Industrial Automation SILence

Important Notes

All HIMA products mentioned in this manual are protected under the HIMA trademark. Unless not explicitly noted, this may apply for other referenced manufacturers and their respective products.

All listed modules are CE certified and meet the requirements of the European Union's EMC Guideline.

All technical statements and data in this manual have been written with great care and effective quality measures have been taken to ensure their validity; however this manual may contain flaws or typesetting errors. For this reason, HIMA does not offer any warranties nor assume legal responsibility nor any liability for possible consequences of any errors in this manual. HIMA appreciates any correspondence noting potential errors.

Technical modifications reserved.

Delivery Conditions

Either the "General Conditions for Delivery of Products and Services" of the German Electrical Industry - edition January 2002 - or the "Conditions of Delivery for System Software and Peripheral Devices for the HIMA Automation System" apply for all deliveries.

Potential claims can only be recognized only if received within 14 days of receipt of the merchandise.

TÜV Rheinland/ Berlin-Brandenburg

TÜV Anlagentechnik GmbH Automation, Software und Informationstechnologie

BESCHEINIGUNG CONFIRMATION

Nr./No. 968/EL 246.00/03

Prüfgegenstand Product tested	Software tool SILenc	e	Hersteller Manufacturer	HIMA Paul Hildebrandt GmbH + Co. KG Albert-Bassermann-Straße 28 D-68782 Brühl bei Mannheim
Typbezeichnung Type designation	SILence Version 1.0		Verwendungs- zweck Intended application	Software tool for safety integrity level calculations
Prüfgrundlagen Codes and standa the basis of testing	rds forming	IEC 61508, P IEC 61508, P	Part 6:2000 Part 1, 2 and 7:2	2000, so far applicable
Prüfungsergebnis Test results		The software tool SILence is fit for use as a safety integrity I calculator according to basis of testing considering the re of the test report no. 968/EL 246.00/03 dated 2003-10-30.		s fit for use as a safety integrity level asis of testing considering the results L 246.00/03 dated 2003-10-30.
Besondere Beding Specific requireme	ungen ents	For the use above and and TÜV Rh	of the softwo the User Mar einland have to	are tool the test report mentioned nual Version 1.0 released by HIMA to be considered.

TÜV Anlagentechnik GmbH Geschäftsfeld AS) Automation, Schwarz und Informationaestmalogie Ann Gesware Steer, 51 106 KSto Postfach 91 09 51, 51 101 Kohr

H. Gall

2003-10-30 Datum/Date

Firmenstempel/Company seal

Unterschrift/Signature

About this Manual

As specified in IEC/EN 61508, the *SILence* software described in this manual enables the user to determine the Safety Integrity Level (SIL) for entire loops (consisting of sensor, signal processing, actuator) of plants to be engineered.

SILence is the first tool verified by the German TÜV to calculate the SIL. **SILence** supports the Safety Consultant or operator during the design of safety loops. **SILence** documents the SIL calculations in the definition phase. Based of the SIL value achieved, the correct definition of the loop is documented in the total safety validation.

SILence is able to administer a variety of libraries. The user can create his modules or libraries and work with them. Additionally, he can exchange the libraries independently of one another.

HIMA systems are always developed, produced and certified in accordance with the valid national and international standards. In this regard, one of the most important international standards is IEC/EN 61508.

IEC/EN 61508 does not only cover numerical values such as PFD and PFH, which provide information about the probabilities of a system failure, but it describes the overall safety life cycle of a system.

Target Audience

This manual is meant for engineers working in project engineering for safety-related automation technology.

Knowledge of the IEC/EN 61508 standards, safety engineering and statistical computation is a prerequisite for using *SILence* correctly.

No part of this documentation may be duplicated in whole or in part or reproduced in any form without the express written consent of HIMA.

All rights and technical modifications reserved.

 C HIMA Paul Hildebrandt GmbH + Co KG Post Office Box 1261
 D - 68777 Brühl by Mannheim
 Phone +49 (0) 6202 709-0
 Fax +49 (0) 6202 709-107
 E-mail info@hima.com
 Internet http://www.hima.com

Terminology

Term	Definition
λ_{DD}	Detectable dangerous failure rate (per hour)
λ_{DU}	Undetectable dangerous failure rate (per hour)
$\lambda_{\rm S}$	Detectable safe failure rate (per hour)
β	Dangerous undetectable common-cause failure
β_D	Dangerous detectable common-cause failure
CRC	Cyclic Redundancy Check
DC	Diagnostic Coverage Factor is the proportion of the dangerous detectable failures related to all dangerous failures
E/E/PES	Electrical / Electronic / Programmable Electronic Systems
EUC	Equipment Under Control
HFT	Hardware Failure Tolerance
MTTF	Mean Time To Failure
MTTR	Mean Time to Repair
PFD	Probability of Failure on Demand, (A function is requested up to a maximum of twice per year)
PFH	Probability of Failure per Hour (A function is requested more than two times per year)
SFF	Safe Failure Fraction Part of safe failures and dangerous detectable failures related to all failures
SIL	Safety Integrity Level discrete level (one out of a possible four) for specifying the safety integrity requirements of the safety functions to be allocated to the E/E/PE safety-related systems, where safety integrity level 4 has the highest level of safety integrity and safety integrity level 1 has the low- est.
*.sdd	File format for "SILence Database Device"
*.sds	File format for "SILence Database Predefined System"
*.spr	File format for "SILence Project"
*.ssy	File format for "SILence System"

