
Notater - sammendrag 

Comparison sorts 

Sorting algorithms 

Insert ion sort  bruker   Θ(n2 )  tid WC. Det er allikevel en kjapp in-place sorteringsalgoritme for små 
input. 

Merge sort  har bedre asymptotisk kjøretid,   Θ(n lg n ), , men MERGE-prosedyren opererer ikke in 
place. 

Heapsort  har kjøretid   Ο(n lg n )  og bruker en viktig datastruktur, heap. 

Quicksort  har WC kjøretid   Θ(n2 ).  Forventet kjøretid er imidlertid   Θ(n lg n ) . Vanligvis bedre enn 
heapsort - lav skjult faktor. Populær for store input. 

In place betyr at kun et konstant antall inputelementer blir lagret utenfor området. 

Alle disse er comparison sorts. Det kan vises at   Ω(n lg n )  er en absolutt nedre grense for WC 
running time av en valgfri comparison sort på n input. Dermed er heapsort og mergesort 
asymptotisk optimale comparison sorts. 

Counting sort  skal vi senere se at bryter denne nedre grensen, med WC kjøretid   Θ(k + n ) . 

Radix sort  kan sortere n tall på   Θ(d(n + k))  tid, der d er antall siffer, og k er antall verdier hvert 

siffer kan ta. Når d er konstant og k er   Ο(n )  sorterer denne i lineær tid. 

Bucket sort  krever informasjon om den probalilistiske distribusjonen til inputtallene. Den kan 

sortere n reelle tall som er uniformt distribuert i det halv-åpne intervallet 
 

0,1)⎡⎣  i AC   Ο(n )  tid. 
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Worst-case Average-case/expected
Algorithm running time running time
Insertion sort ‚.n2/ ‚.n2/
Merge sort ‚.n lg n/ ‚.n lg n/
Heapsort O.n lg n/ —
Quicksort ‚.n2/ ‚.n lg n/ (expected)
Counting sort ‚.k C n/ ‚.k C n/
Radix sort ‚.d.nC k// ‚.d.nC k//
Bucket sort ‚.n2/ ‚.n/ (average-case)

Order statistics
The i th order statistic of a set of n numbers is the i th smallest number in the set.
We can, of course, select the i th order statistic by sorting the input and indexing
the i th element of the output. With no assumptions about the input distribution,
this method runs in !.n lg n/ time, as the lower bound proved in Chapter 8 shows.

In Chapter 9, we show that we can find the i th smallest element in O.n/ time,
even when the elements are arbitrary real numbers. We present a randomized algo-
rithm with tight pseudocode that runs in ‚.n2/ time in the worst case, but whose
expected running time is O.n/. We also give a more complicated algorithm that
runs in O.n/ worst-case time.

Background
Although most of this part does not rely on difficult mathematics, some sections
do require mathematical sophistication. In particular, analyses of quicksort, bucket
sort, and the order-statistic algorithm use probability, which is reviewed in Ap-
pendix C, and the material on probabilistic analysis and randomized algorithms in
Chapter 5. The analysis of the worst-case linear-time algorithm for order statis-
tics involves somewhat more sophisticated mathematics than the other worst-case
analyses in this part.



 

Insertion sort 

INSERTION SORT 

  Θ(n2 )  men meget effektiv på små input (n ≤ 5). Inplace! 

  

Merge Sort 

MERGE SORT 

Asymptotisk optimal, n lg n, men MERGE er ikke inplace.  

MERGE(A, p, q, r) sammenligner det øverste kortet i to ferdig sorterte bunker (p..q, q+1..r) og legger 
det laveste av de to bakerst i den ferdig sorterte bunken (A[i]). 

MERGE-SORT(A, p, r): 
if p < r: 

  

 MERGE-SORT(A, p, q) 
 MERGE-SORT(A, q+1, r) 
 MERGE(A, p, q, r) 

Algoritmen kaller seg selv rekursivt helt til og datasettet består av høyst ett element (basecase). 
Fra basecase kalles MERGE på stadig større sorterte delmengder til til slutt A er sortert.  
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2 4 5 6 1 3(d)

1 2 3 4 5 6
2 4 5 61 3(e)

1 2 3 4 5 6
2 4 5 61 3(f)

Figure 2.2 The operation of INSERTION-SORT on the array A D h5; 2; 4; 6; 1; 3i. Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)–(e) The iterations of the for loop of lines 1–8. In each iteration, the black rectangle holds the
key taken from AŒj !, which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

INSERTION-SORT.A/

1 for j D 2 to A: length
2 key D AŒj !
3 // Insert AŒj ! into the sorted sequence AŒ1 : : j ! 1!.
4 i D j ! 1
5 while i > 0 and AŒi ! > key
6 AŒi C 1! D AŒi !
7 i D i ! 1
8 AŒi C 1! D key

Loop invariants and the correctness of insertion sort
Figure 2.2 shows how this algorithm works for A D h5; 2; 4; 6; 1; 3i. The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the for loop, which is indexed by j , the subarray consisting
of elements AŒ1 : : j ! 1! constitutes the currently sorted hand, and the remaining
subarray AŒj C 1 : : n! corresponds to the pile of cards still on the table. In fact,
elements AŒ1 : : j ! 1! are the elements originally in positions 1 through j ! 1, but
now in sorted order. We state these properties of AŒ1 : : j ! 1! formally as a loop
invariant:

