
TDT4258 Microcontroller System Design

Assignment 3

Einar Uvsløkk & Simen Natvig

May 4, 2012

Abstract

This report describes our work with assignment 3, in TDT4258 Mi-
crocontroller System Design. The assignment was to write a Linux device
driver for buttons and LED diodes on a STK1000 development board, as
well as writing a computer game, in C, making use of the Linux device
driver. We followed the recommendations for the assignment, found in
the compendium. This resulted in . . .

1 Introduction

The task for this assignment was two fold. Part 1 was to write a Linux device
driver for the buttons and LED diodes on the STK1000 board. Part 2 was to
make a computer game, The Scorched Land Defense. All program code was to
be written in C, and er were encouraged to reuse the code from exercise 2. The
assignment also included Linux to be run on the STK1000 board.

To compile our device driver we used the standard Linux kernel toolchain.
To compile and link our game implementation we used a Linux toolchain cus-
tomized for the AVR32 microcontrollers, provided by Atmel.

In the following sections we will present how we worked towards the final
solution (section 2), how we tested our implementation and what test-results
we got (section 3), evaluate our work for the assignment (section 4), and finally
present our conclusion (section 5).

2 Description

As proposed in the assignment text [1] we started by setting up the development
board and checking that the development tools was working correctly. We then
proceeded with writing a simple kernel module, following the guidelines in Linux
device drivers [3], before we started our work on the game implementation.

In the following subsections we describe the setup and configuration of the
hardware we was working with (section 2.1), and the implementation of our
solution (subsection 2.2).

2.1 Setup

In order to start on our implementation, we first needed to make sure the
STK1000 development board was correctly set up. We first checked that the

1

required jumpers was set according to the assignment description. We needed
to set:

• SW1 to SPI0

• SW2 to PS2A/MMCI/USART1

• SW3 to SSC0/PWM[0,1]/GCLK

• SW4 to GPIO

• SW5 to LCDC

• SW6 to MACB0/DMAC

• JP4 to "EXT. DAC"

• JP5 to "EXT. DAC"

In addition, we needed to connect the JTAGICE to the STK1000 and the PC in
order to be able to program the micro controller from the PC. We also connected
the STK1000 board (UART A) and the PC by an RS232-cable, to be able to
communicate with the board over the COM-port, using minicom. In order
to use the buttons and the LED-diodes we connected their connectors to the
GPIO port B, pin 0-7 and pin 8-15, with one flat cable each, respectively. To
be able to listen to our sound effects, while developing our implementation we
also connected headphones to the audio contact.

2.2 Implementation

In this section we will describe the implementation of our device driver (sec-
tion 2.2.1) and our version of The Scorched Land Defense (section 2.2.2).

2.2.1 Part I: The device driver

We started out by writing a simple device driver, which only used the printk
kernel function call to print messages to the console. This was fairly easy,
and we started to implement functionality towards the STK1000 development
board. At this stage we needed to decide whether to write one device driver
that handled both buttons and LED diodes, or to write two seperate device
drivers (one for handling the buttons and one for the LED diodes). Because we
only needed to know which buttons was pressed for the game, we only needed
to read the buttons. Likewise it was sufficient, for the game, to write to the
LED diodes, in order to turn them on or off. We therefore decided to write
one device driver, handling both cases. The device driver was impemented as a
character device.

Writing LED diodes

Reading buttons

2

2.2.2 Part II: The game

The main goal of this exercise was to create a game named ”The Scorched
Land Defence”. The requirements for this game was vaguely stated if at all in
the compendium. Therefore we took a few liberties when making the game,
in an attempt to make it more challenging and fun. The premise of the game
described in the exercise lectures and the compendium is for one player to
control a character from one corner to the opposite corner. This is done while
a cannon placed in the corner opposite from the characters starting position
shoots at the character. To make matters worse for the character, each shot
that misses creates a fire in the region hit. This makes it fairly simple for the
cannon to block the different regions leading in to the cannon with fire, blocking
the character from reaching the cannon.

Since we thought that the game described made it too easy for the cannon to
win we decided early to try and make some adjustments to make the game a bit
more interesting. The first thing we decided to change was to make the cannon
shots into ”character-seeking” missiles. When doing this we also decided that
making the game turn-based was probably a good idea, both for implementation
purposes and the fact that the buttons on the development board is not fit for
frenetic pressing when almost hit by a dangerous objects.

Game logic The implementation of the game consists of initialization and a
while loop. Initialization sets up the driver, the graphics, the sound and the
game state. After this the while loop is entered and the game itself starts.
While the game runs it will stay in one of the five game states for each while
loop iteration. The different game states are:

1. Intro state

2. Player state

3. Cannon state

4. Player victory state

5. Cannon victory state

The Intro state starts the intro music and waits for a single button press
on the 7th to set the game in the Player state and sets all variables from the
game to the start position.

The Player state is the one of the two main states of the game. This
state waits for a button press on one of the four lower buttons. When one of
these are pressed the player moves in the corresponding direction, each of the
missiles take one move. When all the movement is done the missiles update their
tracking of the character and collision detection between the missiles themselves
and the player is done. If there is a collision at all the explosion sound is played
and if the character was involved he is set to inactive which is a losing state for
him. Finally the graphics are updated and the victory conditions are checked,
in which case the states will be set to the corresponding victory state. If neither
of the victory states are set the default next state is used which is the Cannon
state.

3

The Cannon state is the other main game state. In the Player state
there will only be one move, but in the Cannon state the targeting reticule can
be moved over the whole map before deciding on where to fire a missile. After
the missile is fired the map is redrawn and the game state is changed back to
the Player state.