Table of contents

Page

Т	heory	1
1	Introduction	. 1
2	General Comment on IEC/EN 61508	. 5
3	Hardware Requirements	8
4	Software Requirements	10
5	Examples of Matheds for the SIL Determination	11
5 c		•••
0	 6.1 Conditional Equations	14 14 15 15 15 16 16 16
7	Determination of the Safety Integrity	18
Ρ	rogram Description	19
	o i	
8	Working with <i>SILence</i>	19
8	Working with <i>SILence</i>	19 19 20
8	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8 2 1 Project Structure	19 19 20 20
8	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1 Project Structure 8.2.1 Project Structure	19 19 20 20 20
8	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems	19 19 20 20 20 20
8	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems	19 19 20 20 20 20 20
8	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules	19 19 20 20 20 20 21 21
8	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components	19 20 20 20 20 21 21 21
8	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units	19 20 20 20 21 21 21 21
8	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units	19 19 20 20 20 21 21 21 21 21 21 21 21
8 9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start Main Window	 19 20 20 20 21 2
8 9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start 10.1 "Libraries" Tab.	 19 20 20 20 21 2
8 9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start 10.1 "Libraries" Tab 10.1.1 "Libraries" Column	 19 20 20 20 21 2
8 9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start 10.1 "Libraries" Tab 10.1.1 "Libraries" Column 10.1.1 HIMA Module Libraries	 19 20 20 20 21 21 21 21 21 21 21 23 23 23 23
8 9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start 10.1 "Libraries" Tab 10.1.1 "Libraries" Column 10.1.1.1 HIMA Module Libraries 10.1.1.2 Manufacturer Module Libraries	 19 20 20 20 21 21 21 21 21 21 21 21 23 23 23 23 24
8 9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start 10.1 "Libraries" Tab 10.1.1 HIMA Module Libraries 10.1.1.2 Manufacturer Module Libraries 10.1.1.3 New Module Libraries	 19 20 20 20 21 21 21 21 21 22 23 23 23 24 24
8 9 10	Working with S/Lence	 19 20 20 20 20 21 21
8 9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start 10.1 "Libraries" Tab 10.1.1 HIMA Module Libraries 10.1.1.2 Manufacturer Module Libraries 10.1.2 "Description" Column 10.2 "Systems" Tab	19 20 20 20 21 21 21 21 21 21 21 22 23 23 23 24 24 24 24
8 9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Projects 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start 0.1 "Libraries" Tab 10.1 "Libraries" Column 10.1.1 HIMA Module Libraries 10.1.1.2 Manufacturer Module Libraries 10.1.2 "Description" Column 10.2 "Systems" Tab 10.2 "Systems" Tab 10.2.1 "System" Column	19 20 20 21 21 21 21 21 21 22 23 23 23 24 24 24 24 24
9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1 Project Structure 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start 10.1 "Libraries" Tab 10.1.1 "Libraries" Column 10.1.1.2 Manufacturer Module Libraries 10.1.1.3 New Module Libraries 10.1.2 "Description" Column 10.2 "Systems" Tab 10.2.1 "System" Column 10.2.2 "File" Column	19 20 20 21 21 21 21 21 22 23 23 23 24 24 24 24 24 24
8 9 10	Working with SILence	19 20 20 21 21 21 21 22 23 23 23 24 24 24 24 24 24 24 24 25
9 10	Working with SILence 8.1 Short Description of Architectures 8.2 Program Description 8.2.1 Project Structure 8.2.1.1 Project Structure 8.2.1.2 Systems 8.2.1.3 Single Systems 8.2.1.4 Modules 8.2.1.5 Components 8.2.1.6 Units Quick-Start 0 Main Window 10.1 "Libraries" Tab 10.1.1 HIMA Module Libraries 10.1.1.2 Manufacturer Module Libraries 10.1.2.2 "Description" Column 10.2 "Systems" Tab 10.2.1 "System" Column 10.2.2 "File" Column 10.3 Working Area 10.4 Toolbar	19 19 20 20 21 21 21 21 21 21 22 23 23 24 24 24 24 24 25 25

	~~~
11.1.1 New Project	26
11.1.2 Load Project	26
11.1.3 Save Project	27
11.1.4 Save Project As	27
11.1.5 New System	27
11.1.5.1 Create New System	27
11.1.5.2 Select Predefined System	
11.1.6 Load System	28
11.1.7 Save System	28
11.1.8 Save System As	20
11.1.0 Drint System	20 ວວ
11.1.9 Pillit System	20
	28
11.1.11 EXIt	28
11.2 Menu "Edit"	29
11.2.1 UNDO	29
11.2.2 REDO	29
11.3 Menu "Settings"	29
11.3.1 Proof-Test-Interval-Configuration	30
11.3.2 Settings	30
11.3.2.1 Decimal Number Places	31
11 3 2 2 Show all Tabs Side by Side	31
11.3.3 Module Editor	31
11 3 3 1 "Module Editor" Tab	32
11.2.2.2 "Listory" Tab	32
11.2.4 Librariaa	30
11.5.4 LIDIAIIES	30
11.3.5 System Editor	37
11.3.5.1 "Predefined System" Tab	38
11.3.5.2 "History" Tab	39
11.3.6 Load Predefined System	39
11.4 Menu "Project"	40
11.4.1 Project History	40
11.5 Menu "Window"	40
11.6 Menu "?"	40
12.1 "System" I ab	41
12.1.1 Edit Single Systems	41
12.1.1.1 Defining an Architecture	41
12.1.1.2 Single System's Context Menu	42
12.1.1.3 Insert/Remove Modules	42
12.2 "Calculation" Tab	43
12.2.1 "T1[y, m]" Column	43
12.2.2 "System/Module" Column	43
12.2.2.1 "Lo-Demand-Result", "Hi-Demand-Result" and "SIL	
based on HFT and SFF (TÜV Approved)" Directories	3.43
12.2.2.2 "Single Systems" Subdirectory	44
12 2 2 3 "Modules" Subdirectory	44
12.2.3 "HIMA-I ib " Column	44
12.2.0 This d/B Column	
12.2.5 "SII " Column	++ ///
12.2.0 OIL COMMINI	44
12.2.0 FFD UUUIIIII	44
	45
12.2.8 "SFF" Column	45
12.2.9 "MTTF" Column	45
12.2.10 "PFx in % of the overall result" Column	45
12.3 "History" Tab	45

# 

	· [• · · ·			
13	Co	onfig	juring and Calculating Systems	. 46
1	3.1	Ger	heral Settings in SILence	. 46
1	3.2	Con	Ifiguring Systems in SILence	. 48
1	3.3	Con	figuring Systems using the Example of H51q-HRS	. 48
	13.3	3.1	Configuration of SILence Loops	. 48
	13.3	3.2	Configuring Loops in Silence	. 49
	13.3	3.3	Results Calculated for the H51q-HRS System Loop	. 53
1	3.4	Cor	figuring Systems using the Example of HIMatrix	. 55
	13.4	1.1	General	. 55
	13.4	1.2	Configuration of SILence Loops	. 56
	13.4	1.3	Configuring SILence Loops	. 56
	13.4	1.4	Results Calculated for the HIMatrix System Loop	. 61
	13.4	1.5	Overview of HIMA Libraries for the HIMatrix Controllers	363
14	Ac	dding	g New Modules in <i>SILence</i>	. 65
1	4.1	Add	ling New Modules	. 65
	14.1	1.1	Adding New Modules Using the Module Editor	. 65
	14.1	1.2	Adding New Modules Using the Import XML Option	. 71
15	Ex	amp	ole Calculations of Selected Systems	. 74
1	5.1	Sys	tem 1 (Digital Loop 1)	. 75
1	5.2	Sys	tem 2 (Digital Loop 2)	. 76
1	5.3	Sys	tem 3 (Digital Loop 3)	. 77
1	5.4	Sys	tem 4 (Digital Loop 4)	. 78
1	5.5	Sys	tem 5 (Analogue-Digital Loop 1)	. 79
1	5.6	Sys	tem 6 (Analogue-Digital Loop 2)	. 80
1	5.7	Sys	tem 7 (Analogue-Digital Loop 3)	. 81
1	5.8	Sys	tem 8 (Analogue-Digital Loop 4)	. 82
1	5.9	Sys	tem 9 (Analogue Loop 1)	. 83
1	5.10	Sys	tem 10 (Analogue Loop 2)	. 84
1	5.11	Sys	tem 11 (Analogue Loop 3)	. 85
1	5.12	Sys	tem 12 (Analogue Loop 4)	. 86

### Appendix A (Documentation Printout)

#### Appendix B (Installing and Registering SILence)

**References of Literature** 

# **1** Introduction

The number of safety-relevant systems developed, produced and offered on the market is constantly increasing. For this reason, it is essential to know the current international standards for "Functional safety" and to use them correctly in order to effectively and safely implement systems in safety-critical environments.

Functional safety is a part of the overall safety relating to the EUC and the EUC control system, which depends on the correct functioning of the E/E/PE safety related systems, other technology safety-related systems and external risk reduction facilities.

Fig. 1 shows the accepted distribution of failures over the system's life cycle. With this in mind, it is not important whether the system is a controller or a complete plant.



Fig. 1: Failure Rates in Different Phases of a System's or a Plant's Life Cycle

In considering failures, a basic distinction is made between safe and dangerous failures. Safe failures are further divided into two categories:

- Safe detectable failures and
- Safe undetectable failures.

Safe failures, whether detected or not, are failures that exert no influence on the safety function of the system. This is not the case with dangerous failures. When these failures occur, they lead to a dangerous situation in the system, which may even, under certain circumstances, seriously endanger human lives. These failures are also divided into two categories:

- Dangerous detectable failures and
- Dangerous undetectable failures.

In the event of dangerous detectable failures, the safety-related system, if properly designed, can bring the entire system or plant into a safe state. It is undetectable, dangerous failures that bring about a critical state. In fact, no safety-related system is able to detect such failures,

when they occur. They may be present in the system until it switches off or, in the worst-case scenario, until it fails dangerously, without knowledge of the user.

The failure rates  $\lambda$  of a system or a plant are categorised as follows:

Failure Rate	Type of Failure
$\lambda_{S}$	Safe failures
$\lambda_{SD}$	Safe detectable failures
λ _{SU}	Safe undetectable failures
$\lambda_{D}$	Dangerous failures
$\lambda_{DD}$	Dangerous detectable failures
$\lambda_{DU}$	Dangerous undetectable failures

Table 1:Failure Rates and Type of Failure

Obviously, a failure distribution such as the one presented in Fig. 2 can only be qualitative. The occurrence of dangerous failures in the proportions as shown in this figure is unacceptable for any safety-related system.



Fig. 2: Failure Rates Distribution for Safe and Dangerous Failures

To operate systems or plants in safety-related environments, extensive development and certification measures are necessary. These serve to avoid the dangerous situations described above, or, if this is not possible, to bring the system or the plant into a safe state. The standard IEC/EN 61508 with its seven sections covers the overall life cycle of a system or a plant.

- Part 1 of the standard defines the plant or system's life cycle, the requirements on safety-related systems, as well as the values for PFD (Probability of Failure on Demand) and PFH (Probability of Failure per Hour), referring respectively to a low and high demand mode of operation.
- Part 2 specifies the requirements on safety-related systems and their respective architecture.
- Part 3 describes the actual life cycle of software and hardware, as well as the methods for achieving and maintaining safety.
- Part 4 presents the terms and abbreviations used in the standards. It is an important resource for studying and applying these standards.
- Part 5 defines the analysis methods for using safety-related systems.
- Part 6 presents the application of parts 2 and 3.
- Part 7 explains the methods specified in all preceding sections.

Fig. 3 shows the norm's overall framework, which is generally accepted and applicable to all safety-related electrical / electronic / programmable electronic systems (E/E/PES), independently of their operating environment. IEC/EN 61508 integrates different safety standards and can therefore be considered both a stand-alone and a basic standard.

In order to conform to this standard, it must be demonstrated that the requirements have been satisfied to the required criteria specified. An exception is made only for systems with lower complexity, for which sufficient, reliable experience is available.



Fig. 3: General Structure of IEC/EN 61508

# 2 General Comment on IEC/EN 61508

Part 1 describes all aspects relating to the use of electrical or electronic programmable systems in safety-relevant applications. It explains the definition of "Functional Safety Management" and provides clarification of the planning of all phases of the safety life cycle.



Fig. 4: Safety Life Cycle

Analysis of the safety life cycle allows a systematic approach to the problems of functional safety, consisting of three vertical phases:

- Determination of the safety requirement
- Implementation of the system or the plant
- Start-up, total safety validation, operation, maintenance and decommissioning

The individual phases depicted in Fig. 4 are explained below.

In the concept phase, a sufficient level of understanding for the EUC and its environment must be developed. This analysis must take into account all probable sources of danger and applicable legislative provisions.

In the next phase the entire range of application including the limits and the possible external dangers is to be defined. So in the following phase, the endangerment and risk analysis are practicable. There must be included all predictable circumstances, dangers and potentially dangerous events in a reasonable measure. Further the probability and potential consequences of these dangerous events must be determined.

In the next phase, the overall scope of the operating environment must be defined, including all boundaries and potential hazards. This permits one to proceed with the hazard and risk analysis phase in which one must adequately consider all reasonably foreseeable circumstances, hazards and potentially hazardous events. This analysis also considers the probability with which the hazardous events might occur, as well as the risk associated with them.

In the next two phases the overall safety requirements and their respective allocation must be formulated. The first step is to specify the the safety functions and their respective safety integrity in order to achieve the necessary level of functional security. The second step is to determine the level of risk reduction using external systems. Finally, the third step is to define which safety-related systems are used to achieve the required functional security. At this stage, the SIL (Safety Integrity Level) of each individual safety function must be specified (see Table 2).

Safety Integrity Level (SIL)	Low Demand Mode (Average Probability of Failure to Perform Designed Safety Function on Demand)	<b>High Demand Mode</b> (Probability of a Dangerous Failure per Hour)
4	$\geq 10^{-5}$ to < 10 ⁻⁴	$\ge 10^{-9}$ to < 10 ⁻⁸
3	$\geq 10^{-4}$ to < 10^{-3}	$\geq 10^{-8}$ to < 10 ⁻⁷
2	$\geq 10^{-3}$ to < $10^{-2}$	$\ge 10^{-7}$ to < 10^{-6}
1	$\geq 10^{-2}$ to < 10^{-1}	$\geq 10^{-6}$ to < 10 ⁻⁵

Table 2: SIL for Low and High Dema	and Mode
------------------------------------	----------

In addition to the specification of the concept and design phases, IEC/EN 61508 defines steps beyond the commissioning phase. Specifically, the planning of the overall operation and maintenance phases are prescribed. If necessary, these phases must detail standard maintenance routines for maintaining functional safety. At this stage, a plan for validating the overall system is created, taking all potential operating states into account. Furthermore, the strategy for validation is defined, including all criteria for passing or failing verification. Measures must be planned to ensure safety during maintenance.

The total safety validation is also illustrated in Fig. 4. At this stage, a plan for validating the overall system is created, taking all potential operating states into account. Furthermore, the strategy for validation is defined, including all criteria for passing or failing verification.

The overall planning consists of two other stages, the planning of the overall installation and the overall start-up phases, which include the controlled installation and controlled start-up stages respectively. In these phases, responsibilities and installation procedures must be considered, and the criteria for declaring the system or plant's installation finished must be specified.



Fig. 5: Hardware Safety Life Cycle

Obviously, the realization phase is one of the most decisive moments in the overall planning. In this phase, the actual execution of the designed safety-related system must be planned and the actual developments must be realized. In this context, one should consider parts 2 and 3 of the standard, which depict the hardware and software development and requirements.

Once the concept and realization phases are completed, it is possible to realize the overall installation, start-up and validation of the planned system. These steps must be performed following the instructions specified in previous stages.

The standard prescribes how to proceed during a global modification or update, focussing on the importance of preserving the functional safety during and after modifications. In this context, all modification activities must be carefully planned and their potential effects analyzed.

Finally, the norm describes the decommissioning and scrapping phases. In this context, one must consider and analyze how decommissioning may influence the functional safety of systems connected with the safety-related system. The system decommissioning may only be authorized after this analysis.

# **3 Hardware Requirements**

Part 2 of the standard specifies the hardware requirements, including the hardware safety life cycle and the architecture requirements. It makes and explains the distinction between type A and type B subsystems (i.e. in the first case, if a failure occurs, the subsystem's behaviour is completely known; in the second case, the subsystem's behaviour is only partially known) and defines the corresponding SFF (Safe Failure Fraction). Moreover, it describes all actions and instructions that are necessary to develop hardware systems. The methods, measures and techniques that can be deduced from this information are detailed in the tables located in the norm's corresponding appendix. In this context, two documents are required. The first document is the specification of the safety function containing exact details on how to achieve and maintain the necessary safety. The specification must also consider all relevant modes of operation. The second document is the specification of the safety integrity containing details on the safety integrity level of each safety-related function.

	Тур	e A Subsys	tem	Тур	e B Subsys	tem
Safe Failure	Hardware Failure Tolerance N		Hardware Failure Tolerance N			
Fraction (SFF)	0 Failures	1 Failure	2 Failures	0 Failures	1 Failure	2 Failures
< 60 %	SIL 1	SIL 2	SIL 3	Not allowed	SIL 1	SIL 2
60 % to < 90 %	SIL 2	SIL 3	SIL 4	SIL 1	SIL 2	SIL 3
90 % to < 99 %	SIL 3	SIL 4	SIL 4	SIL 2	SIL 3	SIL 4
≥ <b>99 %</b>	SIL 3	SIL 4	SIL 4	SIL 3	SIL 4	SIL 4

 Table 3:
 Type A and Type B Subsystems

Note: A hardware failure tolerance of N means that N + 1 failures can lead to a loss of safety function

#### Type A:

Subsystems belong to this category if all subsystem components required achieving the safety function meet the following conditions:

- The failure behaviour of all implemented components has been sufficiently specified;
- The subsystem failure behaviour under failure conditions can be completely determined;
- Reliable failure specifications for the subsystem based on field experience exist and can be used to demonstrate that the presumed failure rates for detectable or non-detectable failures may be achieved