At the start of each iteration of the for loop of lines 1–8, the subarray
AŒ1 : : j !1! consists of the elements originally in AŒ1 : : j !1!, but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:  q = ( p + r )/ 2⎢⎣ ⎥⎦

 p ≥ r



 

Heapsort 

  

  

  

  

Heapsort bruker   Ο(n lg n )  tid siden BUILD-MAX-HEAP tar   Ο(n )  tid og hvert av de n - 1 kallene til 

MAX-HEAPIFY bruker   Ο(lg n )  tid. 
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values no larger than that contained at the node itself. A min-heap is organized in
the opposite way; the min-heap property is that for every node i other than the
root,
AŒPARENT.i/! ! AŒi ! :

The smallest element in a min-heap is at the root.
For the heapsort algorithm, we use max-heaps. Min-heaps commonly imple-

ment priority queues, which we discuss in Section 6.5. We shall be precise in
specifying whether we need a max-heap or a min-heap for any particular applica-
tion, and when properties apply to either max-heaps or min-heaps, we just use the
term “heap.”

Viewing a heap as a tree, we define the height of a node in a heap to be the
number of edges on the longest simple downward path from the node to a leaf, and
we define the height of the heap to be the height of its root. Since a heap of n ele-
ments is based on a complete binary tree, its height is ‚.lg n/ (see Exercise 6.1-2).
We shall see that the basic operations on heaps run in time at most proportional
to the height of the tree and thus take O.lg n/ time. The remainder of this chapter
presents some basic procedures and shows how they are used in a sorting algorithm
and a priority-queue data structure.
! The MAX-HEAPIFY procedure, which runs in O.lg n/ time, is the key to main-

taining the max-heap property.
! The BUILD-MAX-HEAP procedure, which runs in linear time, produces a max-

heap from an unordered input array.
! The HEAPSORT procedure, which runs in O.n lg n/ time, sorts an array in

place.
! The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY,

and HEAP-MAXIMUM procedures, which run in O.lg n/ time, allow the heap
data structure to implement a priority queue.

Exercises
6.1-1
What are the minimum and maximum numbers of elements in a heap of height h?
6.1-2
Show that an n-element heap has height blg nc.
6.1-3
Show that in any subtree of a max-heap, the root of the subtree contains the largest
value occurring anywhere in that subtree.
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6.1-4
Where in a max-heap might the smallest element reside, assuming that all elements
are distinct?
6.1-5
Is an array that is in sorted order a min-heap?
6.1-6
Is the array with values h23; 17; 14; 6; 13; 10; 1; 5; 7; 12i a max-heap?
6.1-7
Show that, with the array representation for storing an n-element heap, the leaves
are the nodes indexed by bn=2c C 1; bn=2c C 2; : : : ; n.

6.2 Maintaining the heap property

In order to maintain the max-heap property, we call the procedure MAX-HEAPIFY.
Its inputs are an array A and an index i into the array. When it is called, MAX-
HEAPIFY assumes that the binary trees rooted at LEFT.i/ and RIGHT.i/ are max-
heaps, but that AŒi ! might be smaller than its children, thus violating the max-heap
property. MAX-HEAPIFY lets the value at AŒi ! “float down” in the max-heap so
that the subtree rooted at index i obeys the max-heap property.

MAX-HEAPIFY.A; i/

1 l D LEFT.i/
2 r D RIGHT.i/
3 if l ! A:heap-size and AŒl ! > AŒi !
4 largest D l
5 else largest D i
6 if r ! A:heap-size and AŒr ! > AŒlargest!
7 largest D r
8 if largest ¤ i
9 exchange AŒi ! with AŒlargest!

10 MAX-HEAPIFY.A; largest/

Figure 6.2 illustrates the action of MAX-HEAPIFY. At each step, the largest of
the elements AŒi !, AŒLEFT.i/!, and AŒRIGHT.i/! is determined, and its index is
stored in largest. If AŒi ! is largest, then the subtree rooted at node i is already a
max-heap and the procedure terminates. Otherwise, one of the two children has the
largest element, and AŒi ! is swapped with AŒlargest!, which causes node i and its
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a 1-element heap to begin with. The procedure BUILD-MAX-HEAP goes through
the remaining nodes of the tree and runs MAX-HEAPIFY on each one.
BUILD-MAX-HEAP.A/

1 A:heap-size D A: length
2 for i D bA: length=2c downto 1
3 MAX-HEAPIFY.A; i/

Figure 6.3 shows an example of the action of BUILD-MAX-HEAP.
To show why BUILD-MAX-HEAP works correctly, we use the following loop

invariant:
At the start of each iteration of the for loop of lines 2–3, each node i C 1;
i C 2; : : : ; n is the root of a max-heap.

We need to show that this invariant is true prior to the first loop iteration, that each
iteration of the loop maintains the invariant, and that the invariant provides a useful
property to show correctness when the loop terminates.
Initialization: Prior to the first iteration of the loop, i D bn=2c. Each node
bn=2cC 1; bn=2cC 2; : : : ; n is a leaf and is thus the root of a trivial max-heap.

Maintenance: To see that each iteration maintains the loop invariant, observe that
the children of node i are numbered higher than i . By the loop invariant, there-
fore, they are both roots of max-heaps. This is precisely the condition required
for the call MAX-HEAPIFY.A; i/ to make node i a max-heap root. Moreover,
the MAX-HEAPIFY call preserves the property that nodes i C 1; i C 2; : : : ; n
are all roots of max-heaps. Decrementing i in the for loop update reestablishes
the loop invariant for the next iteration.