The Victory states shows a screen saying who has won and then waits
for input from the 7th button which sets the state to the Intro state. This takes
you to the intro screen and makes it possible to play the game again.

Graphics To access the LCD screen on the STK1000 board, we used the
framebuffer device. This device, /dev/fb0, represents the LCD screens graphic
memory. To write pixels to the screen, we decided to use mmap to map the driver
to an array in the memory. This way we could write pixels to the screen by
writing values in a C-array. Listing 2 shows how this was done.

int fb_fd ; /∗ Framebuffer f i l e d e s c r i p t o r ∗/
char ∗fbp ; /∗ Pointer to the f ramebu f f e r ∗/

fb_fd = open ("/dev/fb0" , O_RDWR) ;
fbp = (char ∗) mmap (0 , SCREEN_SIZE ,

PROT_READ | PROT_WRITE ,
MAP_SHARED , fb_fd , 0) ;

/∗ Display a black LCD screen ∗/
memset (fbp , 0 , SCREEN_SIZE) ;

Listing 1: Mapping the framebuffer device to an array in memory

We created separate arrays for each graphics item we needed, and used a
for loop to copy a given array to the framebuffer array. To further improve the
performance, instead of using for-loops to copy arrays slot by slot, we switched
to using memcpy. This way we just copied the whole content of a given graphics
array, to the desired location in the framebuffer array.

The STK1000 board uses a 24-bit LCD data bus, and, hence, the color coding
is RGB. In order to get the pixel data from our images, we made use of Simple
DirectMedia Layer (SDL)[2], and its image subsystem SDL image. This way we
was able to easily retrive the RGBA values for each pixel in our graphics, and
process them separatly to suit our needs. Figure ?? illustrates how we retrived
the RGBA values from a given pixel.

/∗∗
∗ Get the d i f f e r e n t RGBA channel va lue s from the p i x e l data .
∗
∗ \param p i x e l The p i x e l data .
∗ \param ∗ r Po inter to s t o r e the red value .
∗ \param ∗g Pointer to s t o r e the green value .
∗ \param ∗b Pointer to s t o r e the blue value .
∗ \param ∗a Pointer to s t o r e the alpha value .
∗/

void get_rgba (int pixel , int ∗r , int ∗g , int ∗b , int ∗a)
{

∗b = (pixel >> 8) & 0xFF ;

4

∗g = (pixel >> 16) & 0xFF ;
∗r = (pixel >> 24) & 0xFF ;
∗a = pixel & 0xFF ;

}
Listing 2: Retrieving RGBA values from a pixel. label

We also implemented ”support” for alpha channels, which was achieved by mark-
ing all pixels with a given level of transparacy, to not be included in our internal
graphics buffer structs. This enabled us to draw tile sprites on top of the game
map.

Sound To enable sound effects in the game, we used the digital sampling and
recording device, /dev/dsp. Writing to this device accesses the D/A converter
to produce sound, which is very similiar to how we produced sound with the
internal ABDAC on the STK1000 board, in assignment 2. This meant that we
were able to reuse most of the sound related code from assignment 2, for this
assignment. The only modification we did was to reduce the sample size from
16 bits to 8 bits. In addition to this we had to write a new routine that built a
suitable sample buffer, that we could write to the sound device.

3 Results

For our game implementation we put down a list of expected behaviour for
the different game units. Some of these behaviours are dependent on the cur-
rent game state. Table 1 describes the various expected behaviour and their
corrosponding game state dependencies.

4 Evaluation

5 Conclusion

One of the biggest challenges in this assignment was to get the actual toolchain
set up and working.

The game could be improved in a number of ways. We could have utilized
a the Simple DirectMedia Layer (SDL) library at a greater degree. This would
probably make the implementation easier and more straight forward. Still our
choice, not to use it more than we did, is justified by the learning outcome from
handling both sound and graphics the hard way.

5

Table 1: Expected behaviour
Id Game State Action Expected behaviour
EB.0 Intro Button 7 is pressed Start game.
EB.1 Player Button 0 is pressed Player moves to the right if,

not blocked by end of map or
fire.

EB.2 Player Button 1 is pressed Player moves upwards, if not
blocked by end of map or
fire.

EB.3 Player Button 2 is pressed Player moves downwards, if
not blocked by end of map
or fire.

EB.4 Player Button 3 is pressed Player moves to the left, if
not blocked by end of map
or fire.

EB.5 Cannon Button 0 is pressed Cannon reticule moves to the
right, if not blocked by end
of map.

EB.6 Cannon Button 1 is pressed Cannon reticule moves up-
wards, if not blocked by end
of map.

EB.7 Cannon Button 2 is pressed Cannon reticule moves
downwards, if not blocked
by end of map.

EB.8 Cannon Button 3 is pressed Cannon reticule moves to the
left, if not blocked by end of
map.

EB.9 Cannon Button 4 is pressed Start countdown for missile
at the given tile.

EB.10 Victory Button 7 is pressed Restart game, show intro
screen.

6

References

[1] IDI CARD Group. Lab Assignments in TDT4258 Microcontroller System
Design, 2011.

[2] Simple DirectMedia Layer. http://www.libsdl.org/.

[3] Allesandro Rubini Jonathan Corbet and Greg Kroah-Hartman. Linux Device
Drivers. O’Reilly, 3rd edition, 2005.

7

http://www.libsdl.org/

	Introduction
	Description
	Setup
	Implementation
	Part I: The device driver
	Part II: The game

	Results
	Evaluation
	Conclusion