#### Туре В

Subsystems belong to this category if the subsystem components required achieving the safety function meet one of the following conditions:

- The failure behaviour of at least one of the implemented component has not been sufficiently specified;
- The subsystem failure behaviour under failure conditions cannot be completely determined;

- No reliable failure specifications for the subsystem based on field experience exist to support the presumed failure rates for detectable or non-detectable failures.
  - **Note** In other words, if at least one subsystem component responds in greater degree to the requirements for type B subsystems, the subsystem must be categorized type B rather than type A.

In planning safety validation, all requirements for test procedures, test environment and all criteria for passing or failing verification must be considered.

The design of a safety-related system must be realized in accordance with the defined safety specification, adapting the hardware architecture requirement to the demanded SIL. The integrity level is determined using the hardware failure tolerance and the Safe Failure Fraction (see Table 3).

Other important factors in the normative design and development processes include the estimation results calculated for the probabilities of failure of the component safety functions due to accidental hardware failures. In particular, the estimated subsystems' failure rate, the probability of detecting a failure by diagnostic facilities as well as the time period necessary to eliminate detected failures must be taken into account.

For each safety level, the norm recommends technologies and measures to control accidental hardware failures, systematic failures, environment-related failures, as well as failures caused by operating factors.

The norm dictates that the safety-related validation must follow the plan defined in previous stages. Additionally, it is necessary to validate each specified safety function using tests or analysis procedures and to document each individual step. This procedure also requires that each individual modification is carefully verified and documented.

IEC/EN 61508 prescribes the verification of the correctness of each single phase of the development cycle.

### **4** Software Requirements

Part 3 of IEC/EN 61508 defines the software requirements for safetyrelated systems. As in part 2 for the harware, it specifies the software safety life cycle and the quality management for all phases of the software development, including the validation and modification stages. Using the results presented in parts 1 and 2, it provides the procedure for developing safety-related softwares. Using this information in conjunction with the tables in the norm's appendix, one can deduce how to proceed in developing the safety-related software.

In the first stage, the software safety requirements must be carefully specified. The software developer must verify the specification by means of a review to ensure that all resulting software requirementshave been sufficiently specified and can thus be met by the software. Additionally, the specification must contain details on the software self monitoring and the hardware monitoring procedures. Upon completing the specification, the planning of the safety validation can begin. As with the hardware described in part 2, this stage requires specification of all requirements for test procedures, including the criteria for passing or failing verification. Finally, the actual software development can be realized. The developed software must be analyzable and verifiable to ensure that the verification of the safety integrity level can be safely performed. Splitting the development into separate modules offers the advantage of reduce complexity. With this procedure, it is essential to ensure that each module is sufficiently and precisely specified and verified during the design phase. The standard reccomends careful selection of tools and compilers.

During the integration of the software into the target hardware, the compatibility between software and hardware must be examined using tests to ensure that the desired safety integrity level can be achieved. Examples for such tests include cyclic memory tests, to check the memory, or walkingbit tests to check the implemented bus system. The resulting system must adhere to the specified requirements.One must proceed in accordance with the validation plan and the software's validity with test results.

During later software modifications it must be guaranteed that they do not affect the specified requirements of safety. For this purpose an effect analysis of the planned modification is prescribed.

As with the hardware verification stage, the correctness of the results must be examined during the software verification. This is why the software verification must be planned during the development phase. Each individual software component (i.e. source code, data, modules or architecture) must be verified.

**Note** For redundant interconnections of type A modules, the SIL X can be improved to SIL X+1. The prerequisite for such improvements is that the module software has already been certified for the higher SIL. Redundant interconnections only improve the hardware. A software failure would occur in both systems at the same time as the software, and consequently the probability of failure, is the same in both devices.

## 5 Examples of Methods for the SIL Determination

Part 5 of the standard shows methods for the determining the safety integrity levels. In particular, it offers methods for specifying systems, for each individual safety function. A basic distinction between qualitative and quantitative methods is made.



Fig. 6: General Concepts for Risk Reduction

The term "tolerable risk" is often mentioned when considering risks. A "tolerable risk" depends on different factors such as the severity of injuries, the number of people exposed to the danger, or the frequency and duration of the exposure to the danger. Generally, the ALARP (As Low As Reasonable Practicable) method is used, which defines the following general risk classes:

- Intolerable risk
- Undesirable, tolerable risk
- Tolerable risk
- Negligible risk



Fig. 7: Tolerable Risk and ALARP

When evaluating accidents, one should not only define the risk, but also estimate the probability that the risk will occur and the potential consequences. Using these parameters, a risk classification results as suggested in Table 4:

Risk Class	Interpretation	Valuation
Class I	Intolerable risk	Relevant
Class II	Undesirable risk, and tolerable only if risk reduction is impracticable or the costs are grossly disproportionate to the improvement gained	Relevant
Class III	Tolerable risk if the cost of risk reduction would exceed the improvement gained	Relevant
Class IV	Negligible risk	Relevant

Table 4: Risk Classification

Quantitative methods are applied for determining the safety integrity level. The standard explains how to achieve the required safety integrity using risk graph and knowledge of risk factors. This method is based on DIN V 19250 [7].

A quantitative method for determining the target safety integrity level is presented in IEC/EN 61508 in the figure below. Using this procedure, the necessary risk reduction is determined by systematically linking the tolerable risk to the risk of the EUC:

$$PFD_{avg} \le \frac{F_t}{F_{np}} = \Delta R \tag{1}$$

#### Where

<b>PFD</b> _{avg}	is the average	probability	of failure on	demand
	0			

- is the tolerable risk frequency
- is the demand rate on the system
- $F_t$  $F_{np}$  $\Delta R$ is the necessary risk reduction



Fig. 8: Procedure for Determining a System's Safety Integrity Level (SIL)

# 6 Application

In addition to parts 2 and 3, part 6 of the standard contains key information on the development of safety-related systems. It provides a detailed description of quantitative calculation for safety-related systems. Further, it offers block diagrams and formulas for calculating PFD and PFH values, as well as tables for  $\beta$ -factors for estimating the system's diagnostic coverage capability are indicated. Finally, the standard provides tables with calculated PFD and PFH values, as well as all relevant parameters for all modified system configurations described in the norm.

The next chapters present examples of equations for determining PFD and PFH values for different HIMA systems. These calculations are based on the valid equations quoted in IEC/EN 61508 and include common-cause failures, failures that occur in the MTTR, and system failures detected during the diagnosis.

These considerations are always taken into account in all calculation and certification processes relating to HIMA systems, which consequently fully conform to IEC/EN 61508.

### 6.1 Conditional Equations

In this section, the individual IEC/EN 61508 equations for the various system's architectures must be presented.

#### 6.1.1 Equation for Determining PFD of a 1001 System

$$PFD_{G,lool} = (\lambda_{DU} + \lambda_{DD}) \cdot t_{CE}$$
  
=  $\lambda_D \cdot t_{CE}$   
=  $\lambda_{DU} \cdot \left(\frac{T_1}{2} + MTTR\right) + \lambda_{DD} \cdot MTTR$  (2)

with

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_D} \cdot \left(\frac{T_1}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR$$
(3)

#### 6.1.2 Equation for Determining PFH of a 1001 System

$$PFH_{G,lool} = \lambda_{DU} \tag{4}$$

#### 6.1.3 Equation for Determining PFD of a 1002 System

$$PFD_{G,1oo2} = 2 \cdot \left( \left(1 - \beta_D\right) \cdot \lambda_{DD} + \left(1 - \beta\right) \cdot \lambda_{DU} \right)^2 \cdot t_{CE} \cdot t_{GE} + \beta_D \cdot \lambda_{DD} \cdot MTTR + \beta \cdot \lambda_{DU} \cdot \left(\frac{T_1}{2} + MTTR\right)$$
(5)

with

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_D} \cdot \left(\frac{T_1}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR$$
(6)

$$t_{GE} = \frac{\lambda_{DU}}{\lambda_D} \cdot \left(\frac{T_1}{3} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR$$
(7)

Equation (5) consists of three additive terms. The first term with the squared element describes normal cause failures. The second and third terms calculate express the probability of dangerous common-cause failures due to dangerous detectable failures (failure rate  $\lambda_{DD}$ ) and to dangerous undetectable failures (failure rate  $\lambda_{DU}$ ) respectively.

The factor  $\beta$  is introduced in equation (5) to weight the individual terms and expresses the ratio between the probability of common-cause failures and the probability of incidental failures. A distinction is made between the factor  $\beta_D$ , which weights the common-cause element in of dangerous detectable failures, and the factor  $\beta$ , which weights the common-cause element in dangerous undetectable failures (see chapter 6.2 "Factors in the equations").

#### 6.1.4 Equation for Determining PFH of a 1002 System

$$PFH_{G,loo2} = 2 \cdot ((1 - \beta_D) \cdot \lambda_{DD} + (1 - \beta) \cdot \lambda_{DU})^2 \cdot t_{CE}$$

$$+ \beta_D \cdot \lambda_{DD} + \beta \cdot \lambda_{DU}$$
(8)

with

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_D} \cdot \left(\frac{T_1}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR$$
(9)

#### 6.1.5 Equation for Determining PFD of a 2003 System

$$PFD_{G,2oo3} = 6 \cdot \left( \left( 1 - \beta_D \right) \cdot \lambda_{DD} + \left( 1 - \beta \right) \cdot \lambda_{DU} \right)^2 \cdot t_{CE} \cdot t_{GE} + \beta_D \cdot \lambda_{DD} \cdot MTTR + \beta \cdot \lambda_{DU} \cdot \left( \frac{T_1}{2} + MTTR \right)$$
(10)

with

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_D} \cdot \left(\frac{T_1}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR$$
(11)

$$t_{GE} = \frac{\lambda_{DU}}{\lambda_D} \cdot \left(\frac{T_1}{3} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR$$
(12)

#### 6.1.6 Equation for Determining PFH of a 2003 System

$$PFH_{G,2oo3} = 6 \cdot \left( \left( 1 - \beta_D \right) \cdot \lambda_{DD} + \left( 1 - \beta \right) \cdot \lambda_{DU} \right)^2 \cdot t_{CE} + \beta_D \cdot \lambda_{DD} + \beta \cdot \lambda_{DU}$$
(13)

with

$$t_{CE} = \frac{\lambda_{DU}}{\lambda_D} \cdot \left(\frac{T_1}{2} + MTTR\right) + \frac{\lambda_{DD}}{\lambda_D} \cdot MTTR$$
(14)

#### 6.1.7 Determination of the SFF and DC Factors

The SFF (Safe Failure Fraction) and DC (Diagnostic Coverage) factors represent two other important indicators for safety-related systems. SFF expresses the proportion of safety-related failures and DC the system's diagnostic coverage capability.

The SFF factor can be calculated using the equation:

$$SFF = \frac{\sum \lambda_s + \sum \lambda_{DD}}{\sum \lambda_s + \sum (\lambda_{DD} + \lambda_{DU})}$$
(15)

The DC factor can be determined with the equation:

$$DC = \frac{\sum \lambda_{DD}}{\sum \lambda_{D}}$$
(16)

### 6.2 Factors Used in the Conditional Equations

The meanings of the individual factors in the equations described in previous sections are listed as follow:

β	Weighting factor for dangerous undetectable common-cause failures
$\beta_D$	Weighting factor for dangerous detectable common-cause failures
$\lambda_D$	Failure rate due to dangerous failures
$\lambda_{DD}$	Failure rate due to dangerous detectable failure
$\lambda_{DU}$	Failure rate due to dangerous undetectable failure
MTTR	Mean Time To Repair
PFD _{G*)}	Average Probability of Failure on Demand
PFH _{G*)}	Average Probability of Failure per Hour
<i>T</i> ₁	Proof-test interval
t _{CE}	Channel equivalent mean down time
t _{GE}	Voted group equivalent mean down time
*) Genera	l l

**Note** The equations depicted in chapter 6 are based on IEC 61508, part 6, B1.

## 7 Determination of the Safety Integrity

The standard shows exemplarily the procedure for determining the probability of hardware failures. First, it specifies the principles and assumptions on which the calculations are based.

For analysing the safety integrity of safety-related systems many methods are possible. Reliability block diagrams and Markov models, however, belong to the most frequently applied. If correctly applied, both methods provide almost the same results. Nevertheless, the Markov models are still more exact (but more difficult) and provide accurate values, even for complex systems.

To determine the safety integrity of safety-related systems (i.e. consisting of several individual systems), the average probability of a failure  $\mathsf{PFD}_{\mathsf{System}}$  or  $\mathsf{PFH}_{\mathsf{System}}$ , is required for the overall system.

To determine the  $PFD_{System}$  or  $PFH_{System}$  values of a safety-related overall system (i.e. consisting of the sensor system, the logic system and the actuator system), one must add the determined average probabilities for the individual systems:

$$PFD_{System} = PFD_{Sensor} + PFD_{Logic} + PFD_{Actuator}$$
(17)

or

$$PFH_{System} = PFH_{Sensor} + PFH_{Logic} + PFH_{Actuartor}$$
(18)

To determine the average probability of failure for each subsystem, following elements must be known:

- The basic architecture
- The diagnostic cover of each channel
- The failure rate of each channel
- The factors  $\beta$  and  $\beta_D$  for common-cause failures

The target is to detect common-cause failures as early as possible and to bring the system into a safe state.

Chapter 15 presents various system architectures and describes how PFD and PFH values for individual systems are determined.

The parameters listed below must be identical for all systems:

Parameter	Description	Values
β	Dangerous undetectable common-cause failure	2 %
$\beta_D$	Dangerous detectable common-cause failure	1 %
<i>T</i> ₁	Proof-test interval	10 years
MTTR	Mean Time To Repair	8 hours

# 8 Working with SILence

*SILence* allows the calculation of the functional safety of safety-related systems and modules according to the IEC/EN 61508. The user can assemble these systems and modules using the libraries provided. Furthermore the user has the option to freely configure modules.

The calculation of the functional safety is *one* condition for the SIL classification of a plant. Further conditions must be determined together with the responsible certification authority or with an expert.

*SILence* enables the user to assemble a complete system or only individual modules and to calculate them within a short time frame. In his system configuration, the user can also modify and calculate within a short period:

- Different parameters,
- Different combinations of modules and
- Different proof-test intervals

This permits to immediately recognize the effects that a modification may have on the plant.

8.1	Short Description of Architectures
-----	------------------------------------

Architecture	Description
1001	The architecture consists of a single channel for the safety function; any hazardous failure causes the failure of the safety function, if this is demanded.
1002	The architecture consists of two redundant channels and both of them can process the safety function. In this case, the safety function on demand will only fail if a hazardous failure occurs in both channels (AND principle).
2002	The architecture consists of two parallel channels and both must de- mand the safety function before it can be processed (OR principle).
2003	The architecture consists of three redundant channels that are con- nected with a majority output device. The output state does not change if the result of only one channel does not conform to the other two.

**oo** Abbreviation for "out of"

#### Table 5: Short Description of Architectures

### 8.2 **Program Description**

The user can create, save and load projects. A project consists of at least one system (loop), which is made up of single systems such as sensor (input), a CPU (logic subsystem) and actuator (output).

The software calculates the SIL category and the MTTF, PFD, PFH and SFF values for systems and modules created by the user.

Note	In <i>SILence</i> , not more than 20 systems should be created in one project. If more than 20 systems are needed, the systems must be distributed over different projects.	
Note	It is only possible to process projects and systems which have been created in <i>SILence</i> .	

The following chapter explains the structure of a project. Knowledge of the structure is an important prerequisite for correctly operating *SILence*.

The structure describes the layout of a system in *SILence*, from the "Project" down to the lowest "Function Unit".

#### 8.2.1 Project Structure

#### 8.2.1.1 Projects

In *SILence*, a project contains the created systems.



Fig. 9: Project with 20 Systems

#### 8.2.1.2 Systems

In *SILence*, a system consists of single systems such as sensors (input), a CPU (logic subsystem) and actuators (output).