Termination: At termination, i D 0. By the loop invariant, each node 1; 2; : : : ; n
is the root of a max-heap. In particular, node 1 is.

We can compute a simple upper bound on the running time of BUILD-MAX-
HEAP as follows. Each call to MAX-HEAPIFY costs O.lg n/ time, and BUILD-
MAX-HEAP makes O.n/ such calls. Thus, the running time is O.n lg n/. This
upper bound, though correct, is not asymptotically tight.

We can derive a tighter bound by observing that the time for MAX-HEAPIFY to
run at a node varies with the height of the node in the tree, and the heights of most
nodes are small. Our tighter analysis relies on the properties that an n-element heap
has height blg nc (see Exercise 6.1-2) and at most ˙n=2hC1

! nodes of any height h
(see Exercise 6.3-3).

The time required by MAX-HEAPIFY when called on a node of height h is O.h/,
and so we can express the total cost of BUILD-MAX-HEAP as being bounded from
above by
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by exchanging it with AŒn!. If we now discard node n from the heap—and we
can do so by simply decrementing A:heap-size—we observe that the children of
the root remain max-heaps, but the new root element might violate the max-heap
property. All we need to do to restore the max-heap property, however, is call
MAX-HEAPIFY.A; 1/, which leaves a max-heap in AŒ1 : : n ! 1!. The heapsort
algorithm then repeats this process for the max-heap of size n ! 1 down to a heap
of size 2. (See Exercise 6.4-2 for a precise loop invariant.)

HEAPSORT.A/

1 BUILD-MAX-HEAP.A/
2 for i D A: length downto 2
3 exchange AŒ1! with AŒi !
4 A:heap-size D A:heap-size ! 1
5 MAX-HEAPIFY.A; 1/

Figure 6.4 shows an example of the operation of HEAPSORT after line 1 has built
the initial max-heap. The figure shows the max-heap before the first iteration of
the for loop of lines 2–5 and after each iteration.

The HEAPSORT procedure takes time O.n lg n/, since the call to BUILD-MAX-
HEAP takes time O.n/ and each of the n ! 1 calls to MAX-HEAPIFY takes
time O.lg n/.

Exercises
6.4-1
Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array
A D h5; 13; 2; 25; 7; 17; 20; 8; 4i.
6.4-2
Argue the correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop of lines 2–5, the subarray
AŒ1 : : i ! is a max-heap containing the i smallest elements of AŒ1 : : n!, and
the subarray AŒi C 1 : : n! contains the n ! i largest elements of AŒ1 : : n!,
sorted.

6.4-3
What is the running time of HEAPSORT on an array A of length n that is already
sorted in increasing order? What about decreasing order?
6.4-4
Show that the worst-case running time of HEAPSORT is ".n lg n/.



 

  

Kjøretid:   Ο(lg n ).  

  

Kjøretid:   Ο(lg n ).  

  

Kjøretid:   Ο(lg n ).  Samlet kjøretid:   Ο(lg n ).  

 

 Quicksort 

 

For å sortere hele lista A, kalles QUICKSORT(A, 1, A.length). 

6.5 Priority queues 163

We shall see other uses for min-priority queues, highlighting the DECREASE-KEY
operation, in Chapters 23 and 24.

Not surprisingly, we can use a heap to implement a priority queue. In a given ap-
plication, such as job scheduling or event-driven simulation, elements of a priority
queue correspond to objects in the application. We often need to determine which
application object corresponds to a given priority-queue element, and vice versa.
When we use a heap to implement a priority queue, therefore, we often need to
store a handle to the corresponding application object in each heap element. The
exact makeup of the handle (such as a pointer or an integer) depends on the ap-
plication. Similarly, we need to store a handle to the corresponding heap element
in each application object. Here, the handle would typically be an array index.
Because heap elements change locations within the array during heap operations,
an actual implementation, upon relocating a heap element, would also have to up-
date the array index in the corresponding application object. Because the details
of accessing application objects depend heavily on the application and its imple-
mentation, we shall not pursue them here, other than noting that in practice, these
handles do need to be correctly maintained.

Now we discuss how to implement the operations of a max-priority queue. The
procedure HEAP-MAXIMUM implements the MAXIMUM operation in ‚.1/ time.

HEAP-MAXIMUM.A/

1 return AŒ1!

The procedure HEAP-EXTRACT-MAX implements the EXTRACT-MAX opera-
tion. It is similar to the for loop body (lines 3–5) of the HEAPSORT procedure.

HEAP-EXTRACT-MAX.A/

1 if A:heap-size < 1
2 error “heap underflow”
3 max D AŒ1!
4 AŒ1! D AŒA:heap-size!
5 A:heap-size D A:heap-size ! 1
6 MAX-HEAPIFY.A; 1/
7 return max

The running time of HEAP-EXTRACT-MAX is O.lg n/, since it performs only a
constant amount of work on top of the O.lg n/ time for MAX-HEAPIFY.

The procedure HEAP-INCREASE-KEY implements the INCREASE-KEY opera-
tion. An index i into the array identifies the priority-queue element whose key we
wish to increase. The procedure first updates the key of element AŒi ! to its new
value. Because increasing the key of AŒi ! might violate the max-heap property,
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the procedure then, in a manner reminiscent of the insertion loop (lines 5–7) of
INSERTION-SORT from Section 2.1, traverses a simple path from this node toward
the root to find a proper place for the newly increased key. As HEAP-INCREASE-
KEY traverses this path, it repeatedly compares an element to its parent, exchang-
ing their keys and continuing if the element’s key is larger, and terminating if the el-
ement’s key is smaller, since the max-heap property now holds. (See Exercise 6.5-5
for a precise loop invariant.)

