVSWTCH, 199
non-steady atmosphere, 235
NSWITCH, 148, 205
NUM2STR2, 148
numerical integration methods

categories
extrapolation methods, 56
multistep methods, 55
Runge-Kutta methods, 54
Taylor series methods, 54

errors, 51
order, 51
stability, 51
stiff differential equations, 57

OLOOP1, 7, 151
OLOOP1T, 7, 151
OLOOP2, 7, 151, 155
OLOOP2T, 7, 151, 155
OLOOP3, 7, 151, 156
OLOOP3T, 7, 151, 156
on-line help functions, 73
On/off switch, 148
Ordinary Differential Equations, 50

aircraft dynamics, see mathematical models

PAH, 190, 192
PAHRAH, 190, 192
position of the aircraft, 19
Power, 100
pqrdot, 101
PRAHINIT, 192
products of inertia, see mass-distribution
propeller slipstream, 22

quantizer, 205

radio-navigation models
ILS, see ILS
VOR, see VOR

RAH, 190, 192
RECOVER, 146, 155
reference frames

body-fixed reference frame FB , 221
Earth-fixed reference frame FE , 222
flight-path reference frame FW , 221
measurement reference frame FM , 221
runway-fixed reference frame FF , 38, 39
special body reference frame FR, 221
stability reference frame FS , 221
vehicle-carried reference frame FV , 222
wind reference frame FW , 221

RESPLOT, 145, 155
RESULTS, 145, 155
Reynolds number, 26
rigid body equations, 18, 21
RK23, 50, 55
RK45, 50, 54, 55

scale effects, 26

Scheduled Gain, 148
Sensors, 203
sign conventions, 221, 223, 226
signal limiters, see autopilot
Simulink integrators, 49
slipstream of the propeller, 22
Soft-limiter, 148, 149
SOFTLIM, 149
spatial orientation, 19
speed of sound, 26
Standard Atmosphere, 24, 29
state equations

aircraft dynamics, 18
steady-state trimmed flight, see trimming facility
stiff ODEs, see numerical integration methods
Sutherland’s equation, 26
switch, 148
SYSTPROP, 147

total temperature, 26
TRIM, 61
TRIMDEMO, 137, 162
trimmed-flight elevator curve, 162
trimming facility

ACTRIM, 133
theory

constraints, 62, 63
definition of steady-state flight, 61
specification of flight condition, 63
trim algorithm, 64, 65

turbulence, see atmospheric turbulence

UDRYD1, 113
UDRYD2, 114
uvw, 102
uvwdot, 103

Vabdot, 104
VDRYD1, 115
VDRYD2, 116
Von Kármán spectral density functions, 31
von Kármán spectral density functions, 34
VOR, 43

cone of silence, 45
coverage, 45
nominal signals, 43
steady-state errors, 45
VOR geometry, 44

VOR, 129
VOR example, 254
VOR example, 131
VORERR, 130
VORINIT, 207

WDRYD1, 117
WDRYD2, 118
wind profile in Earth’s boundary layer, 29, 30
wind shear, 28
WINDLIB, 6, 109

xdotcorr, 105
xfix, 107, 146
xyHdot, 108