Single system

Fig. 10: A New System with Five Single Systems

#### 8.2.1.3 Single Systems

Each single system has an architecture, which consists of one or more modules.



Fig. 11: Single System with Two Modules

#### 8.2.1.4 Modules

The user can select predefined modules from the libraries or freely configure his modules.



Fig. 12: One Module

#### 8.2.1.5 Components

A module consists of components, such as CPU, watchdog, power supply monitoring unit, etc.



#### Fig. 13: Module with Three Components

#### 8.2.1.6 Units

A component has its own architecture (1001, 1002, 2002, 2003), made up of individual units. These units are described by the parameters  $\lambda_{DD}$ ,  $\lambda_{DU}$  and  $\lambda_{S}$ .



Fig. 14: CPU Component Consisting of Two Units

# 9 Quick-Start

- Start *SILence* to automatically create a new project.
- Select *File*  $\rightarrow$  *New System*. The dialog box "Select System" opens.
- Select the option "Predefined System" to automatically open the editor and the predefined system.
- Right-click on the system's empty module fields to open the context menu for the selection of modules.
- After configuration, the calculated results for PDF and PFH are displayed in the "Computation" tab.

Note	See chapter 13 for more details on the configuration and calculation of systems (loops) in <i>SILence</i> .		
Note	References to the installation and registration of <i>SILence</i> are located on the CD and in the appendix B of this manual.		

# 10 Main Window

The *SILence* main window consists of the two following sub-windows: the tabs "Libraries" and "Systems", and the "Working Area".

The software is operated using menu functions and buttons.

	Systems	Menu Bar	Worki	ng Area
Libraries	s /	Toolbar		
😹 SILence				
File Edit Settings	Project Window ?	/		
]D 🛥 🔳 🕼	1 0 0 6 N? /			
Libraries System	IS			
Libraries	Description			
i ģ-Elcon				
🗄 - Signalconve	erter			
🗄 - Transmitter				
B-Connector				
⊕-CPU				
i⊞-Input				
🗄 Input and O	utput			
😟-Output				
🗄 HIMatrix F3x-BI0	)			
t∄-CPU				
Input and O	utput			
庄-Output				
🗄 HIMatrix F60				
🗄 Connector				
⊕-CPU				
. ⊕-Input				
🗄 Input and O	utput			
🕀-Output				
Power supp	ly unit			
. ģ-MTL				
😟 Transmitter				
Pepperl+Fuchs				
🔁 Sensor				
😟 Transmitter				
🖶 Planar 4				
t∄-Input				
🕀 Input and O	utput			
庄- Output				
E-Rosemount				
- Sensor				
⊡- Smar				
E-Sensor				
4	•			

Fig. 15: SILence Main Window

### 10.1 "Libraries" Tab

The "Libraries" tab is located in the left side of the main window and contains the "Libraries" and "Description" columns. The libraries are grouped in directories and subdirectories.

#### 10.1.1 "Libraries" Column

The libraries delivered with *SILence*, as well as any new module libraries are displayed in the "Libraries" column.

#### 10.1.1.1 HIMA Module Libraries

The HIMA module libraries contain the modules for the following HIMA systems:

- Planar 4
- HIMA H41q/H51q
- HIMatrix F3x
- HIMatrix F60

**Note** For HIMA modules, you may only use libraries authorized by HIMA.

#### 10.1.1.2 Manufacturer Module Libraries

The manufacturer module libraries provided by HIMA contain a selection of different third party manufacturers modules (e.g. sensors, valves, transmitters). The manufacturer module libraries cannot be modified.

The calculation is based on the same mathematical principles as the HIMA modules.

Note	HIMA does not take responsibility for the data of third party manufacturer modules, stored in the manufacturer module libraries, nor for the SIL classification in particular, derived from this data.
	For the correct usage of third party manufacturer modules,
	the instructions in the safety manual and the respective hardware manuals must be obeyed.

#### 10.1.1.3 New Module Libraries

The user can create new module libraries.

Refer to chapter "Adding new modules in *SILence*" for more details.

**Note** The user is responsible for the correctness of the newly created module libraries.

#### 10.1.2 "Description" Column

The description of the modules is displayed in the "Description" column.

#### 10.2 "Systems" Tab

The "Systems" tab lists all systems used in the current project. The "Systems" tab contains the "Systems" and "File" columns.

#### 10.2.1 "System" Column

The system name is displayed in the column "System".

#### 10.2.2 "File" Column

The file root is displayed in the "File" column.

### 10.3 Working Area

The working area is located on the right side of the main window. The editor, in which the systems are configured, is opened in the working area.

### 10.4 Toolbar

The toolbar is located above the "Libraries" and "Systems" tabs. It provides quick access to frequently used commands. All commands can also be called via the menu.

### 10.5 Menu Bar

The menu bar is located just below the headline of the main window.

All menu options are explained in the following chapters.

## 11 Menus

### 11.1 Menu "File"

The menu "File" contains the options detailed in the following sections.



Fig. 16: Menu "File"

#### 11.1.1 New Project

A new project can be created in two ways:

- 1. When started, *SILence* automatically creates a new project.
- 2. Select *File*  $\rightarrow$  *New Project* menu option.

**Note** Only one project at any given time may be opened. To avoid data loss, always save the current project before opening a new project.

#### 11.1.2 Load Project...

Select *File*  $\rightarrow$  *Load Project.*. to open the standard dialog box containing all projects with the "*.spr" file extension. After selecting and loading a project, all of the project's systems will be listed in the *Systems* tab.

#### 11.1.3 Save Project

Select  $File \rightarrow Save Project$  to save the current project in the directory in which it was created. If the project is new, a standard dialog box opens. Select the path and enter the project name. After confirming the action, the project is automatically saved with the "*.spr" file extension.

When a project is saved, all of the project's systems are saved as well; however, systems can be saved individually for use in other projects by selecting *Save System*.

#### 11.1.4 Save Project As..

Select *File*  $\rightarrow$  *Save Project As.*. A standard dialog box opens. Select the path and enter the project name. After confirming the action, the project is automatically saved with the "*.spr" file extension.

#### 11.1.5 New System

Select *File*  $\rightarrow$  *New System* to create a new system. The dialog box "SILence-System Selection" opens. Specify whether you want to create a new system or a predefined system.

#### 11.1.5.1 Create New System

In a new system, the Editor contains only the single system "CPU". The user must configure the entire system.

#### 11.1.5.2 Select Predefined System

Select a predefined HIMA System to open the system editor and the selected system.

The user cannot modify a predefined HIMA System, but he can add single systems to the left (inputs) or/and to the right (outputs) of the HIMA System.

In addition, he can create his own predefined systems using the System Editor.

In a project, the user can configure as many systems as desired; the only restrictions are the PC resources.
#### 11.1.6 Load System..

Select *File*  $\rightarrow$  *Load System.*. to open the standard dialog box containing all systems with the "*.ssy" file extension. Select and load the system, to open the Editor and to edit the system.

#### 11.1.7 Save System

Select  $File \rightarrow Save System$  to save the current system in the directory in which it was created. If the system is new, a standard dialog box opens. Select the path and enter the system name. After confirming the action, the system is automatically saved with the "*.ssy" file extension.

#### 11.1.8 Save System As..

Select *File*  $\rightarrow$  *Save System As.*. A standard dialog box opens. Select the path and enter the project name. After confirming the action, the project is automatically saved with the "*.ssy" file extension

#### 11.1.9 Print System

Select *File*  $\rightarrow$  *Print System.* A standard dialog box opens. If required, select the printer and change printer settings. Click *OK* to confirm the action. Optionally, click the printer button on the toolbar to print the current system with the default printer.

#### 11.1.10 Print Project

Selecting  $File \rightarrow Print Project$ . A standard dialog box opens. If required, select the printer and change printer settings. Click *OK* to print the current project, including all systems.

**Note** In *SILence*, the project documentation printout is an important element. For this reason, it is a part of the TÜV approval process.

#### 11.1.11 Exit

Select *File*  $\rightarrow$  *Exit* to close *SILence*.

**Note** To avoid data loss, always save the current project before closing *SILence*.

## 11.2 Menu "Edit"



Fig. 17: Menu "Edit"

#### 11.2.1 UNDO

Select *EDIT*  $\rightarrow$  *UNDO* to cancel the last five actions in the project editor. This function can also be executed, if the project have been saved and reloaded.

The *UNDO* function can either be selected via the menu or by clicking the *UNDO* button on the toolbar.

#### 11.2.2 REDO

Select *EDIT*  $\rightarrow$  *REDO* to repeat the last five *UNDO* actions. This function can also be executed, if the project have been saved and reloaded.

The *REDO* function can either be selected via the menu or by clicking the *UNDO* button on the toolbar.

# 11.3 Menu "Settings"

The menu "Settings" contains the options detailed in the following sections:

<u>F</u> ile <u>E</u> dit	Settings Project Window ?	
🗋 🗃	Proof-Test-Intervall Configuration	Ctrl+I
Libraries	<u>S</u> ettings	Ctrl+S
System	Module Editor	Ctrl+M
	Libraries	Ctrl+L
	<u>S</u> ystem Editor	Ctrl+S
	Load predefined Systems	Ctrl+L

Fig. 18: Menu "Settings"

🥌 SILer	ice -Proof-Tes	t-Interva 🔀
Time 1:	3 years 💌	0 months 💌
Time 2:	10 years 💌	0 months 💌
Time 3:	0 years 💌	0 months 💌
Time 4:	0 years 💌	0 months 💌
Time 5:	0 years 💌	0 months 💌
	<u>0</u> K	<u>C</u> ancel

11.3.1 **Proof-Test-Interval-Configuration** 



PFD and PFH results depend on the proof-test interval. The proof-test interval is the time span, for which the user wants to observe the probability of failure of the overall system.

For each system, the user can set up to five proof-test intervals:

- Range: 1 month ... 20 years and 11 month
  - Resolution: 1 month

The proof-time intervals set in the dialog box are automatically assigned to the current systems.

**Note** The user can only set the "Proof-Test-Interval Configuration" option if a system is opened.

#### 11.3.2 Settings

Select Settings  $\rightarrow$  Settings. The dialog box "SILence-Settings" with the following options opens:

SILence -Settings		×
Decimal Places for PFD Calculation:	6	×
Decimal Places for PFH Calculation:	6	<u></u>
Decimal Places for MTTF Calculation:	6	<u></u>
Decimal Places for SFF Calculation:	6	Ť
🔽 Show all Tabs Side by Side		
<u> </u>	] <u>C</u> ancel	

Fig. 20: "Settings" Dialog Box

#### 11.3.2.1 Decimal Number Places

In this record, the user can choose the number of decimal places for PFD, PFH, MTTF and SFF calculations (1 to 6).

This action only affects the display and printout, but has no influence on the calculation accuracy.

#### 11.3.2.2 Show all Tabs Side by Side

If the check box is activated, the system is displayed in the editor's "System" tab.

If the check box is deactivated, the Editor is divided into two halves:

- The system is displayed in the upper half
- The tabs "Calculation" and "History" are displayed in the lower half.

#### 11.3.3 Module Editor

Nodule Editor History	
Add Delete	Module
	Description: designed at:01.10.2003 - 10:11:09
	Type: C Type A: C Type B:
	mouuristii jo wi Propetty: Inputi⇒CPU>Output
	Subhype:  0 MTTR/h:  8
	MTTF/r 0 beta: 0
	beta D: 0 Components
	Add Delete Current Component New Component Name: New Component
	Architecture: 2003
	beta_D: 0 Unit 1 Unit 2 Unit 3
	Description           Iambda S         0         0         0           Iambda DU         0         0         0
	lambda DD 0 0 0

Fig. 21: "Module Editor" Dialog Box

**Note** In the Module Editor, the user can create, configure and extend modules and module libraries. See chapter 14 "Adding new modules" for more details.

Select Settings  $\rightarrow$  Module Editor to open the Module Editor.

The "Module Editor" dialog box contains the "Module Editor" and "History" tab, as well as the following common buttons:

#### Open

Using this option a standard dialog box opens. Select the module library from the corresponding list (all module libraries have the "*.sdd" file extension) and confirm the action. Loaded module libraries are displayed in the editor's module list.

#### Save

Choose this option to save the module library in the directory, in which it was created. If the library is new, a standard dialog box appears. Select the path and enter the library name. After confirming the action, the library is automatically saved with the "*.sdd" file extension.

#### Save As

Using this option a standard dialog box opens. Select the path and enter the library name. After confirming the action, the library is automatically saved with the "*.sdd" file extension.

Note	Optionally, the user can add own module libraries clicking
	on the Save As button located in the Module Editor.

#### Import XML

Choose this option to open a standard dialog box containing all module libraries with extension "*.xml". Select and load the XML module library. The corresponding modules are displayed in the Editor's module list.

#### Export XML

Using this option a standard dialog box opens. Select the path and enter the module library name. After confirming the action, the library is saved automatically with the "*.xml" file extension.

Note	The XML files must keep the library structure of <b>SILence</b> .
	See also to chapter 14.1.2 "Adding new modules using XML import"

#### OK

Click *OK* to confirm recent actions (e.g. Add, Remove). The dialog box will close.

#### Cancel

Click *Cancel* to abort all actions (e.g. Add, Remove) without changing the project. The dialog box will close.

#### 11.3.3.1 "Module Editor" Tab

In the "Module Editor" tab, the user can edit modules and module libraries. The modules are displayed in the module list.

The Add and Delete buttons are located above the module list.

#### Add

Choose this option to add a new module to the module list, which with the default name "New Module". New modules require unique names.

#### Delete

Choose this option to remove a selected module from the module list.

#### **Configuring Module Parameters**

After selecting a module from the module list, the parameters of the selected module are displayed in the "Module" field. From this field, the user can edit the parameters.

Module Parameter	Description
Name	Name of the selected module (max. 15 characters)
Description	Description of the module
Туре	See chapter 3 "Hardware Requirements" (Type A/B)
Module SIL (1 to 4)	Certified SIL (according to the module manufacturer's specifications)
Property	Module type (e.g. Sensor, Input, CPU, Output, Actuator)
Subtype (0 to 9999)	Only modules of the same subtype may be interconnected redun- dantly.
MTTR/h (Default: 8 h)	Mean Time To Repair
MTTF/h	Mean Time To Failure
β ¹⁾	Weighting factor for dangerous undetectable common-cause failures of the module
$\beta_D^{(1)}$	Weighting factor for dangerous detectable common-cause failures of the module
	¹⁾ For modules of third party manufacturers, the ß factors are located in the

For modules of third-party manufacturers, the  $\beta$ -factors are located in the corresponding data sheets

#### **Configuring Module's Component Parameters**

A module consists of individual components, which are considered during the calculation of failures with their respective  $\lambda$  and  $\beta$  values. Module components are for example CPU, I/O bus, serial port or the power supply monitoring unit. All module components are displayed in the module editor's component list.

The Add and Delete buttons are located above the module list.

#### Add

Choose this option to add a new module to the module list with the default name "New Component". New components require unique names.

#### Delete

Choose this option to remove a selected component from the component list.

After selecting a component from the component list, the parameters of the selected module are displayed in the "Current Component" field. From this field, the user can edit the parameters.

Component Parameters	Description
Name	Name of the selected component
Architecture	Select the component architecture in the drop-down list (1001, 1002, 2002, 2003)
β ¹⁾	Weighting factor for dangerous undetectable common-cause failures of the module
β _D ¹⁾	Weighting factor for dangerous detectable common-cause failures of the module

¹⁾ For modules of third-party manufacturers, the  $\beta$ -factors are located in the corresponding data sheets. The  $\beta$ -factors of a component can differ from the  $\beta$ -factors of the module

#### **Configuring Unit Parameters**

Depending on its architecture (1001, 1002, 2002, 2003), a component can consist of up to four "units". The units are automatically displayed with the component.

The unit parameters of the selected component are displayed in the field "Current Component" at the bottom of the Module Editor tab and can be changed by the user.

Unit Parameters	Description
Description:	Name of the unit
$\lambda_{s}^{1)}$	Safe failure rate (per hour)
$\lambda_{DU}$ 1)	Undetected dangerous failure rate (per hour)
$\lambda_{\text{DD}}^{1)}$	Detected dangerous failure rate (per hour)
	¹⁾ For modules of third-party manufacturers the $\lambda$ -factors have to be taken

⁾ For modules of third-party manufacturers the λ-factors have to be taken from their data sheets.

Note	Modules of third-party manufacturers can be configured freely. HIMA modules and manufacturer modules from the <i>SI-Lence</i> Libraries are predefined and cannot be changed.

# **Note** The user is responsible for ensuring the correctness of the parameters he entered.

🥶 SILence -Module Editor		×
Module Editor History		
Change dated	ation about change	
01.10.2003 - 09:54:22 Versio	<b>π</b> 1	
Autho	r. User	
	1	
Ogen <u>S</u> ave	Save As Import XML Export XML QK Cancel	
		1

11.3.3.2 "History" Tab

Fig. 22: "History" Tab

The "History" tab contains the "Date/Time", "Version", "Author" and "Comment" records for the current library. From the history list on the left, the user can select the record he wants to view.

Only entries of the current library history may be changed. All other entries are write-protected.

6	🛚 SILence -Libraries 🛛 🔀
	Y:\Hpet\SIL_db5\ABB.sdd Y:\Hpet\SIL_db5\Elcon.sdd Y:\Hpet\SIL_db5\H41qH51q.sdd Y:\Hpet\SIL_db5\HIMatrix F3x-RI0.sdd Y:\Hpet\SIL_db5\HIMatrix F60.sdd Y:\Hpet\SIL_db5\MTL.sdd Y:\Hpet\SIL_db5\Pepperl+Fuchs.sdd Y:\Hpet\SIL_db5\Planar 4.sdd Y:\Hpet\SIL_db5\Rosemount.sdd Y:\Hpet\SIL_db5\Rosemount.sdd