HEAP-INCREASE-KEY.A; i; key/

1 if key < AŒi !
2 error “new key is smaller than current key”
3 AŒi ! D key
4 while i > 1 and AŒPARENT.i/! < AŒi !
5 exchange AŒi ! with AŒPARENT.i/!
6 i D PARENT.i/

Figure 6.5 shows an example of a HEAP-INCREASE-KEY operation. The running
time of HEAP-INCREASE-KEY on an n-element heap is O.lg n/, since the path
traced from the node updated in line 3 to the root has length O.lg n/.

The procedure MAX-HEAP-INSERT implements the INSERT operation. It takes
as an input the key of the new element to be inserted into max-heap A. The proce-
dure first expands the max-heap by adding to the tree a new leaf whose key is !1.
Then it calls HEAP-INCREASE-KEY to set the key of this new node to its correct
value and maintain the max-heap property.

MAX-HEAP-INSERT.A; key/

1 A:heap-size D A:heap-sizeC 1
2 AŒA:heap-size! D !1
3 HEAP-INCREASE-KEY.A; A:heap-size; key/

The running time of MAX-HEAP-INSERT on an n-element heap is O.lg n/.
In summary, a heap can support any priority-queue operation on a set of size n

in O.lg n/ time.

Exercises
6.5-1
Illustrate the operation of HEAP-EXTRACT-MAX on the heap A D h15; 13; 9; 5;
12; 8; 7; 4; 0; 6; 2; 1i.
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Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8-element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.



 

  

Kjøretida til PARTITION er   Θ(n ),  der   n = r − p +1 . 

  

  

Counting sort 
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7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.

7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.
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Figure 8.2 The operation of COUNTING-SORT on an input array AŒ1 : : 8!, where each element
of A is a nonnegative integer no larger than k D 5. (a) The array A and the auxiliary array C after
line 5. (b) The array C after line 8. (c)–(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 10–12, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B .

COUNTING-SORT.A; B; k/

1 let C Œ0 : : k! be a new array
2 for i D 0 to k
3 C Œi ! D 0
4 for j D 1 to A: length
5 C ŒAŒj !! D C ŒAŒj !!C 1
6 // C Œi ! now contains the number of elements equal to i .
7 for i D 1 to k
8 C Œi ! D C Œi !C C Œi ! 1!
9 // C Œi ! now contains the number of elements less than or equal to i .

10 for j D A: length downto 1
11 BŒC ŒAŒj !!! D AŒj !
12 C ŒAŒj !! D C ŒAŒj !! ! 1

Figure 8.2 illustrates counting sort. After the for loop of lines 2–3 initializes the
array C to all zeros, the for loop of lines 4–5 inspects each input element. If the
value of an input element is i , we increment C Œi !. Thus, after line 5, C Œi ! holds
the number of input elements equal to i for each integer i D 0; 1; : : : ; k. Lines 7–8
determine for each i D 0; 1; : : : ; k how many input elements are less than or equal
to i by keeping a running sum of the array C .



 

Radix sort 

  

Bruker for eksempel COUNTING SORT som en stabil (men ikke inplace!) sorteringsalgoritme. 

Kjøretiden til Radix Sort er   Θ(d(n + k)) , som er   Θ(n ) , forutsatt at n er det dominerende leddet (og 
ikke k..). 

Bucket sort 

  

Average-case kjøretid for bucket sort er   Θ(n )+ n ⋅Ο(2 −1 n )=Θ(n ).  

Selv om vi ikke henter input fra en uniform distribusjon, kan bucket sort framdeles sortere i lineær 
tid. Så lenge input har den egenskapen at summen av kvadratene til bøttestørrelsene er lineær mhp. 
totalt antall elementer, gir ligningen over at bucket sort vil kjøre i lineær tid. 

Selection 

 , 
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Figure 8.3 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is
the input. The remaining columns show the list after successive sorts on increasingly significant digit
positions. Shading indicates the digit position sorted on to produce each list from the previous one.

In a typical computer, which is a sequential random-access machine, we some-
times use radix sort to sort records of information that are keyed by multiple fields.
For example, we might wish to sort dates by three keys: year, month, and day. We
could run a sorting algorithm with a comparison function that, given two dates,
compares years, and if there is a tie, compares months, and if another tie occurs,
compares days. Alternatively, we could sort the information three times with a
stable sort: first on day, next on month, and finally on year.

The code for radix sort is straightforward. The following procedure assumes that
each element in the n-element array A has d digits, where digit 1 is the lowest-order
digit and digit d is the highest-order digit.

RADIX-SORT.A; d/

1 for i D 1 to d
2 use a stable sort to sort array A on digit i

Lemma 8.3
Given n d -digit numbers in which each digit can take on up to k possible values,
RADIX-SORT correctly sorts these numbers in ‚.d.nC k// time if the stable sort
it uses takes ‚.nC k/ time.

Proof The correctness of radix sort follows by induction on the column being
sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable
sort used as the intermediate sorting algorithm. When each digit is in the range 0
to k!1 (so that it can take on k possible values), and k is not too large, counting sort
is the obvious choice. Each pass over n d -digit numbers then takes time ‚.nCk/.
There are d passes, and so the total time for radix sort is ‚.d.nC k//.