	<u>A</u> dd Remove <u>D</u> K <u>C</u> ancel

11.3.4 Libraries

Fig. 23: "Libraries" Dialog Box

Select Settings  $\rightarrow$  Libraries to open the dialog box "Libraries", containing the Add and Remove buttons.

#### Add

Click *Add* to open a standard dialog box in which all library files with the extension "*.sdd" are listed. Select a library and add it to the project. The library modules are displayed in the main window library list.

#### Remove

Select the library in the "Libraries" dialog box and click *Remove* to remove a library from a project.

#### OK

Click *OK* to confirm recent actions (e.g. Add, Remove). The dialog box will be closed.

#### Cancel

Click *Cancel* to abort all actions (e.g. Add, Remove) without changing the project. The dialog box will be closed.

#### 11.3.5 System Editor

Use the "System Editor" to add, remove and configure systems.

Editor for predefined systems		
Predefined Systems History Add Remove New System	System Name: New System          Add       Remove       Up       Down         Changeable       Architecture       Single System         no       1oo1       Input         no       1oo1       CPU         no       1oo1       CPU         no       1oo1       CPU         Connector       Transmitter         Sensor       Actuator         Power supply unit       Signalconverter	
Open <u>S</u> ave	Save As	el

Fig. 24: "System Editor" Dialog Box

The System Editor contains the "Predefiened System" and "History" tab and the common buttons explained below:

#### Open

Using this option a standard dialog box opens. Select the system from the corresponding list (all systems have the "*.sds" file extension) and confirm the action. Loaded systems are displayed in the System Editor's system list.

#### Save

Choose this option to save the system in the directory, in which it was created. If the system is new, a standard dialog box appears. Select the path and enter the system name. After confirming the action, the system is automatically saved with the "*.sds" file extension.

#### Save As

Using this option a standard dialog box opens. Select the path and enter the system name. After confirming the action, the system is automatically saved with the "*.sds" file extension.

#### OK

Click OK to confirm recent actions. The System Editor will be closed.

#### Cancel

Click *Cancel* to abort all recent actions. The System Editor will be closed.

#### 11.3.5.1 "Predefined System" Tab

Above the system list there are the following buttons:

Add

Click *Add* to add a new system to the system list. Newly created system have the default name "New System".

*Remove* Click *Remove* to remove a selected system from the system list.

In the "System" dialog box on the right side of the "Predefined System" tab, the properties of the selected system are displayed and can be modified.

In this input field appears the name of the selected system. If requiered, the user can change it.

Add

Click Add to add a single system to the current system.

Remove

Click *Remove* to remove the selected syngle system from the corresponding list.

Up and Down

Use the *Up* and *Down* button to change the sequence of the single systems in the current system.

Select a single system from the corresponding list to activate the dropdown box in each column of the single system. The drop-down box contains the options described below:

Column	Description of the drop-down boxes
Changeable	Activate "yes" or "no" to allow or not allow the editing option in the editor
Architecture	Admitted architectures: 1001, 1002, 2002, 2003
Single System	Single system's type: "Sensor", "Input", "CPU", "Output", "Actuator", etc.

#### 11.3.5.2 "History" Tab

The "History" tab contains the "Date/Time", "Version", "Author" and "Comment" records for the current library. From the history list on the left, the user can select the record he wants to view.

Only the entries of the current history of a library may be changed. All other entries are write-protected.

#### 11.3.6 Load Predefined System

SILence -Configuration of predefined systems						
Y:\Hpct\SIL_db5\H41q.sds Y:\Hpct\SIL_db5\H51q.sds						
Add Remove	<u>O</u> K <u>C</u> anc	el				

Fig. 25: "Configuration a Predefined System" Dialog Box

Select Settings  $\rightarrow$  Load Predefined System to open the "Configuration of predefined systems" dialog box containing the following buttons:

#### Add

Click *Add* to open a standard dialog box containing the list of all system libraries with the "*.spr" file extension. Select a library to add it to the project.

#### Remove

Select a predefined system library and click *Remove* to remove the predefined system library from a project.

The user can create and edit predefined system libraries in the System Editor. He can use system libraries located in the library list to create predefined systems. Predefined system libraries have the "*.sds" file extension.

# 11.4 Menu "Project"

#### 11.4.1 Project History



Fig. 26: Menu "Project"

Select this option to display the "Date/Time", "Version", "Author" and "Comment" records for the current library. From the history list the user selects the record he wants to view.

Only the entries of the current project history may be changed. All other entries are write-protected.

## 11.5 Menu "Window"



Fig. 27: Menu "Window"

This menu contains the standard options for arranging windows (e.g Cascading, Horizontal Tile, Tile), as well as the list of all active windows.

## 11.6 Menu "?"

Standard menu providing information about SILence.

<u> </u> Eile <u>E</u> di	it <u>S</u> ettings P <u>r</u> oject <u>W</u> indow 🗍	2	
🛛 🗋 🖆 🛛	🖬 🕼 🗠 🗠 🎒 🕨	<u>M</u> anual	Ctrl+M
Libraries	Systems	<u>W</u> hat's this?	Shift+F1
Libraries	,	About SILence	F1

Fig. 28: Menu "?"

# **12 Editor**

# 12.1 "System" Tab



Fig. 29: "System" Tab

A system is divided into single systems and displayed in the editor's "System" tab. Single systems are generally configured in the "System" tab by dragging modules from the module list into module dummies (See Menu "Settings").

#### 12.1.1 Edit Single Systems

A *SILence* system consists of at least one single system, to which the user can add further single systems.

The following sections describe how to configure single systems.

#### 12.1.1.1 Defining an Architecture

The drop-down list is located at the top of each single system.

The user can select one of the following architectures in the drop-down list:

Architecture	Number of Modules
1001	1
1002	2
2002	2
2003	3

#### 12.1.1.2 Single System's Context Menu

Right-clicking on the single system opens the corresponding context menu, which contains the following options:

#### Remove single system

Select this option to remove the single system, from which the context menu has been opened.

#### Add single system right/left

Select this option to add one of the following single systems to the right or left of the current single system:

Single System	Description		
Input	Input module		
Output	Output Module		
Input and Output	Input/Output Module		
Input $\rightarrow$ CPU $\rightarrow$ Output	HIMatrix Compact System		
CPU	CPU Module		
Connector	Coupling Module		
Transmitter	Current, Voltage Transmitter		
Sensor	Pressure, Temperature, Gas Sensor		
Actuator	Valve, Pump, Motor		
Power supply unit	Power Supply Unit		
Booster	Booster		

#### Move single system one step to the right/left

Select this option to swap the current single system's position with the single system adjacent to it (i.e. to the right or left).

#### 12.1.1.3 Insert/Remove Modules

In a single system, empty module dummies are represented by rectangles. The number of rectangles depends on the architecture chosen for the single system. A right-click on a rectangles opens a context menu, which allows the user to fill the rectangles with modules.

#### Insert Module

This option displays the list of all modules allowed for this module dummy. Select one of the modules to fill the rectangles with a module icon.

#### Delete Module

A right-click on the module dummy opens a context menu containing the list of all modules and the option *Delete Module*.

Click the *Delete Module* option to remove the module from the module dummy.

# 12.2 "Calculation" Tab

File Edit Settings Project Window	7											
	à											
raries Systems	System	Calculatio	on History									
raries 💆	T1 [r.m]		System / Module	HIMA-LB.	Type A/B	SIL	PFD	PFH	SFF	MTTF	PFx in % of th	e overall result
GEA		3 years	E-Lo-Demand result			3	1.290903e-00	4	98.458762	% 10.241066y	66 C	100.00%
🔅-Sensor		10 years	Sensor			4	9.242929e-00	5	94.575768	1:76.617837y	1	71.60%
Elcon			-Piessure sensor		8	4	9.242929e-00	5	94.575768	\$153,235675		71.60%
i Sensor			-Pressure sensor		8	4	9.242929e-00	5	94.575768	\$ 153,235675	(	71.60%
+- Signalconverter			i⊜-Input	(CD)		4	4.626617e-00	7	99.916874	%52.297623y		0.36%
Emerson valve			-F 3238		B	4	4.626617e-00	7	99.916874	104 595246	/	0.36%
Actuator			-F 3238	(00)	в	4	4.626617e-00	7	99.916874	\$104 595246		0.36%
Energize to trip BGs			B-CPU	(CD)		4	3.077107e-00	5	99.769363	× 27.396384p		2,38%
#-Output			-F 8650E		8	4	3.077107e-00	5	99,769363	% 54.792767y		2 38%
H41aH51a			-F GESOE	-	0	4	3.077107+-00		99,769363	\$ 54 790767.	-	2 385
R-Communication			S-Connector	(m)	- CO	4	2169758e-00	7	99 952465	101 997197		017%
E Connector			-F 7553		8		2 169758e-00	7	99.953465	3 203 994373		0.17%
2.001			-F 7553		0		2169750-00		99 952405	1/201 994173		0.175
G. lot d			C. Dutred		0		E 007397+.00	7	99.767096	V CO 000110		0.45%
E. Josef and Outrad			L 6 2220		P	- 2	E 007207+00		00 707000	4-100 T20005		0.435
- Ingot and Golpot			-F 3330			- 2	E 007207- 00		00.707030	5 133 776233		0.434
1 Coupor			F 3330	1000	D.	1	3 30/ 35/ e 00	2	04 700400	+ 133.770230 + 000 \$00074		0.45%
H Geraete			E-Actuator		~	- 2	3.2323556-00	2	34,753456	4 205 125314		25.04%
- Lonmuncation			Valve		8	4	3.2323556-00	2	34.753456	412,252748	,	25.04%
			-Valve		8	4	3.2.52.555e-00		34.753456	×412.252/48	-	25,04%
HIMatos F3ie HIU			HrDemand result			3		3.918192	008 98 458762	\$10.241866y		100.00%
B-0P0			SIL based on HFT and S	FF [TUV Approved]		- 2			38.458762	% 10.241866y		
8-Input			E-Sensor			2			94.575768	% 76.617837y		
E-Input and Output			-Ptessure sensor		Ð	2			94.575768	\$ 153,235675	/	
E-Output			-Piessure sensor		в	2			94.575768	\$153,239675	k	
HIMatrix F60			B-Input			3			99.916874	% 52.2976239		
-Connector			-F 3238	0	8	3			99.916874	% 104 595246	,	
8-CPU			-F 3230		Ð	3			99.916874	% 104 595246	1	
E-Input			B-CPU	-		3			99.769363	\$ 27.396384y		
Input and Output			-F 8650E	<b></b>	B	3			33.763363	254.7527679		
±-Output			-F 0650E	-	8	3			99.769363	\$54.792767y		
- Power supply unit			E-Connector	0		3			99.952465	\$ 101.997187	,	
Pepped+Fuchs -	40		-F 7553	-	B	3			99 952465	\$ 203 994373	,	
RI-Output			-F 7553	(CTT)	B	3			99 952465	\$ 203 994373		
Sentor			-Output	1000	20	3			99.767096	3 69 888118#		
-Simalconverter			-F 3330	cm)	R	1			99.757096	1 1 39 776 235		
Planar d			-F 3330		8	2			99.767094	\$ 139 776235		
(ii) lested			P. Achudor			3			94 759456	2/206126274		
Colorest and Dutred			Mahan			2			94 769466	* 412 262740		
- new and output			- Yarve		0	-			04.703456	***********		
			- valve		8	. Z			34,753456	5 912 232740	,	

#### Fig. 30: "Calculation" Tab

The "Calculation" tab is divided into several columns, in which the calculations for the current system and its modules are displayed.

The following sections describe the properties of each column.

#### 12.2.1 "T1[y, m]" Column

The results calculated for PFD and PFH depend on the proof time interval. The proof time interval is the time span, for which the user wants to observe the probability of failure of the overall system.

#### 12.2.2 "System/Module" Column

The "System/Module" column lists all project systems and modules in a structure tree. Systems and modules are grouped in Lo-Demand and Hi-Demand results.

# 12.2.2.1 "Lo-Demand-Result", "Hi-Demand-Result" and "SIL based on HFT and SFF (TÜV Approved)" Directories

The "Lo-Demand-result" directory provides the results calculated for Low Demand Mode. Lo-Demand-results' calculations are based on the equations for determining PFD cited in IEC 61508.

The "HI-Demand-result" directory provides the results calculated for High Demand Mode. HI-Demand-results' calculations are based on the the equations for determining PFH presented in IEC 61508.

The "SIL based on HFT and SFF (TÜV Approved)" directory shows the TÜV approved SIL. Configuring the module using the Module Editor,

*SILence* estimates the SFF and HFT and considers the resulting values for determining the SIL.

Note	The overall system's SIL depends on the module or single system with the worst values.				
Note	The functional safety of every safety function's target SIL must be proven, in accordance with the applicable norms.				
	The SIL specified in the manufacturer's documentation is a deciding factor for the SIL specification of a component. The documentation details the examination and certifica- tion of this SIL.				

#### 12.2.2.2 "Single Systems" Subdirectory

The single systems are listed in the same order as configured in the editor's "System" tab.

#### 12.2.2.3 "Modules" Subdirectory

The number of modules in the module list depends on the architecture configured for the single system.

#### 12.2.3 "HIMA-Lib." Column

If a library module provided by HIMA is opened, the HIMA logo will appear in this column.

#### 12.2.4 "Type A/B" Column

The "Type A/B" column displays the type of module. See chapter 3 "Hardware Requirements" for more details.

#### 12.2.5 "SIL" Column

The "SIL" column displays the theoretical or certified "Safety Integrity Level" (SIL) for the system and modules.

#### 12.2.6 "PFD" Column

The "PFD" column displays the results for "Probability of Failure on Demand" calculated for the system and modules.

Note	If PFD $\ge$ 0.1, it is not possible to classify the SIL in a SIL
	category (1 to 4). In this case, verify the parameters en-
	tered in the system and consider the examples in IEC/EN
	61508, part 6.

#### 12.2.7 "PFH" Column

The "PFH" column displays the results for "Probability of Failure per Hour" calculated for the system and modules.

Note	If PFH $\ge 10^{-5}$ , it is not possible to classify the SIL in a SIL
	category (1 to 4). In this case, verify the parameters en-
	tered in the system and consider the examples in IEC/EN
	61508, part 6.

#### 12.2.8 "SFF" Column

The "SFF" column displays the percentage for the "Safe Failure Fraction" value.

#### 12.2.9 "MTTF" Column

The "MTTF" Column displays the "Mean Time To Failure" value for the system and modules and is expressed in years.

#### 12.2.10 "PFx in % of the overall result" Column

The "PFx in % of the overall result" column contains the ratio between the results (PFH and PFD) calculated for the modules and the system's overall result, expressed in percentage. It is displayed as a bar chart.

 $PFx \text{ in } \% \text{ einer Baugruppe } = \frac{PFx_{Baugruppe}}{PFx_{System}} *100\%$ 

At this stage, the user can note which modules have a stronger or weaker effect on the overall result and can improve the system's overall result by replacing the appropriate module.

Note If the system is not complete and does not contain all modules, it is not possible to calculate any kind of results. The entire line will be displayed in red. All columns whose results cannot be calculated are empty.

# 12.3 "History" Tab

The "History" tab contains the "Date/Time", "Version", "Author" and "Comment" records for the current system.

From the history list on the left, the user can select the records he wants to view.

Only entries of the current system's history may be changed. All other entries are write-protected.

# **13 Configuring and Calculating Systems**

The following chapters describe how to configure and calculate HIMA systems in *SILence*, using the examples of a H51q-HRS and a *HIMatrix* system

## 13.1 General Settings in SILence

Before configuring new systems in *SILence*, one must specify the following general settings:

#### Load required libraries

*SILence* standard libraries are loaded automatically when *SILence* starts. If additional libraries are required for a new system, they must be loaded before configuring the new system:

Ś	SILence -Libraries
	Y:\Hpct\SIL_db5\ABB.sdd Y:\Hpct\SIL_db5\Elcon.sdd Y:\Hpct\SIL_db5\HI1qH51q.sdd Y:\Hpct\SIL_db5\HI1Matrix F3x-RI0.sdd Y:\Hpct\SIL_db5\HI1Matrix F60.sdd Y:\Hpct\SIL_db5\HI1Matrix F60.sdd Y:\Hpct\SIL_db5\PepperI+Fuchs.sdd Y:\Hpct\SIL_db5\PepperI+Fuchs.sdd Y:\Hpct\SIL_db5\Planar 4.sdd Y:\Hpct\SIL_db5\Rosemount.sdd Y:\Hpct\SIL_db5\Rosemount.sdd
	<u>A</u> dd <u>Remove <u>D</u>K <u>C</u>ancel</u>

Fig. 31: Load Required Libraries

- Select Settings  $\rightarrow$  Libraries to open the "Libraries" dialog box.
- Click Add to open the standard dialog box for opening files.
- Select the required library file.
- Click OK to confirm the action.

#### System Representation and Decimal Number Place Settings

The system representation in the editor and the number of decimals places in the "Calculation" tab must be configured in the "Settings" dialog box.

SILence -Settings		×
Decimal Places for PFD Calculation:	6	ă.
Decimal Places for PFH Calculation:	6	Ť
Decimal Places for MTTF Calculation:	6	*
Decimal Places for SFF Calculation:	6	Ť
🔽 Show all Tabs Side by Side		
<u> </u>	<u>C</u> ancel	



- Select Settings  $\rightarrow$  Settings to open the "Settings" dialog box.
- Set the number of decimal places for the PFD, PFH, MTTF and SFF values (1 to 6) in the corresponding fields.
- If all registers should be displayed side by side, activate the check box *Show all Tabs Side by Side*, or
- Deactivate the check box if the *System* tab should be displayed in the upper half of the editor.

**Note** The general settings may no longer be changed once the configuration is completed.

# 13.2 Configuring Systems in SILence

In *SILence*, loops are configured in the same way as systems. A system must be configured for each loop in a controller.

# **Note** In *SILence*, not more than 20 systems should be created in one project. If there are needed more than 20 systems, the systems must be distribute to different projects.

In *SILence*, the HIMA system "H41q/H51q" is available as a predefined system in the HIMA library. The architecture of the single systems as well as their order, are strictly prescribed.

The single system modules can be selected from the respective context menu of a module reactangle.

The user can freely configure the single systems he has added on the right or left of the predefined HIMA system.

# 13.3 Configuring Systems using the Example of H51q-HRS

The H51q-HRS system (part of the H41q/H51q system family) has been chosen for the following example.

#### 13.3.1 Configuration of SILence Loops

- On the left of the H51q-HRS system: a single system "Sensor"
- Predefined H51q-HRS-system
- On the right of the H51q-HRS system: a single system "Actuator"

#### SILence Predefined H51q-HRS System



Fig. 33: Loop of a *SILence* H51q-HRS-System

Single System	Architecture	Module	Module Description
Sensor	1002	Pressure Sensor	Standard Pressure Sensor
Input	1002	F 3238	8-channel Input Module, safety related
CPU	1002	F 8650E	Central Module, safety related
Connector	1002	F 7553	Connector module
Output	1002	F 3330	8-channel Output Module, safety related
Actuator	1002	Valve	Standard Valve

Table 6: Single Systems and Modules Used for SILence Loop

#### 13.3.2 Configuring Loops in SILence

Open the project in which the new system should be saved, or create a new project.

To create a "New System" in SILence:

• Select File  $\rightarrow$  New System. The "Select System" dialog box opens.

S	SILence -Select System		
	<ul> <li>Create new System</li> <li>Select predefined System:</li> </ul>		
	H41q HRS		
	H41q HS		
	H41q MS		
	H51g HRS		
	H51q HS		
	H51q MS		
		Create	<u>C</u> ancel

Fig. 34: "Select System" Dialog Box

To create a predefined System (in this case "H51q-HRS"):

- Activate the option Select predefined System in the "Select System" dialog box.
- Select the predefined system "H51q-HRS" in the list of the predefined systems.
- Click Create. The editor opens and the new system "H51q-HRS" is displayed in the "System" tab.



Fig. 35: A Newly Created H51q-HRS System Displayed in the Editor

To add the single system "Sensor" to the predefined system "H51q-HRS":

- Right-click on the single system "Input".
- Select Add single system to the left→ Sensor using the context menu.
- Select an architecture (1002) for the new single system "Sensor" in the drop-down list.



Fig. 36: Single System are Added Using the Context Menu



Fig. 37: Architecture Selection for a Single System

To add the single system "Actuator" to the predefined system "H51q-HRS":

- Right-click on the single system "Output".
- Select Add single system before → Actuator using the context menus.
- Select an architecture (1002) for the new single system "Actuator" in the drop-down list.

To set the "Proof-Test-Interval-Configuration":

- Select Settings → Proof-Test-Interval-Configuration. The "Proof-Test-Interval-Configuration" dialog box opens.
- Select the proof-test intervals using the arrows near the field (by default: 3 and 10 years).
- Click *OK* to confirm the actions.

🧾 SILer	nce -Proof-Tes	t-Interva 🔀
Time 1:	3 years 💌	0 months 💌
Time 2:	10 years 💌	0 months 💌
Time 3:	0 years 💌	0 months 💌
Time 4:	0 years 💌	0 months 💌
Time 5:	0 years 💌	0 months 💌
	<u>0</u> K	<u>C</u> ancel

Fig. 38: "Proof-Test-Interval-Configuration" Settings

To add modules to the predefined system "H51q-HRS":

- Right-click on a single system rectangle.
- Select one of the possible modules using the context menu.
- Add the following modules to the system:

Sensor	Input	CPU	Connector	Output	Actuator
Pressure sensor	F 3238	F 8650E	F 7553	F 3330	Valve
Pressure sensor	F 3238	F 8650E	F 7553	F 3330	Valve



Fig. 39: Selection of Possible Modules in the Context Menu



Fig. 40: Configured H51q-HRS System

To save the project and all created systems:

- Select File  $\rightarrow$  Project save as...
- A standard dialog box opens.
- Select the directory in which the project should be saved.
- Enter the project name in the input field "File Name".
- Click Save to save the project.

#### 13.3.3 Results Calculated for the H51q-HRS System Loop

After configuring the system, the results for the configured system are displayed in the "Calculation" tab.

Lo-Demand-Result [Proof -Test Interval = 10 Years]						
System / System Parts	Architecture	PFH	SIL	SFF in %	MTTF in years	PFD in % for the overall result
Pressure Sensor	1002	9,243 E-5	4	94,576	76,614y	71,60
F 3238	1002	4,627 E-7	4	99,917	52,298y	0,36
F 8650E	1002	3,077 E-6	4	99,769	27,396y	2,38
F 7553	1002	2,170 E-7	4	99,952	101,997y	0,17
F 3330	1002	5,807 E-7	4	99,767	69,888y	0,45
Valve	1002	3,232 E-5	4	94,759	206,056y	25,04
System without Sensors and Actua- tors		4,337 E-6	4	99,832	12,542y	100,00
System with Sensor and Actuator		1,291 E-4	3	98,459	10,242y	100,00
TÜV claimed SIL for Systems without Sensor and Actuator			3			

Table 8: "Lo-Demand Results" Calculated for the H51q-HRS System Loop

After the PFD calculation, the system is categorized in the SIL 3 class.

Hi-Demand-Result [Proof-Test Interval = 10 Years]						
System / System Parts	Architecture	PFH	SIL	SFF in %	MTTF in years	PFH in % for the overall result
Pressure Sensor	1002	1,982 E-8	3	94,576	76,614y	50,57
F 3238	1002	1,548 E-9	4	99,917	52,298y	3,95
F 8650E	1002	7,235 E-9	4	99,769	27,396y	18,47
F 7553	1002	2,275 E-9	4	99,952	101,997y	5,81
F 3330	1002	1,226 E-9	4	99,767	69,888y	3,13
Valve	1002	7,082 E-9	4	94,759	206,056y	18,07
System without Sensor and Actuator		1,228 E-8	3	99,832	12,542y	100,00
System with Sensor and Actuator		3,918 E-8	3	98,459	10,242y	100,00
TÜV claimed SIL for Systems without Sensor and Actuator			3			

Table 9: "Hi-Demand Results" Calculated for the H51q-HRS System Loop

After the PFH calculation, the system is categorized in the SIL 3 class.

SIL based on HFT and SFF (TÜV Approved)					
System / System Parts	Architecture	Type A/B	SIL	SFF in %	MTTF in years
Pressure Sensor	1002	В	2	94,576	76,614y
F 3238	1002	В	3	99,917	52,297y
F 8650E	1002	В	3	99,769	27,396y
F 7553	1002	В	3	99,952	101,997y
F 3330	1002	В	3	99,767	69,888y
Valve	1002	В	2	94,759	206,056y
System without Sensors and Actuators			3	99,832	12,541y
System with Sensor and Actuator			2	98,458	10,242y
TÜV claimed SIL for Systems without Sensor and Actuator			2		

#### Table 10: "SIL Based on HFT and SFF (TÜV Approved)" Calculated for the H51q-HRS System Loop

After the module certification, the system is categorized in the SIL 2 class.

Note	The functional safety of every safety function's target SIL must be proven in accordance with the applicable norms.
	The SIL specified in the manufacturer's documenta- tion is a deciding factor for the SIL specification of a component. The documentation details the examina- tion and certification of this SIL.

# 13.4 Configuring Systems using the Example of HIMatrix

#### 13.4.1 General

The *HIMatrix* System contains a controller (resource), which can be extended using the decentral I/O module. The controller and the remote I/Os are linked via SafeEthernet.

If the I/O signals of the remote I/Os are used in a *HIMatrix* system loop,, the controller only requires the CPU components.

The I/O signals are processed in the controller's CPU component.

Only the controller's CPU component (i.e. not the complete controller) is considered in the SIL calculation.

This topic is explained in greater detail in the example of a *HIMatrix* system presented below. This ia a major difference between H41q/H51q and *HIMATRIX* systems.



Fig. 41: Typical HIMatrix System Loop

- The input signal sent from the pressure sensor is received by the decentral I/O module "F1 DI 16 01" and then sent to the controller "F30".
- The input signal is processed in the controller CPU component, which creates an output signal.
- The controller "F30" sends the output signal to the decentral I/O module "F1 Do 16 01" via SafeEthernet, where it is then output in the valve.

#### 13.4.2 Configuration of SILence Loops

In *SILence*, *HIMatrix* system loops are freely defined systems. All single systems must be added and configured by the user.





Single system	Architecture	Module	Module Description
Sensor	1001	Pressure sensor	Standard Pressure Sensor
Input	1001	F1 DI 16 01	16 digital Inputs
CPU	1001	F30 – SiCPU	CPU Component
Output	1001	F2 DO 16 01	16 Digital Outputs
Actuator	1001	Valve	Standard Valve

Table 11: Single Systems and Modules Used in the HIMatrix System Loop

#### 13.4.3 Configuring SILence Loops

Open the project in which the new system (loop) should be saved, or create a new project:

To create a "New System" in Silence:

• Select *File*  $\rightarrow$  *New System*. The "Select System" dialog box opens.

To create a free defined System:

- Activate the option *Create new System* window in the "Select System" dialog box.
- Click *Create*. The editor opens and the single system "CPU" is displayed in the "System" tab.

6	SILence -Select System			×
	Create new System			
	H41q HRS H41q HS H41q MS H51q HRS H51q HRS H51q HS H51q MS			
		C <u>r</u> eate	<u>C</u> ancel	

Fig. 43: "Select System" Dialog Box

To configure the single system "CPU":

• Select an architecture (1001) for the single system "CPU" in the drop-down list.



Fig. 44: A Newly Created "Free Defined System" Displayed in the Editor

To add the single system "Sensor" to the single system "CPU":

- Right-click on the single system "CPU".
- Select Add single system to the left → Sensor using the context menu.
- Select an architecture for the new single system "Sensor" (1001) in the drop-down list.



Fig. 45: Single System are Added Using the Context Menu

To add the single system "Input" to the new system:

- Right-click on the single system "CPU".
- Select Add single system to the left  $\rightarrow$  Input using the context menu.
- Select an architecture (1001) for the new single system "Input" in the drop-down list.

To the single system "CPU", add the single system "Output":

- Right-click on the single system "CPU".
- Select Add single system to the right → Output using the context menu.
- Select an architecture (1001) for the new single system "Output" in the drop-down list.

To add the single system "Actuator" to the single system "Output":

- Right-click on the single system "Output".
- Select Add single system to the right  $\rightarrow$  Actuator using the context menu.
- Select an architecture (1001) for the new single system "Actuator" in the drop-down list.

To set the "Proof-Test-Interval-Configuration":

- Select Settings → Proof-Time-Interval-Configuration to open the "Proof-Test-Interval-Configuration" dialog box.
- Set the proof-time intervals (by default: 3 and 10 years) using the arrows near the field.
- Click *OK* to confirm these actions.

🥌 SILer	ice -Proof-Te	st-Interva 🔀
Time 1:	3 years 💌	0 months 💌
Time 2:	10 years 💌	0 months 💌
Time 3:	0 years 💌	0 months 💌
Time 4:	0 years 💌	0 months 💌
Time 5:	0 years 💌	0 months 💌
	<u>0</u> K	<u>C</u> ancel



To add modules to the free defined *HIMatrix* system:

- Right-click on a single system rectangle.
- Select one of the possible modules using the context menu.
- Add the following modules to the system:

Sensor	Input	CPU	Output	Actuator
Pressure sensor	F1 DI 16 01	F30 – SiCPU	F2 DO 16 01	Valve

 Table 12:
 Modules Used for the Free Defined HIMatrix System



Fig. 47: Selection of Possible Modules in the Context Menu

SILence 1.0 - [new: Create new S	System]				
S Ele Edit Settings Project Window ?	2				_ 8 ×
Libraries Systems	System Calculation History	1			
Libraries					
	1001 -	1001 -	1001 -	1001 -	1001 -
i∔-Sensor	1		,	1	1
Elcon					
B-Sensor					
Signalconverter					
Actuator					
⊟-Energize-to-trip BG :					
E-Output					
⊟-H41gH51g					
B-Communication					
B-Connector					
- locat				-	
R-Input and Dutruit	$\frown$				
E-Output					
E⊢H-Geraete	Pressure sensor	F1 DI 16 01	F30-SiCPU	F2 D0 16 01	Valve
Communication					
.e-Output					
HIMatrix F3x-RI0					
®-Input					
Input and Output					
i⊞-Output					
E HIM MAX FEU					
E-Connector					
D land					
Eulopet and Datest					
R-Dutrut V	Sensor	Input	CPU	Output	Actuator
4 · · · · ·					
					6

Fig. 48: Configured H51q-HRS System

To save the project and all created systems:

- Select File  $\rightarrow$  Project save as...
- A standard dialog box opens.
- Select the directory in which the project should be saved.
- Enter the project name in the field "File Name".
- Click Save to save the project

#### 13.4.4 Results Calculated for the HIMatrix System Loop

After configuring the system, the results for the configured system are displayed in the "Calculation" tab.

Lo-Demand Result [Proof-Test Interval = 10 Years]						
System / System part	Architecture	PFD	SIL	SFF in %	MTTF in years	PFD in % for the overall result
Pressure Sensor	1001	1,773 E-3	2	94,576	153,229y	70,21
F1 DI 16 01	1001	3,684 E-5	4	99,795	45,019y	1,46
F30 – SiCPU	1001	4,246 E-5	4	99,851	50,362y	1,68
F2 DO 16 01	1001	3,626 E-5	4	99,773	15,220y	1,44
Valve	1001	6,367 E-4	3	94,759	412,113y	25,21
System without Sensor and Actuator		1,156 E-4	3	99,810	9,279y	100,00
System with Sensor and Actuator		2,525 E-3	2	98,875	8,567y	100,00
TÜV claimed SIL for Systems without Sensor and Actuator			2			

# Table 13:"Lo-Demand Results" Calculated for the HIMatrix SystemLoop

After the PFD calculation, the system is categorized in the SIL 3 class.

Hi-Demand Result [Proof-Test Interval = 10 Years]						
System / System parts	Architecture	PFH	SIL	SFF in %	MTTF in years	PFD in % for the overall result
Pressure sensor	1001	4,041 E-8	3	94,576	153,229y	62,71
F1 DI 16 01	1001	2,773 E-9	4	99,795	45,019y	4,30
F30 – SiCPU	1001	2,842 E-9	4	99,851	50,362y	4,41
F2 DO 16 01	1001	3,903 E-9	4	99,773	15,220y	6,06
Valve	1001	1,451 E-8	3	94,759	412,113y	22,52
System without Sensor and Actuator		9,517 E-9	4	99,810	9,279y	100,00
System with Sensor and Actuator		6,443 E-8	3	98,875	8,567y	100,00
TÜV claimed SIL for Systems without Sensor and Actuator			3			

 Table 14:
 "Hi-Demand Results" Calculated for the HIMatrix System Loop

After the PFH calculation, the system is categorized in the SIL 3 class.

SIL based on HFT and SFF (TÜV Approved)						
System / System parts	Architecture	Type A/B	SIL	SFF in %	MTTF in years	
Pressure sensor	1001	В	2	94,875	8,567y	
F1 DI 16 01	1001	В	3	99,795	45,019y	
F30 – SiCPU	1001	В	3	99,851	50,362y	
F2 DO 16 01	1001	В	3	99,773	15,220y	
Valve	1001	В	2	94,759	412,113y	
System without Sensors and Actuators			3	99,810	9,279y	
System with Sensor and Actuator			2	98,875	8,567y	
TÜV claimed SIL for Systems without Sensors and Actuators			2			

# Tabelle 15: "SIL based on HFT and SFF (TÜV Approved)" Calculated for the *HIMatrix* System Loop

After the module certification, the system is categorized in the SIL 2 class.

Note	The calculation of the functional safety is one condi-
Note	tion for the SIL classification of a plant. Further condi-
	tions must be determined together with the responsi-
	ble certification authority or with an expert.

#### 13.4.5 Overview of HIMA Libraries for the *HIMatrix* Controllers

The following *HIMatrix* controllers are available in the HIMA library in *SILence*.

Controller	Description
F30	20 Digital Inputs 8 Digital Outputs with Field Bus
F31	20 Digital Inputs 8 Digital Outputs without Field Bus
F35	24 Digital Inputs, 8 Digital Outputs 8 Analogue Outputs, 2 Counters
F60	Configurable with Various Modules

 Table 16:
 *HIMatrix* Controllers Available in the HIMA Library

Important	If the controller's I/O channels (incl. CPU) are to be
	used in the loop, please use the entries above taken
	from the HIMA library.

The following decentral I/O modules are available in the HIMA library in *SILence*:

Decentral I/O Modules	Description
F1 DI 16 01	16 Digital Inputs
F2 DO 4 01	4 Digital Outputs
F2 DO 8 01	8 Digital Relay Outputs
F2 DO 16 01	16 Digital Outputs
F3 AIO 8/4 01	8 Analogue Inputs, 4 Analogue Outputs
F3 DIO 20/8 01	20 Digital Inputs, 8 Digital Outputs

 Table 17:
 Decentral I/O Modules Available in the HIMA Library

Important	If decentral I/O modules (incl. CPU) are to be used in
	the loop, please use the entries above taken from the
	HIMA library.

The safety-related, decentral I/O modules can only forward I/O signals.. I/O signals are processed in the user program running on the *HIMatrix* controller.
The following *HIMatrix* CPU components are available in *SILence* HIMA library:

Controller	CPU Component Name			
F30	F30 – SiCPU			
F31	F31 – SiCPU			
F35	F35 – SiCPU			
F60	F60_Central Module			

 Table 18:
 HIMatrix CPU Component Available in the HIMA Library

Important	If only controller's CPU components (no O/I channels) are to be used in the loop, please use the entries above taken from the HIMA library.

Note	If only the controller's CPU components are to be used in the system, but the library entries detailed in Table 16 are used for the calculation, a worst SIL category may result as the I/O channels are considered in the calculation even though they are not used.
	calculation even though they are not used.

## 14 Adding New Modules in SILence

For HIMA modules, only *SILence* module libraries authorised by HIMA may be used. The user may <u>not</u> change, add or delete the HIMA modules in HIMA libraries.

If a HIMA module is not available in the HIMA libraries check the HIMA homepage <u>www.hima.com</u> or contact HIMA support group.

HIMA provides the manufacturer module libraries for *SILence* selected manufacturer modules. The user may <u>not</u> change these libraries.

### 14.1 Adding New Modules

#### 14.1.1 Adding New Modules Using the Module Editor

New modules are modules not available in the *SILence* module libraries (e.g. HIMA and manufacturer module libraries).

The user can add new modules and enter the parameters for the new modules using the module editor. Module's manufacturer must provide the  $\lambda$  and  $\beta$  values.

To configure a new manufacturer module in *SILence*, follow these steps:

#### Configuring a Module Using the Example of a Valve

The valve manufacturer provides the following  $\lambda$ ,  $\beta$  values.

β Values for the New Module "Valve"				
β Module 0.02				
$\beta_D$ Module	0.01			
β Component1	0.05			
$\beta_D$ Component 1	0.05			

 Table 19:
 All β Values for the New Module

λ Values for the New Module "Valve"								
Unit 1 Unit 2								
Description	FB 1	FB 2						
$\lambda_{\rm S}$	5.50313e-006	5.50313e-006						
λ _{DU}	1.002301e-007	1.002301e-007						
$\lambda_{DD}$	1.5313e-006	1.5313e-006						

Table 20: All  $\lambda$  Values for the New Module

If the new module's SIL is unknown, the SIL can be determined using the new module's  $\lambda$  values. To determine the SIL, the values SFF, HFT and type A/B must be known.

**Note SILence** examines the module's SIL as specified by the user and classifies it in a lower class, if the comparison with the SFF and HFT provides a worst SIL value. **SI-Lence** does not improve the SIL, even if the SFF and HFT values would allow it.

All the calculations in the following example are based on the  $\lambda$  values presented in Table 19.

#### **Determining SFF**

In the following equation, all new module's  $\lambda$  values must be used (See chapter 6, equation 15).

$$SFF = \frac{\Sigma\lambda_s + \Sigma\lambda_{DD}}{\Sigma\lambda_s + \Sigma(\lambda_{DD} + \lambda_{DU})}$$

The following SFF value results from this equation: SFF = 0,985952 (98,5952 %)

#### **Determining the Hardware Failure Tolerance N**

Each individual module is always a 1001 system. Thus results an HFT value of N = 1 - 1 = 0.