When d is constant and k D O.n/, we can make radix sort run in linear time.
More generally, we have some flexibility in how to break each key into digits.
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Figure 8.4 The operation of BUCKET-SORT for n D 10. (a) The input array AŒ1 : : 10!. (b) The
array BŒ0 : : 9! of sorted lists (buckets) after line 8 of the algorithm. Bucket i holds values in the
half-open interval Œi=10; .i C 1/=10/. The sorted output consists of a concatenation in order of the
lists BŒ0!; BŒ1!; : : : ; BŒ9!.

BUCKET-SORT.A/

1 let BŒ0 : : n ! 1! be a new array
2 n D A: length
3 for i D 0 to n ! 1
4 make BŒi ! an empty list
5 for i D 1 to n
6 insert AŒi ! into list BŒbnAŒi !c!
7 for i D 0 to n ! 1
8 sort list BŒi ! with insertion sort
9 concatenate the lists BŒ0!; BŒ1!; : : : ; BŒn ! 1! together in order

Figure 8.4 shows the operation of bucket sort on an input array of 10 numbers.
To see that this algorithm works, consider two elements AŒi ! and AŒj !. Assume

without loss of generality that AŒi ! " AŒj !. Since bnAŒi !c " bnAŒj !c, either
element AŒi ! goes into the same bucket as AŒj ! or it goes into a bucket with a lower
index. If AŒi ! and AŒj ! go into the same bucket, then the for loop of lines 7–8 puts
them into the proper order. If AŒi ! and AŒj ! go into different buckets, then line 9
puts them into the proper order. Therefore, bucket sort works correctly.

To analyze the running time, observe that all lines except line 8 take O.n/ time
in the worst case. We need to analyze the total time taken by the n calls to insertion
sort in line 8.
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9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n
elements? We can easily obtain an upper bound of n ! 1 comparisons: examine
each element of the set in turn and keep track of the smallest element seen so
far. In the following procedure, we assume that the set resides in array A, where
A: length D n.

MINIMUM.A/

1 min D AŒ1!
2 for i D 2 to A: length
3 if min > AŒi !
4 min D AŒi !
5 return min

We can, of course, find the maximum with n ! 1 comparisons as well.
Is this the best we can do? Yes, since we can obtain a lower bound of n ! 1

comparisons for the problem of determining the minimum. Think of any algorithm
that determines the minimum as a tournament among the elements. Each compar-
ison is a match in the tournament in which the smaller of the two elements wins.
Observing that every element except the winner must lose at least one match, we
conclude that n ! 1 comparisons are necessary to determine the minimum. Hence,
the algorithm MINIMUM is optimal with respect to the number of comparisons
performed.

Simultaneous minimum and maximum
In some applications, we must find both the minimum and the maximum of a set
of n elements. For example, a graphics program may need to scale a set of .x; y/
data to fit onto a rectangular display screen or other graphical output device. To
do so, the program must first determine the minimum and maximum value of each
coordinate.

At this point, it should be obvious how to determine both the minimum and the
maximum of n elements using ‚.n/ comparisons, which is asymptotically optimal:
simply find the minimum and maximum independently, using n ! 1 comparisons
for each, for a total of 2n ! 2 comparisons.

In fact, we can find both the minimum and the maximum using at most 3 bn=2c
comparisons. We do so by maintaining both the minimum and maximum elements
seen thus far. Rather than processing each element of the input by comparing it
against the current minimum and maximum, at a cost of 2 comparisons per element,



 

  

RANDOMIZED-SELECT returnerer det i'te minste elementet i lista A[p..r]. 

Worst-case kjøretid for RANDOMIZED-SELECT er   Θ(n2 ),  selv for å finne minimum, dersom vi er så 
uheldige å alltid partisjonere rundt det største elementet. Forventet kjøretid er imidlertid lineær, og 
siden input blir stokket i tilfeldig rekkefølge har vi ingen type input som sannsynliggjør worst-case 
kjøretid. 

9.3 Selection in worst-case linear time 
Algoritmen SELECT finner et gitt element med   Ο(n )  som worst-case kjøretid. Den partisjonerer i 
likhet med RANDOMIZED-SELECT input-arrayet rekursivt, men garanterer en god split mellom 
partisjonene. SELECT bruker den samme partisjoneringsalgoritmen PARTITION, men modifiserer 
denne til å ta pivotelementet som en inputparameter. 

SELECT-algoritmen og dens kjøretid er definert på side 243 i Cormen og fungerer som følger: 

1. Deler elementene inn i n/5 grupper på 5 elementer hver. 
2. Finner medianen i hver av gruppene ved å insertion-sorte elementene i hver gruppe og velge 

medianen. 
3. Bruker SELECT rekursivt til å finne medianen av medianene funnet i 2. 
4. Partisjonere input-arrayet rundt medianen av medianer ved å bruke modifisert PARTITION. 
5. Dersom  i = k , returner medianen av medianer. Hvis ikke, bruk SELECT rekursivt. 

 
SEARCH(S, k) 

En query som returnerer en peker x til et element i S slik at x.key = k, eller NIL dersom k 
ikke finnes i S. 