#### Determining the Type A or Type B Classification

Because only insufficient experience has been acquired with the module, and no manufacturer specifications are available, the module is classified as Type B (in accordance with the definition provided in chapter 3).

#### **Determining the SIL**

Using the estimated values and Table 20 presented below, it is possible to determine the SIL for the new module.

	Sub	osystem Typ	be A	Sub	system Typ	e B	
Safe Failure	Hardware Failure Tolerance N			Hardware Failure Tolerance N			
Fraction (SFF)	0 Failures	1 Failure	2 Failures	0 Failures 1 Failu		2 Failures	
< 60 %	SIL 1 SIL 2 SIL 3		SIL 3	Not allowed	SIL 1	SIL 2	
60 % to < 90 %	SIL 2	SIL 3	SIL 4	SIL 1	SIL 2	SIL 3	
90 % to < 99 %	SIL 3	SIL 4	SIL 4	SIL 2	SIL 3	SIL 4	
≥ <b>99 %</b>	SIL 3	SIL 4	SIL 4	SIL 3	SIL 4	SIL 4	

 Table 21:
 Chapter 3 "Hardware Requirements", Table 3

Using Table 20, a SIL 2 results for the new module.

#### **Determining the MTTF/h**

If the module's manufacturer has not provided the MTTF, it can be calculated from the sum of all  $\lambda$  values.

$$MTTF = \frac{1}{\Sigma \left(\lambda_{S} + \lambda_{DD} + \lambda_{DU}\right)} \mathbf{h}$$

The following MTTF value results from this equation: 70080.424 hours or 8 years.

Note If a module's  $\lambda$  value is not considered during the MTTF calculation, *SILence* calculates a MTTF that appears to be better than the actual MTTF value of the module.

To configure a new manufacturer module in *SILence*, use the following:

- Select Settings  $\rightarrow$  Module Editor to open the Module Editor.
- Click Add to create a new module.

SILence -Module Editor		
Module Editor   History   Add Delete	odule	
	ype: C Type A: C Type B:	
	lodul SIL: 1	]
	1TFR/h; [8 1TFF/h; ]0	
	eta: 0 eta D: 0 Components	
	Add         Delete         Current Component           New Component         Name:         New Component           Architecture:         1oo1         Image: Component	
	beta_D: 0 Unit 1 Description Iambda S 0 Iambda DU 0 Ia	
Open Save	ieve Ás   Import XML   Export XML   QK   Canc	el

Fig. 49: Adding a New Module Using the Editor Module

To configure a new module:

• Configure the new module as described in this chapter. In the Module Editor, enter the parameters listed in the following tables.

Module Parameter	Input	Description
Name	Valve	Name of the new module (max. 15 characters)
Description	Example for SIL 3	Description of the new module
Туре	В	Refer to previous section "Determining the classification as Type A or Type B"
Module SIL	2	Refer to previous section "Determining the SIL" (1 to 4)
Property	Actuator	A valve is classified as "Actuator"
Subtype (0 bis 9999)	1	Only modules of the same subtype may be interconnected redundantly
MTTR/h	8	SILence default value: 8h
MTTF/h	70080	Refer to previous section "Determining the MTTF/h"
β	0.02	Manufacturer's default: see Table 19
β _D	0.01	Manufacturer's default: see Table 19

Table 22:Module Parameter of the Valve

Component Parameter	Input	Description
Name	Component 1	Name of the current component
Architecture	1002	The determination of the current compo- nent's architecture depends on the num- ber of units
β	0.05	Manufacturer's default: see Table 19
β _D	0.05	Manufacturer's default: see Table 19

 Table 23:
 Component Parameter of the Valve

Unit Parameter 1+2	Input	Input	Description			
Description	FB 1	FB 2	Name of the unit			
$\lambda_{\rm S}$	5.50313e-006	5.50313e-006	Manufacturar'a dataulti			
λ _{DU}	1.002301e-007	1.002301e-007	Manufacturer's default:			
λ _{DD}	1.5313e-006	1.5313e-006				

#### Table 24:Unit Parameter of the Valve

Note	The separator for decimal numbers in <i>SILence</i> is the point.
Note	The user is responsible for ensuring the correctness of the parameters he entered. See also chapter 11.3.3 "Module Editor".

After	entering	the	parameters,	the	Module	Editor	should	be	configured
as in	Fig. 50.								

Fig. 50: Entered Parameters Displayed in the Module Editor

To save the new module in a new module library:

- Click Save As to open the standard dialog box.
- Select the path and enter the file name for the module library.
- Click the Save button.
- Click *OK* to close the Module Editor.

**Note** Import the new module library using the "Libraries" dialog box. To move the new module from the module list into the provided module fields use the Drag & Drop function. See chapter 10 "Main Window" for more details.

To display the new module in the "Calculation" tab, the new module was "dragged and dropped" into the 1001 single system "Actuator".

T1 [y, m]	System / Module	HIMA-Lib.	Type A/B	SIL	PFD	PFH	SFF	MTTF	PFx in % of the overall result
3 years	🚊 Lo-Demand result			3	2.435208e-004		98.595166%	8.000000y	100.00%
10 years	É- Actuator			3	2.435208e-004		98.595166%	8.000000y	100.00%
	- Valve		В	3	2.435208e-004		98.595166%	8.000000y	100.00%
	🗄 Hi-Demand result			3		9.454334e-008	98.595166%	8.000000y	100.00%
	É- Actuator			3		9.454334e-008	98.595166%	8.000000y	100.00%
	LValve		В	3		9.454334e-008	98.595166%	8.000000y	100.00%
	É∴SIL based on HFT and SFF (TÜV Approved)			2			98.595166%	8.000000y	
	É- Actuator			2			98.595166%	8.000000y	
	iValve		В	2			98.595166%	8.000000y	

### Fig. 51: The New Module Displayed in the "Calculation" Tab

After the PFH and PFD calculation, the new module is categorized in the SIL 3 class. After the SFF calculation and the classification as type B for HFT, it is re-categorized in the SIL 2 class.

Note	For redundant interconnections of type A modules, the SIL X can be improved to SIL X+1. The prerequisite for such improvements is that the module software has al- ready been certified for the higher SIL. Redundant inter- connections only improve the hardware. A software failure would occur in both systems at the same time as the soft- ware, and consequently the probability of failure, is the same in both douises
	same in both devices.

#### 14.1.2 Adding New Modules Using the *Import XML* Option

*SILence* provides an XML interface to import and export module libraries in XML format.

The following example explains how to create a new module library in the module editor, and to export it using the *Export XML* option.

The new module library will be edited in XML format and can be imported into the Module Editor (MS-Notepad) using the *Import XML* option.

Follow these steps to create a new module library in the **SILence**'s XML: • Select Settings  $\rightarrow$  Module Editor to open the Module Editor.

🥮 SILence -Module Editor		X
Module Editor History		
Add Delete		
Add Delete	Madula	
Module	Name: Module	
	Description: Connector	
	Description, Jeonnector	
	Туре: С Туре А: 💽 Туре В:	
	Modul SIL: 3 👮	
	Property: CPU	<b>T</b>
	Subtype: 30	
	MTTR/h: 8	
	MTTF/h: 50761400	
	beta: 0.02	
	beta D: 0.01	
	Components	
	Add Delete Current C	omponent
	Component 1	Component 2
	Component 2 Architect	ure:   1001
	beta:	0
	beta_D:	0
		Unit 1
	Descri	ption LP
	lambda	5 5.0e-005
	lambda	DD 5.49945e-009
Open <u>S</u> ave	Save As Import XML Export XML	<u> </u>

Fig. 52: A New Module in the Module Editor

To add a new module:

• Click the *Add* button to create a new module.

To export the new module as a XML module library:

- Click the *Export XML* button to open the standard dialog box.
- Enter the file name for the XML module library.
- Click the Save button.

Once the XML module library has been exported, it can be modified and extended using a suitable editor (XML editor or also MS notepad).

To re-import the XML module library into *SILence*, make sure that it adheres to the *SILence* module library structure.

The following figure shows the new XML module library.

xml version="1.0" encoding="UTF-8" standalone="no"? xml-stylesheet href="SILence.xsl" type="text/xsl"?
(silanca)
<pre><history></history></pre>
<pre><hanges></hanges></pre>
<date>02.10.2003 - 10:25:13</date>
<version> </version>
<comment> </comment>
> <author> </author>
< douicas>
<pre><device></device></pre>
<name> Module</name>
<property>Connector</property>
<mttf>5.07614e+007</mttf>
<mttr>8</mttr>
 beta_D>0.01
<type>CPU</type>
<subtype>30</subtype>
<type_ab>B</type_ab>
<pre><architecture <="" <architecture="" architec<="" architecture="" td=""></architecture></pre>
<arch type="">1001</arch>
 seta D>0
 beta>0
<component></component>
<property>PROFIBUS-ADAPTER</property>
<lambda_s>1.3e-009</lambda_s>
<lambda_dd>1.29987e-009</lambda_dd>
<lambda_du>1.3e-013</lambda_du>
<pre><nronerty> Component 2</nronerty></pre>
<arch type="">1001</arch>
 speta D>0
 <beta>0</beta>
<component></component>
<property>LP</property>
<lambda_s>5.5e-009</lambda_s>
<lambda_dd>5.49945e-009</lambda_dd>
<lambda_du>5.5e-013</lambda_du>
<a children="" contracture=""></a>
<pre><ncintecture> </ncintecture></pre> <pre><ncintecture> </ncintecture></pre>
<arch type="">1001</arch>
 seta D>0
 beta>0
<component></component>
<property>Plug</property>
<lambda_s>3.05e-009</lambda_s>
<li>lambda_DD&gt;3.0497e-009</li>
<lambda_du>3.05e-013</lambda_du>

Fig. 53: The New Library in XML Format

To import the XML module library into the Module Editor:

- Click the *Import XML* button to open the standard dialog box.
- Select the path and enter the file name for the module library.
- Click the *Open* button.

To save the new XML module library with the "*.sdd" file extension:

- Click the *Save As* button to open the standard dialog box.
- Select the path and enter the file name for the module library.
- Click the *Save* the button.
- Click *OK* to close the Module Editor.

Note	Import the new module library with the dialog "Libraries".
	To move the new module from the module list into the
	See chapter 10 "Main Window" for more details.
	See chapter to main window for more details.

# **15 Example Calculations of Selected Systems**

In the example calculations, the following single systems are used in various configurations:

Module	Pressure sensor / Pressure switch	Temp sensor / Temp switch	DI: F 3238	AI: F 6214	Connector: F 7553	CPU: F 8650E	DO: F 3334	AO: F 6705	Actuator: Valve
lambda_b in [1/h]			1,09E-06	1,11E-06	5,60E-07	2,08E-06	6,21E-07	9,45E-07	
MTTF in [years]			104,60	102,80	203,99	54,79	183,91	120,79	
Proof-test interval T ₁ in [years]	10	10	10	10	10	10	10	10	10
MTTR in [h]	8	8	8	8	8	8	8	8	8
βο	0,05	0,05	0,01	0,01	0,01	0,01	0,01	0,01	0,05
β	0,05	0,05	0,02	0,02	0,02	0,02	0,02	0,02	0,05
PFD ₁₀₀₁ in [1]			2,37077E-05	5,11873E-05	9,77747E-06	2,93355E-05	1,39346E-05	1,85694E-05	
PFH₁₀₀₁ in [1/h]			5,13220E-10	1,10675E-09	5,75579E-10	4,07407E-09	6,86279E-10	6,16433E-10	
PFD ₂₀₀₃ in [1] * ⁾	1,00E-04	1,56E-04							3,33E-05
PFH ₂₀₀₃ in [1/h] * ⁾	2,22E-08	3,47E-08							7,40E-09
TÜV claimed SIL			3	3	3	3	3	3	

*) assumed value

#### Table 25: Single Systems Used in the Example Calculations

Two points apply to all systems described below:

- Sensors in 2003 architecture
- Actuators in 1002 architecture

# 15.1 System 1 (Digital Loop 1)





	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure switch	2003	1,00000E-04	2,22000E-08	3	3
Temperature switch	2003	1,56000E-04	3,47000E-08	3	3
DI: F 3238	1002	4,62662E-07	1,54807E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1001	2,93355E-05	4,07407E-09	3	3
DO: F 3334	1001	1,39346E-05	6,86279E-10	4	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		5,35103E-05	6,88400E-09	4	4
System with sensor and actuator		3,42810E-04	7,11840E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

Table 26: Calculation Results for System 1 (Digital Loop 1)

# 15.2 System 2 (Digital Loop 2)





	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure switch	2003	1,00000E-04	2,22000E-08	3	3
Temperature switch	2003	1,56000E-04	3,47000E-08	3	3
DI: F 3238	1002	4,62662E-07	1,54807E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1002	3,07711E-06	7,23550E-09	4	3
DO: F 3334	1001	1,39346E-05	6,86279E-10	4	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		2,72518E-05	1,00454E-08	4	3
System with sensor and actuator		3,16552E-04	7,43454E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

 Table 27:
 Calculation Results for System 2 (Digital Loop 2)

# 15.3 System 3 (Digital Loop 3)





	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure switch	2003	1,00000E-04	2,22000E-08	3	3
Temperature switch	2003	1,56000E-04	3,47000E-08	3	3
DI: F 3238	2003	4,64169E-07	1,56234E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1001	2,93355E-05	4,07407E-09	3	3
DO: F 3334	1002	6,08163E-07	1,28962E-09	4	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		4,01853E-05	7,50161E-09	4	3
System with sensor and actuator		3,29485E-04	7,18016E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

 Table 28:
 Calculation Results for System 3 (Digital Loop 3)

# 15.4 System 4 (Digital Loop 4)





	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure switch	2003	1,00000E-04	2,22000E-08	3	3
Temperature switch	2003	1,56000E-04	3,47000E-08	3	3
DI: F 3238	2003	4,64169E-07	1,56234E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1002	3,07711E-06	7,23550E-09	3	3
DO: F 3334	1002	6,08163E-07	1,28962E-09	4	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		1,39269E-05	1,06630E-08	4	4
System with sensor and actuator		3,03227E-04	7,49630E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

Table 29: Calculation Results for System 4 (Digital Loop 4)

## 15.5 System 5 (Analogue-Digital Loop 1)



Fig. 58: System 5 (Analogue-Digital Loop 1)

		-	-		
	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure sensor	2003	1,00000E-04	2,22000E-08	3	3
Temperature sensor	2003	1,56000E-04	3,47000E-08	3	3
AI: F 6214	1002	1,00023E-06	3,43468E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1001	2,93355E-05	4,07407E-09	3	3
DO: F 3334	1001	1,39346E-05	6,86279E-10	4	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		5,40478E-05	8,77060E-09	4	4
System with sensor and actuator		3,43348E-04	7,30706E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

 Table 30:
 Calculation Results for System 5 (Analogue-Digital Loop 1)

## 15.6 System 6 (Analogue-Digital Loop 2)



Fig. 59: System 6 (Analogue-Digital Loop 2)

	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure sensor	2003	1,00000E-04	2,22000E-08	3	3
Temperature sensor	2003	1,56000E-04	3,47000E-08	3	3
AI: F 6214	1002	1,00023E-06	3,43468E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1002	3,07711E-06	7,23550E-09	3	3
DO: F 3334	1001	1,39346E-05	6,86279E-10	4	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		2,77894E-05	1,19320E-08	4	4
System with sensor and actuator		3,17089E-04	7,62320E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

 Table 31:
 Calculation Results for System 6 (Analogue-Digital Loop 2)

# 15.7 System 7 (Analogue-Digital Loop 3)



Fig. 60: System 7 (Analogue-Digital Loop 3)

	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure sensor	2003	1,00000E-04	2,22000E-08	3	3
Temperature sensor	2003	1,56000E-04	3,47000E-08	3	3
AI: F 6214	2003	1,00726E-06	3,50269E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1001	2,93355E-05	4,07407E-09	3	3
DO: F 3334	1002	6,08163E-07	1,28962E-09	4	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		4,07284E-05	9,44196E-09	4	4
System with sensor and actuator		3,30028E-04	7,37420E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

Table 32: Calculation Results for System 7 (Analogue-Digital Loop 3)

## 15.8 System 8 (Analogue-Digital Loop 4)



Fig. 61: System 8 (Analogue-Digital Loop 4)

	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure sensor	2003	1,00000E-04	2,22000E-08	3	3
Temperature sensor	2003	1,56000E-04	3,47000E-08	3	3
AI: F 6214	2003	1,00726E-06	3,50269E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1002	3,07711E-06	7,23550E-09	3	3
DO: F 3334	1002	6,08163E-07	1,28962E-09	4	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		1,44700E-05	1,26034E-08	4	3
System with sensor and actuator		3,03770E-04	7,69034E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

 Table 33:
 Calculation Results for System 8 (Analogue-Digital Loop 4)

# 15.9 System 9 (Analogue Loop 1)



Fig. 62: System 9 (Analogue Loop 1)

	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure sensor	2003	1,00000E-04	2,22000E-08	3	3
Temperature sensor	2003	1,56000E-04	3,47000E-08	3	3
AI: F 6214	1002	1,00023E-06	3,43468E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1001	2,93355E-05	4,07407E-09	3	3
AO: F 6705	1001	1,85694E-05	6,16433E-10	3	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		5,86826E-05	8,70076E-09	4	4
System with sensor and actuator		3,47983E-04	7,30008E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

 Table 34:
 Calculation Results for System 9 (Analogue Loop 1)

# 15.10 System 10 (Analogue Loop 2)



Fig. 63: System 10 (Analogue Loop 2)

	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure sensor	2003	1,00000E-04	2,22000E-08	3	3
Temperature sensor	2003	1,56000E-04	3,47000E-08	3	3
AI: F 6214	1002	1,00023E-06	3,43468E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1002	3,07711E-06	7,23550E-09	4	3
AO: F 6705	1001	1,85694E-05	6,16433E-10	3	4
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		3,24242E-05	1,18622E-08	4	3
System with sensor and actuator		3,21724E-04	7,61622E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

 Table 35:
 Calculation Results for System 10 (Analogue Loop 2)

# 15.11 System 11 (Analogue Loop 3)





	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure sensor	2003	1,00000E-04	2,22000E-08	3	3
Temperature sensor	2003	1,56000E-04	3,47000E-08	3	3
AI: F 6214	2003	1,00726E-06	3,50269E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1001	2,93355E-05	4,07407E-09	3	3
AO: F 6705	1002	3,77332E-07	2,25748E-09	4	3
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System with sensor and actuator		4,04976E-05	1,04098E-08	4	3
System with sensor and actuator		3,29798E-04	7,47098E-08	3	3
TÜV claimed SIL for systems with sensor and actuator				3	3



# 15.12 System 12 (Analogue Loop 4)



Fig. 65: System 12 (Analogue Loop 4)

	Architecture	PFD-IEC in [1]	PFH-IEC in [1/h]	SIL, PFD-IEC	SIL, PFH-IEC
Pressure sensor	2003	1,00000E-04	2,22000E-08	3	3
Temperature sensor	2003	1,56000E-04	3,47000E-08	3	3
AI: F 6214	2003	1,00726E-06	3,50269E-09	4	3
Connector: F 7553	1001	9,77748E-06	5,75579E-10	4	4
CPU: F 8650E	1002	3,07711E-06	7,23550E-09	4	3
AO: F 6705	1002	3,77332E-07	2,25748E-09	4	3
Actuator: Valve	1002	3,33000E-05	7,40000E-09	4	3
System without sensor and actuator		1,42392E-05	1,35713E-08	4	3
System with sensor and actuator		3,03539E-04	7,78713E-08	3	3
TÜV claimed SIL for systems without sensor and actuator				3	3

Table 37: Calculation results of System 12 (Analogue Loop 4)

# Appendix A

### **Printout of documentation**

Appendix A contains the documentations for the systems H51q-HRS and *HIMatrix*, configured in chapter 13.

After configuration, the documentation was printed out using the menu option *print project*.

Table of contents	
Project summary	Lists all of the project's systems.