INSERT(S, x) 
 En modifying operation som setter inn elementet pekt til av x.  
DELETE(S, x) 
 En modifying operation som fjerner elementet pekt til av x fra S. 
MINIMUM(S) 
 En query på en fullstendig ordnet mengde S som returnerer en peker til det elementet i S 
 som har den minste nøkkelen. 
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RANDOMIZED-SELECT uses the procedure RANDOMIZED-PARTITION intro-
duced in Section 7.3. Thus, like RANDOMIZED-QUICKSORT, it is a randomized al-
gorithm, since its behavior is determined in part by the output of a random-number
generator. The following code for RANDOMIZED-SELECT returns the i th smallest
element of the array AŒp : : r !.

RANDOMIZED-SELECT.A; p; r; i/

1 if p == r
2 return AŒp!
3 q D RANDOMIZED-PARTITION.A; p; r/
4 k D q ! p C 1
5 if i == k // the pivot value is the answer
6 return AŒq!
7 elseif i < k
8 return RANDOMIZED-SELECT.A; p; q ! 1; i/
9 else return RANDOMIZED-SELECT.A; q C 1; r; i ! k/

The RANDOMIZED-SELECT procedure works as follows. Line 1 checks for the
base case of the recursion, in which the subarray AŒp : : r ! consists of just one
element. In this case, i must equal 1, and we simply return AŒp! in line 2 as the
i th smallest element. Otherwise, the call to RANDOMIZED-PARTITION in line 3
partitions the array AŒp : : r ! into two (possibly empty) subarrays AŒp : : q ! 1!
and AŒq C 1 : : r ! such that each element of AŒp : : q ! 1! is less than or equal
to AŒq!, which in turn is less than each element of AŒq C 1 : : r !. As in quicksort,
we will refer to AŒq! as the pivot element. Line 4 computes the number k of
elements in the subarray AŒp : : q!, that is, the number of elements in the low side
of the partition, plus one for the pivot element. Line 5 then checks whether AŒq! is
the i th smallest element. If it is, then line 6 returns AŒq!. Otherwise, the algorithm
determines in which of the two subarrays AŒp : : q ! 1! and AŒq C 1 : : r ! the i th
smallest element lies. If i < k, then the desired element lies on the low side of
the partition, and line 8 recursively selects it from the subarray. If i > k, however,
then the desired element lies on the high side of the partition. Since we already
know k values that are smaller than the i th smallest element of AŒp : : r !—namely,
the elements of AŒp : : q!—the desired element is the .i ! k/th smallest element
of AŒqC1 : : r !, which line 9 finds recursively. The code appears to allow recursive
calls to subarrays with 0 elements, but Exercise 9.2-1 asks you to show that this
situation cannot happen.

The worst-case running time for RANDOMIZED-SELECT is ‚.n2/, even to find
the minimum, because we could be extremely unlucky and always partition around
the largest remaining element, and partitioning takes ‚.n/ time. We will see that



 

MAXIMUM(S) 
 En query på en fullstendig ordnet mengde S som returnerer en peker til det elementet i S 
 som har den største nøkkelen. 
SUCCESSOR(S, x) 
 En query som returnerer en peker til det neste større elementet i S, eller NIL dersom x er 
 det største elementet. 
PREDECESSOR(S, x) 
 En query som returnerer en peker til det neste mindre elementet i S, eller NIL dersom x er 
 det minste elementet. 

Et kall til MINIMUM etterfulgt av n - 1 kall til SUCCESSOR sorterer elementene i stigende rekkefølge. 

Chapter 10 Elementary Data Structures 

Stacks 
INSERT-operasjonen på en stack kalles ofte PUSH. DELETE kalles POP. Illustreres ved en stabel med 
tallerkener på en restaurant.  

  

Operasjonene tar  Ο(1)  tid. 

Queues 
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1 2 3 4 5 6 7
S 15 6 2 9

1 2 3 4 5 6 7
S 15 6 2 9 17 3

1 2 3 4 5 6 7
S 15 6 2 9 17 3

(a) (b) (c)

S: top D 4 S: top D 6 S: top D 5

Figure 10.1 An array implementation of a stack S . Stack elements appear only in the lightly shaded
positions. (a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls PUSH.S; 17/
and PUSH.S; 3/. (c) Stack S after the call POP.S/ has returned the element 3, which is the one most
recently pushed. Although element 3 still appears in the array, it is no longer in the stack; the top is
element 17.

inserted element. The stack consists of elements SŒ1 : : S: top!, where SŒ1! is the
element at the bottom of the stack and SŒS: top! is the element at the top.

When S: top D 0, the stack contains no elements and is empty. We can test to
see whether the stack is empty by query operation STACK-EMPTY. If we attempt
to pop an empty stack, we say the stack underflows, which is normally an error.
If S: top exceeds n, the stack overflows. (In our pseudocode implementation, we
don’t worry about stack overflow.)

We can implement each of the stack operations with just a few lines of code:

STACK-EMPTY.S/

1 if S: top == 0
2 return TRUE
3 else return FALSE

PUSH.S; x/

1 S: top D S: topC 1
2 SŒS: top! D x

POP.S/

1 if STACK-EMPTY.S/
2 error “underflow”
3 else S: top D S: top ! 1
4 return SŒS: topC 1!

Figure 10.1 shows the effects of the modifying operations PUSH and POP. Each of
the three stack operations takes O.1/ time.
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When Q:head D Q: tail C 1, the queue is full, and if we attempt to enqueue an
element, then the queue overflows.

In our procedures ENQUEUE and DEQUEUE, we have omitted the error checking
for underflow and overflow. (Exercise 10.1-4 asks you to supply code that checks
for these two error conditions.) The pseudocode assumes that n D Q: length.