System configuration	Contains a copy of the project's systems and the list of modules used using their identification numbers (ID's).
Calculation- results for T1	Lists all the results calculated for the project, i.e. "Lo-Demand-result", "Hi-Demand-,result" and "SIL based on HFT and SFF (TÜV Approved)". The calculation results are printed out as they are displayed in the editor's "Computations" tab (see chapter 12.2).

Note	An identification number (ID: E96AC21-724038B9) corre- sponds to each module and predefined system. With this ID, HIMA can determine which <i>SILence</i> version and which module libraries have been used.
Note	In <i>SILence</i> , the documentation printout is an important element. For this reason, it is a part of the TÜV approval process. If you use more than three fractional digits in the printout of the calculation results, set the printer to "Landscape", to prevent cropping.

Examples attached:

- H51q-HRS (8 pages)
- *HIMatrix* System (6 pages)

### Contents

1 Project overview         1.1 Projectfiles         1.2 Project history         1.2.1 Change dated 27.10.2003 - 17:51:01	2 2 2 2
2 System configuration:H51g-HRS.s	3
2.1 File History	3
2.1.1 Change dated 27.10.2003 - 18:06:29	3
2.1.2 Change dated 27.10.2003 - 18:06:30	3
2.2 System configuration:	4
2.2.1 Libraries	4
2.3 Result for T1 =10 years	5
2.3.1 Lo-Demand-Result	5
2.3.2 Hi-Demand-Result	5
2.3.3 SIL by HFT and SFF (TÜV Approved)	5
2.4 Result for T1 =3 years	7
2.4.1 Lo-Demand-Result	7
2.4.2 Hi-Demand-Result	7
2.4.3 SIL by HFT and SFF (TÜV Approved)	7

### 1 Project overview

1.1 Projectfiles

D:/SILence/H51q-HRS.ssy (ID: )

1.2 Project history

1.2.1 Change dated 27.10.2003 - 17:51:01

Version: Author: Comment:

### 2 System configuration:H51q-HRS.s

File:SILence -Editor [D:/SILence/H51q-HRS.ssy]File-CRC:b53ac187

2.1 File History

2.1.1 Change dated 27.10.2003 - 18:06:29

Version: Author: Comment:

2.1.2 Change dated 27.10.2003 - 18:06:30

Version: Author: Comment:

### 2.2 System configuration:



### 2.3 Result for T1 =10 years

### 2.3.1 Lo-Demand-Result

System / Module	HIMA-Lib.	SIL	PFD	SFF	MTTF	Percent of PFx
Total result		3	1.290903e-004	98.458762%	10.241866y	100.00%
Sensor		4	9.242929e-005	94.575768%	76.617837y	71.60%
Pressure sensor		4	9.242929e-005	94.575768%	153.235675y	71.60%
Pressure sensor		4	9.242929e-005	94.575768%	153.235675y	71.60%
Input		4	4.626617e-007	99.916874%	52.297623y	0.36%
F 3238		4	4.626617e-007	99.916874%	104.595246y	0.36%
F 3238	(IIII)	4	4.626617e-007	99.916874%	104.595246y	0.36%
CPU		4	3.077107e-006	99.769363%	27.396384y	2.38%
F 8650E		4	3.077107e-006	99.769363%	54.792767y	2.38%
F 8650E		4	3.077107e-006	99.769363%	54.792767y	2.38%
Connector		4	2.169758e-007	99.952465%	101.997187y	0.17%
F 7553		4	2.169758e-007	99.952465%	203.994373y	0.17%
F 7553		4	2.169758e-007	99.952465%	203.994373y	0.17%
Output		4	5.807397e-007	99.767096%	69.888118y	0.45%
F 3330		4	5.807397e-007	99.767096%	139.776235y	0.45%
F 3330		4	5.807397e-007	99.767096%	139.776235y	0.45%
Actuator		4	3.232355e-005	94.759456%	206.126374y	25.04%
Valve		4	3.232355e-005	94.759456%	412.252748y	25.04%
Valve		4	3.232355e-005	94.759456%	412.252748y	25.04%

#### 2.3.2 Hi-Demand-Result

System / Module	HIMA-Lib.	SIL	PFH	SFF	MTTF	Percent of PFx
Total result		3	3.918192e-008	98.458762%	10.241866y	100.00%
Sensor		3	1.981609e-008	94.575768%	76.617837y	50.57%
Pressure sensor		3	1.981609e-008	94.575768%	153.235675y	50.57%
Pressure sensor		3	1.981609e-008	94.575768%	153.235675y	50.57%
Input	(III)	4	1.548069e-009	99.916874%	52.297623y	3.95%
F 3238	(III)	4	1.548069e-009	99.916874%	104.595246y	3.95%
F 3238	(III)	4	1.548069e-009	99.916874%	104.595246y	3.95%
CPU	(III)	4	7.235500e-009	99.769363%	27.396384y	18.47%
F 8650E	(III)	4	7.235500e-009	99.769363%	54.792767y	18.47%
F 8650E	(III)	4	7.235500e-009	99.769363%	54.792767y	18.47%
Connector	(III)	4	2.274887e-009	99.952465%	101.997187y	5.81%
F 7553	(III)	4	2.274887e-009	99.952465%	203.994373y	5.81%
F 7553	(III)	4	2.274887e-009	99.952465%	203.994373y	5.81%
Output	(III)	4	1.225604e-009	99.767096%	69.888118y	3.13%
F 3330	(III)	4	1.225604e-009	99.767096%	139.776235y	3.13%
F 3330	(III)	4	1.225604e-009	99.767096%	139.776235y	3.13%
Actuator		4	7.081767e-009	94.759456%	206.126374y	18.07%
Valve		4	7.081767e-009	94.759456%	412.252748y	18.07%
Valve		4	7.081767e-009	94.759456%	412.252748y	18.07%

#### 2.3.3 SIL by HFT and SFF (TÜV Approved)

System / Module	HIMA-Lib.	SIL	Type A/B	SFF	MTTF	
Total result		2		98.458762%	10.241866y	
Sensor		2		94.575768%	76.617837y	
Pressure sensor		2	В	94.575768%	153.235675y	
Pressure sensor		2	В	94.575768%	153.235675y	
Input	(III)	3		99.916874%	52.297623y	
F 3238	(III)	3	В	99.916874%	104.595246y	
F 3238	(III)	3	В	99.916874%	104.595246y	
CPU	(III)	3		99.769363%	27.396384y	
F 8650E	(III)	3	В	99.769363%	54.792767y	
F 8650E	(III)	3	В	99.769363%	54.792767y	
Connector	(III)	3		99.952465%	101.997187y	
F 7553	AIIIB	3	В	99.952465%	203.994373y	

F 7553	(IIII)	3	В	99.952465%	203.994373y
Output		3		99.767096%	69.888118y
F 3330	0000	3	В	99.767096%	139.776235y
F 3330	(IIII)	3	В	99.767096%	139.776235y
Actuator		2		94.759456%	206.126374y
Valve		2	В	94.759456%	412.252748y
Valve		2	В	94.759456%	412.252748y

### 2.4 Result for T1 =3 years

### 2.4.1 Lo-Demand-Result

System / Module	HIMA-Lib.	SIL	PFD	SFF	MTTF	Percent of PFx
Total result		4	3.803752e-005	98.458762%	10.241866y	100.00%
Sensor		4	2.704150e-005	94.575768%	76.617837y	71.09%
Pressure sensor		4	2.704150e-005	94.575768%	153.235675y	71.09%
Pressure sensor		4	2.704150e-005	94.575768%	153.235675y	71.09%
Input		4	1.472911e-007	99.916874%	52.297623y	0.39%
F 3238		4	1.472911e-007	99.916874%	104.595246y	0.39%
F 3238		4	1.472911e-007	99.916874%	104.595246y	0.39%
CPU		4	9.563758e-007	99.769363%	27.396384y	2.51%
F 8650E		4	9.563758e-007	99.769363%	54.792767y	2.51%
F 8650E		4	9.563758e-007	99.769363%	54.792767y	2.51%
Connector		4	7.778032e-008	99.952465%	101.997187y	0.20%
F 7553		4	7.778032e-008	99.952465%	203.994373y	0.20%
F 7553		4	7.778032e-008	99.952465%	203.994373y	0.20%
Output		4	1.808246e-007	99.767096%	69.888118y	0.48%
F 3330		4	1.808246e-007	99.767096%	139.776235y	0.48%
F 3330		4	1.808246e-007	99.767096%	139.776235y	0.48%
Actuator		4	9.633747e-006	94.759456%	206.126374y	25.33%
Valve		4	9.633747e-006	94.759456%	412.252748y	25.33%
Valve		4	9.633747e-006	94.759456%	412.252748y	25.33%

#### 2.4.2 Hi-Demand-Result

System / Module	HIMA-Lib.	SIL	PFH	SFF	MTTF	Percent of PFx
Total result		3	3.808189e-008	98.458762%	10.241866y	100.00%
Sensor		3	1.898312e-008	94.575768%	76.617837y	49.85%
Pressure sensor		3	1.898312e-008	94.575768%	153.235675y	49.85%
Pressure sensor		3	1.898312e-008	94.575768%	153.235675y	49.85%
Input	GIIIZA	4	1.543332e-009	99.916874%	52.297623y	4.05%
F 3238	GIIIZA	4	1.543332e-009	99.916874%	104.595246y	4.05%
F 3238	GIIIZA	4	1.543332e-009	99.916874%	104.595246y	4.05%
CPU	GIIIZA	4	7.092196e-009	99.769363%	27.396384y	18.62%
F 8650E	GIIIZA	4	7.092196e-009	99.769363%	54.792767y	18.62%
F 8650E	GIIIZA	4	7.092196e-009	99.769363%	54.792767y	18.62%
Connector	GIIIZA	4	2.271798e-009	99.952465%	101.997187y	5.97%
F 7553	GIIIZA	4	2.271798e-009	99.952465%	203.994373y	5.97%
F 7553	GIIIZA	4	2.271798e-009	99.952465%	203.994373y	5.97%
Output	GIIIZA	4	1.220866e-009	99.767096%	69.888118y	3.21%
F 3330	GIIIZA	4	1.220866e-009	99.767096%	139.776235y	3.21%
F 3330	GIIIZA	4	1.220866e-009	99.767096%	139.776235y	3.21%
Actuator		4	6.970578e-009	94.759456%	206.126374y	18.30%
Valve		4	6.970578e-009	94.759456%	412.252748y	18.30%
Valve		4	6.970578e-009	94.759456%	412.252748y	18.30%

#### 2.4.3 SIL by HFT and SFF (TÜV Approved)

System / Module	HIMA-Lib.	SIL	Type A/B	SFF	MTTF	
Total result		2		98.458762%	10.241866y	
Sensor		2		94.575768%	76.617837y	
Pressure sensor		2	В	94.575768%	153.235675y	
Pressure sensor		2	В	94.575768%	153.235675y	
Input	(III)	3		99.916874%	52.297623y	
F 3238	(III)	3	В	99.916874%	104.595246y	
F 3238	(III)	3	В	99.916874%	104.595246y	
CPU	(III)	3		99.769363%	27.396384y	
F 8650E	(III)	3	В	99.769363%	54.792767y	
F 8650E	(III)	3	В	99.769363%	54.792767y	
Connector	(III)	3		99.952465%	101.997187y	
F 7553	AIIIA	3	В	99.952465%	203.994373y	

F 7553	(III)	3	В	99.952465%	203.994373y
Output		3		99.767096%	69.888118y
F 3330		3	В	99.767096%	139.776235y
F 3330	(III)	3	В	99.767096%	139.776235y
Actuator		2		94.759456%	206.126374y
Valve		2	В	94.759456%	412.252748y
Valve		2	В	94.759456%	412.252748y

### Contents

Project overview 1.1 Projectfiles 1.2 Project history 1.2.1 Change dated 27.10.2003 - 17:51:01	2 2 2 2
System configuration:HIMatrix.s	3
2.1 File History	3
2.1.1 Change dated 27.10.2003 - 18:01:21	3
2.1.2 Change dated 27.10.2003 - 18:01:21	3
2.2 System configuration:	4
2.2.1 Libraries	4
2.3 Result for T1 =10 years	5
2.3.1 Lo-Demand-Result	5
2.3.2 Hi-Demand-Result	5
2.3.3 SIL by HFT and SFF (TÜV Approved)	5
2.4 Result for T1 =3 years	6
2.4.1 Lo-Demand-Result	6
2.4.2 Hi-Demand-Result	6
2.4.3 SIL by HFT and SFF (TÜV Approved)	6

### 1 Project overview

1.1 Projectfiles

D:/SILence/HIMatrix.ssy (ID: )

1.2 Project history

1.2.1 Change dated 27.10.2003 - 17:51:01

Version: Author: Comment:

### 2 System configuration:HIMatrix.s

File:SILence -Editor [D:/SILence/HIMatrix.ssy]File-CRC:3826824c

2.1 File History

2.1.1 Change dated 27.10.2003 - 18:01:21

Version: Author: Comment:

2.1.2 Change dated 27.10.2003 - 18:01:21

Version: Author: Comment:

### 2.2 System configuration:


# 2.3 Result for T1 =10 years

#### 2.3.1 Lo-Demand-Result

System / Module	HIMA-Lib.	SIL	PFD	SFF	MTTF	Percent of PFx
Total result		2	2.525149e-003	98.875078%	8.567274y	100.00%
Sensor		2	1.772878e-003	94.575768%	153.235675y	70.21%
Pressure sensor		2	1.772878e-003	94.575768%	153.235675y	70.21%
Input	GIIIA	4	3.684285e-005	99.794617%	45.019226y	1.46%
F1 DI 16 01	GIIIA	4	3.684285e-005	99.794617%	45.019226y	1.46%
CPU	GIIIA	4	4.246487e-005	99.850789%	50.361870y	1.68%
F30-SiCPU	GIIIA	4	4.246487e-005	99.850789%	50.361870y	1.68%
Output	GIIIA	4	3.625669e-005	99.773403%	15.220091y	1.44%
F2 DO 16 01	GIIIA	4	3.625669e-005	99.773403%	15.220091y	1.44%
Actuator		3	6.367061e-004	94.759456%	412.252748y	25.21%
Valve		3	6.367061e-004	94.759456%	412.252748y	25.21%

#### 2.3.2 Hi-Demand-Result

System / Module	HIMA-Lib.	SIL	PFH	SFF	MTTF	Percent of PFx
Total result		3	6.443690e-008	98.875078%	8.567274y	100.00%
Sensor		3	4.040864e-008	94.575768%	153.235675y	62.71%
Pressure sensor		3	4.040864e-008	94.575768%	153.235675y	62.71%
Input	<b></b>	4	2.772602e-009	99.794617%	45.019226y	4.30%
F1 DI 16 01	<b></b>	4	2.772602e-009	99.794617%	45.019226y	4.30%
CPU	<b></b>	4	2.841588e-009	99.850789%	50.361870y	4.41%
F30-SiCPU	<b></b>	4	2.841588e-009	99.850789%	50.361870y	4.41%
Output	<b></b>	4	3.902687e-009	99.773403%	15.220091y	6.06%
F2 DO 16 01	<b></b>	4	3.902687e-009	99.773403%	15.220091y	6.06%
Actuator		3	1.451138e-008	94.759456%	412.252748y	22.52%
Valve		3	1.451138e-008	94.759456%	412.252748y	22.52%

#### 2.3.3 SIL by HFT and SFF (TÜV Approved)

System / Module	HIMA-Lib.	SIL	Type A/B	SFF	MTTF	
Total result		2		98.875078%	8.567274y	
Sensor		2		94.575768%	153.235675y	
Pressure sensor		2	В	94.575768%	153.235675y	
Input	<b></b>	3		99.794617%	45.019226y	
F1 DI 16 01	<b></b>	3	В	99.794617%	45.019226y	
CPU	<b></b>	3		99.850789%	50.361870y	
F30-SiCPU	<b></b>	3	В	99.850789%	50.361870y	
Output	<b></b>	3		99.773403%	15.220091y	
F2 DO 16 01	<b></b>	3	В	99.773403%	15.220091y	
Actuator		2		94.759456%	412.252748y	
Valve		2	В	94.759456%	412.252748y	

# 2.4 Result for T1 =3 years

### 2.4.1 Lo-Demand-Result

System / Module	HIMA-Lib.	SIL	PFD	SFF	MTTF	Percent of PFx
Total result		3	7.682571e-004	98.875078%	8.567274y	100.00%
Sensor		3	5.339494e-004	94.575768%	153.235675y	69.50%
Pressure sensor		3	5.339494e-004	94.575768%	153.235675y	69.50%
Input	(III)	4	1.316872e-005	99.794617%	45.019226y	1.71%
F1 DI 16 01	(III)	4	1.316872e-005	99.794617%	45.019226y	1.71%
CPU	(III)	4	1.661682e-005	99.850789%	50.361870y	2.16%
F30-SiCPU	(III)	4	1.661682e-005	99.850789%	50.361870y	2.16%
Output	(III)	4	1.273505e-005	99.773403%	15.220091y	1.66%
F2 DO 16 01	(III)	4	1.273505e-005	99.773403%	15.220091y	1.66%
Actuator		3	1.917872e-004	94.759456%	412.252748y	24.96%
Valve		3	1.917872e-004	94.759456%	412.252748y	24.96%

#### 2.4.2 Hi-Demand-Result

System / Module	HIMA-Lib.	SIL	PFH	SFF	MTTF	Percent of PFx
Total result		3	6.437029e-008	98.875078%	8.567274y	100.00%
Sensor		3	4.040864e-008	94.575768%	153.235675y	62.78%
Pressure sensor		3	4.040864e-008	94.575768%	153.235675y	62.78%
Input	(IIII)	4	2.751651e-009	99.794617%	45.019226y	4.27%
F1 DI 16 01	(IIII)	4	2.751651e-009	99.794617%	45.019226y	4.27%
CPU	(IIII)	4	2.818622e-009	99.850789%	50.361870y	4.38%
F30-SiCPU	(IIII)	4	2.818622e-009	99.850789%	50.361870y	4.38%
Output	(B)	4	3.879992e-009	99.773403%	15.220091y	6.03%
F2 DO 16 01	(IIII)	4	3.879992e-009	99.773403%	15.220091y	6.03%
Actuator		3	1.451138e-008	94.759456%	412.252748y	22.54%
Valve		3	1.451138e-008	94.759456%	412.252748y	22.54%

### 2.4.3 SIL by HFT and SFF (TÜV Approved)

System / Module	HIMA-Lib.	SIL	Type A/B	SFF	MTTF	
Total result		2		98.875078%	8.567274y	
Sensor		2		94.575768%	153.235675y	
Pressure sensor		2	В	94.575768%	153.235675y	
Input	(III)	3		99.794617%	45.019226y	
F1 DI 16 01	(III)	3	В	99.794617%	45.019226y	
CPU	(III)	3		99.850789%	50.361870y	
F30-SiCPU	(III)	3	В	99.850789%	50.361870y	
Output	(III)	3		99.773403%	15.220091y	
F2 DO 16 01	etter i	3	В	99.773403%	15.220091y	
Actuator		2		94.759456%	412.252748y	
Valve		2	В	94.759456%	412.252748y	

# Appendix B

# Installing and Registering SILence

## **PC Requirements**

- Pentium III (600 MHz or higher)
- 256 MB RAM
- 500 MB free hard disk capacity
- Resolution: 1024 x 768 pixel or higher (required: 1280 x 1024 pixel)
- Microsoft Windows NT[®], 2000[®] or XP[®]

**Note** Make sure that the network interface card is correctly installed and activated. In Windows XP switch off the energy saver mode for the network interface card.

# Installing of SILence

Install *SILence* on the PC, on which you would like to work later with *SILence*.

Important	Make sure that <i>SILence</i> will be used on this PC. After						
	registration, SILence can only be used on this PC. For						
	each additional PC, a new license must be acquired.						

# Installing notes

Insert the CD into the CD drive. A few seconds later, set-up will start automatically. With certain settings, for example if the CD drive's auto run function of the CD drive has been deactivated deactivated, start the set-up program manually. In this case, double click the "setup.exe" file in the CD's root directory. When set-up has been started, the CD's operator interface will be displayed with various options . Follow the program's instructions.

#### Hotline +49 (0)62 02 709-255/-258

# **Registering SILence**

**Important** The Access Code for *SILence* is determined from the license number and the PC specifications. The Access Code can only be used on this PC! Make sure that *SILence* will be used on this PC. For each additional PC, a new license must be acquired.

## To complete the registration of SILence

• Start *SILence* to open the "Registration" dialog box.

SILence -Registration						
System data						
Version:	1.0					
Build-ID:	10903					
Licence numbe	er: 🔲 📲 🗰 📲					
MAC-Address:	00:0B:DB:6D:3E:13					
Partition SN:	C872-81AF					
User-Code:	*****					
Access-Code:	#####-#####-#####-#####					
<u></u>	ancel					

Fig. 66: "Registration" Dialog Box after First Starting SILence

The "Registration" dialog box contains following data:

Data	Description
Version	Version of <b>SILence</b> .
BuildID	Identity number of <b>SILence</b> .
License	License number (on the CD cover)
MAC address	MAC address of the network module in the PC
	(automatically recognized).
Partition SN	Serial number of the PC's hard disk
	(automatically recognized)
User Code	Code determined from the license number and the
	PC specifications
Access Code	Code determined from the User Code.
	The Access Code is provided by HIMA support
	group.

To determine the User Code:

• Enter the license number in the *Licence number* field. The license number is located on the CD cover.

After entering the licence number, the "User Code" is displayed in the identically named field.

🥙 SILence -Registration 🛛 🔀						
-System data						
Version:	1.0					
Build-ID:	10903					
Licence numbe	n: 123456					
MAC-Address:	00:08:DB:6D:3E:13					
Partition SN:	C872-81AF					
User-Code:	56X3M-OBCTR-4K5AW-33PPX-67PSF-8QD4I					
Access-Code: ####################################						
<u>C</u> ancel Next						

Fig. 67: Determined User Code after Entering the License Number

To determine the Access Code:

- Go to the *SILence* registration page on the HIMA Homepage www.hima.com
- Follow the instructions from the registration

**Note** Note down or print out the Access-Code for *SILence*.

To register SILence using the Access Code:

- Enter the Access Code into the Access-Code field.
- Click Next to confirm the registration.

6	SILence -Registration						
	-System data						
	Version:	1.0					
	Build-ID:	10903					
	Licence numbe	er: 123456					
	MAC-Address:	00:0B:DB:6D:3E:13					
	Partition SN:	C872-81AF					
	User-Code:	56X3M-OBCTR-4K5AW-33PPX-67PSF-8QD4I					
	Access-Code:	834H0-31902-5FTMC-5343I-2AHL2-37IIU					
	<u>0</u>	ancel Next					

Fig. 68: Access Code Determined by HIMA

If you have problems with the registration or installation, please contact the HIMA-Support.

#### Hotline +49 (0) 6202 709-255/ -258

or

Phone	:	+49 (0)6202 709-0
FAX	:	+49 (0)6202 709 107
E-mail	:	<u>info@hima.com</u>

Please keep the following costumer data at hand:

- Adress,
- Costumer number,
- Licence number,
- Access Code from *SILence*.

The HIMA Support engineer needs this data to generate the Access code for your *SILence* registration.

# **References of literature**

- IEC/EN 61508: International Standard 61508 Functional Safety: Safety-Related System. Geneva, International Electrotechnical Commission, IEC Verlag Genf 1999
- [2] Börcsök, J.: IEC/EN 61508 eine Norm für viele Fälle, 2002
- [3] Börcsök, J.: Sicherheitsbetrachtungen, 2003
- [4] *Börcsök, J.*: Konzepte zur methodischen Untersuchung von Hardwarearchitekturen in sicherheitsgerichteten Anwendungen, 2002
- [5] DIN V VDE 0801: Funktionale Sicherheit sicherheitsbezogener elektrischer/elektronischer/programmierbarer elektronischer Systeme (E/E/PES), (IEC 65A/255/CDV:1998), S. 27f, Beuth Verlag Berlin August 1998
- [6] DIN V 19250: Grundlegende Sicherheitsbetrachtungen für MSR-Schutzeinrichtungen, Beuth Verlag Berlin 1998
- [7] DIN V VDE 0801/A1: Grundsätze für Rechner in Systemen mit Sicherheitsaufgaben, Beuth Verlag Berlin 1990 und 1994
- [8] IEC 60880-2: Software für Rechner mit sicherheitskritischer Bedeutung, 12/2001

# HIMA ...the safe decision.



HIMA Paul Hildebrandt GmbH + Co KG Industrial Automation Postfach 1261 • D - 68777 Bruehl Phone: (+49) 6202 709-0 • Fax: (+49) 6202 709-107 E-mail: info@hima.com • Internet: www.hima.com