ENQUEUE.Q; x/

1 QŒQ: tail! D x
2 ifQ: tail == Q: length
3 Q: tail D 1
4 elseQ: tail D Q: tailC 1

DEQUEUE.Q/

1 x D QŒQ:head!
2 ifQ:head == Q: length
3 Q:head D 1
4 elseQ:head D Q:head C 1
5 return x

Figure 10.2 shows the effects of the ENQUEUE and DEQUEUE operations. Each
operation takes O.1/ time.

Exercises
10.1-1
Using Figure 10.1 as a model, illustrate the result of each operation in the sequence
PUSH.S; 4/, PUSH.S; 1/, PUSH.S; 3/, POP.S/, PUSH.S; 8/, and POP.S/ on an
initially empty stack S stored in array SŒ1 : : 6!.
10.1-2
Explain how to implement two stacks in one array AŒ1 : : n! in such a way that
neither stack overflows unless the total number of elements in both stacks together
is n. The PUSH and POP operations should run in O.1/ time.
10.1-3
Using Figure 10.2 as a model, illustrate the result of each operation in the
sequence ENQUEUE.Q; 4/, ENQUEUE.Q; 1/, ENQUEUE.Q; 3/, DEQUEUE.Q/,
ENQUEUE.Q; 8/, and DEQUEUE.Q/ on an initially empty queue Q stored in
array QŒ1 : : 6!.
10.1-4
Rewrite ENQUEUE and DEQUEUE to detect underflow and overflow of a queue.



 

  

10.2 Linked lists 
En l enket l i s t e  er en datastruktur der objektene er sortert i en linær rekkefølge. Denne rekkefølgen 
er imidlertid ikke bestemt av indeksen, men av pekere som ligger i hvert objekt. Alle operasjonene 
nevnt over støttes av lenkede lister. 

Chapter 11 Hash Tables 

En hash table er en effektiv datastruktur for å implementere dictionaries. Selv om worst case 
kjøretid er like dårlig som en lenket liste (  Θ(n ) ), er forventet kjøretid ekstremt bra ( Ο(1) ). 

Hash tables er å foretrekke når antall nøkler faktisk lagret er få sammenlignet med antall mulige 
nøkler. Tabellindeksen blir beregnet ut fra nøkkelen vha. hashfunksjoner, i stedet for at nøkkelverdien 
blir brukt direkte. 

11.1 Direct-address tables 
Direkte adressering er en enkel teknikk som fungerer bra når antall mulige nøkler er rimelig lavt. Vi 
antar unike nøkler. 

Vi bruker en direc t -address  table  for å representere det dynamiske settet   T[0..m −1],  der hver 
posisjon, eller s lo t , korresponderer med en nøkkel i U.  

11.2 Hash tables 
Dersom universet U er stort kan det å lagre en tabell T av størrelse 

 U
 være upraktisk eller umulig. 

Settet av nøkler faktisk lagret, K, kan være så lite relativt til U at mye plass brukes til ingen nytte. Når 
K er mye mindre enn U bruker en hash table mye mindre lagringsplass enn en direct-address table. 

Vi kan redusere plassbehovet til 
  Θ( K )  uten å miste muligheten til å søke etter et element i  Ο(1)  tid. 

Imidlertid gjelder denne øvre grensa kun for average case, og ikke for worst case kjøretid, som for direkte 
adressering. 
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When Q:head D Q: tail C 1, the queue is full, and if we attempt to enqueue an
element, then the queue overflows.

In our procedures ENQUEUE and DEQUEUE, we have omitted the error checking
for underflow and overflow. (Exercise 10.1-4 asks you to supply code that checks
for these two error conditions.) The pseudocode assumes that n D Q: length.

ENQUEUE.Q; x/

1 QŒQ: tail! D x
2 ifQ: tail == Q: length
3 Q: tail D 1
4 elseQ: tail D Q: tailC 1

DEQUEUE.Q/

1 x D QŒQ:head!
2 ifQ:head == Q: length
3 Q:head D 1
4 elseQ:head D Q:head C 1
5 return x

Figure 10.2 shows the effects of the ENQUEUE and DEQUEUE operations. Each
operation takes O.1/ time.

Exercises
10.1-1
Using Figure 10.1 as a model, illustrate the result of each operation in the sequence
PUSH.S; 4/, PUSH.S; 1/, PUSH.S; 3/, POP.S/, PUSH.S; 8/, and POP.S/ on an
initially empty stack S stored in array SŒ1 : : 6!.
10.1-2
Explain how to implement two stacks in one array AŒ1 : : n! in such a way that
neither stack overflows unless the total number of elements in both stacks together
is n. The PUSH and POP operations should run in O.1/ time.
10.1-3
Using Figure 10.2 as a model, illustrate the result of each operation in the
sequence ENQUEUE.Q; 4/, ENQUEUE.Q; 1/, ENQUEUE.Q; 3/, DEQUEUE.Q/,
ENQUEUE.Q; 8/, and DEQUEUE.Q/ on an initially empty queue Q stored in
array QŒ1 : : 6!.
10.1-4
Rewrite ENQUEUE and DEQUEUE to detect underflow and overflow of a queue.



 

  

Chapter 12 Binary Search Trees 

Et søketre støtter mange dynamiske operasjoner, inkludert SEARCH, MINIMUM, MAXIMUM, 
PREDECESSOR, SUCCESSOR, INSERT, og DELETE. Altså kan vi se på set søketre både som en 
dictionary og en prioritetskø. 

Basisoperasjoner på et binært søketre tar en mengde tid proposjonalt med høyden på treet, altså 

  Θ(lg n )  worst-case tid. 

Chapter 15 Dynamic Programming 

Dynamisk programmering løser problemer ved å kombinere løsningene til delproblemene, likt som 
med divide-and-conquer-løsninger. Dynamisk programmering tar over for divide-and-conquer-
fremgangsmåten når delproblemene overlapper, altså når delproblemene deler delproblemer. En 
dynamisk algoritme løser hvert del-delproblem kun én gang, og lagrer svaret i en tabell. Slik sparer 
den seg selv for arbeid. 

Vi bruker dynamisk programmering i opt imeringsproblemer . Slike problemer kan ha mange mulige 
løsninger, og vi ønsker å finne en optimal løsning. Dynamisk probrammering følger fire steg: 

1. Karakteriser strukturen til en optimal løsning. 
2. Definer verdien til en optimal løsning rekursivt. 
3. Beregn verdien til en optimal løsning, vanligvis bottom-up. 
4. Konstruer en optimal løsning fra den beregnede informasjonen. 

Steg 1-3 utgjør grunnlaget for en dynamisk-programmering-løsning til et problem. 
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terminate (unsuccessfully) when it finds an empty slot, since k would have been
inserted there and not later in its probe sequence. (This argument assumes that keys
are not deleted from the hash table.) The procedure HASH-SEARCH takes as input
a hash table T and a key k, returning j if it finds that slot j contains key k, or NIL
if key k is not present in table T .

HASH-SEARCH.T; k/

1 i D 0
2 repeat
3 j D h.k; i/
4 if T Œj ! == k
5 return j
6 i D i C 1
7 until T Œj ! == NIL or i == m
8 return NIL

Deletion from an open-address hash table is difficult. When we delete a key
from slot i , we cannot simply mark that slot as empty by storing NIL in it. If
we did, we might be unable to retrieve any key k during whose insertion we had
probed slot i and found it occupied. We can solve this problem by marking the
slot, storing in it the special value DELETED instead of NIL. We would then modify
the procedure HASH-INSERT to treat such a slot as if it were empty so that we can
insert a new key there. We do not need to modify HASH-SEARCH, since it will pass
over DELETED values while searching. When we use the special value DELETED,
however, search times no longer depend on the load factor ˛, and for this reason
chaining is more commonly selected as a collision resolution technique when keys
must be deleted.

In our analysis, we assume uniform hashing: the probe sequence of each key
is equally likely to be any of the mŠ permutations of h0; 1; : : : ; m ! 1i. Uni-
form hashing generalizes the notion of simple uniform hashing defined earlier to a
hash function that produces not just a single number, but a whole probe sequence.
True uniform hashing is difficult to implement, however, and in practice suitable
approximations (such as double hashing, defined below) are used.

We will examine three commonly used techniques to compute the probe se-
quences required for open addressing: linear probing, quadratic probing, and dou-
ble hashing. These techniques all guarantee that hh.k; 0/; h.k; 1/; : : : ; h.k;m ! 1/i
is a permutation of h0; 1; : : : ; m ! 1i for each key k. None of these techniques ful-
fills the assumption of uniform hashing, however, since none of them is capable of
generating more than m2 different probe sequences (instead of the mŠ that uniform
hashing requires). Double hashing has the greatest number of probe sequences and,
as one might expect, seems to give the best results.



 

  

  

  

  

Denne metoden definerer at et problem av størrelse i er mindre enn et problem av størrelse j dersom 

 i < j . 

Begge framgangsmåtene gir kjøretid   Θ(n2 ).  Bottom-up på grunn av sin doble for-løkke, den 
memoiserte har samme kjøretid, men av grunner det kan være vanskeligere å se (for-løkken kjører n 

ganger og gir en aritmetisk rekke med   Θ(n2 )  iterasjoner). 
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In this formulation, an optimal solution embodies the solution to only one related
subproblem—the remainder—rather than two.

Recursive top-down implementation
The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CUT-ROD.p; n/

1 if n == 0
2 return 0
3 q D !1
4 for i D 1 to n
5 q D max.q; pŒi !C CUT-ROD.p; n ! i//
6 return q

Procedure CUT-ROD takes as input an array pŒ1 : : n! of prices and an integer n,
and it returns the maximum revenue possible for a rod of length n. If n D 0, no
revenue is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the
maximum revenue q to !1, so that the for loop in lines 4–5 correctly computes
q D max1!i!n.pi C CUT-ROD.p; n ! i//; line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer rn, using
equation (15.2).

If you were to code up CUT-ROD in your favorite programming language and run
it on your computer, you would find that once the input size becomes moderately
large, your program would take a long time to run. For n D 40, you would find that
your program takes at least several minutes, and most likely more than an hour. In
fact, you would find that each time you increase n by 1, your program’s running
time would approximately double.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD calls itself
recursively over and over again with the same parameter values; it solves the
same subproblems repeatedly. Figure 15.3 illustrates what happens for n D 4:
CUT-ROD.p; n/ calls CUT-ROD.p; n ! i/ for i D 1; 2; : : : ; n. Equivalently,
CUT-ROD.p; n/ calls CUT-ROD.p; j / for each j D 0; 1; : : : ; n ! 1. When this
process unfolds recursively, the amount of work done, as a function of n, grows
explosively.

To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD when called with its second parameter equal to n. This
expression equals the number of nodes in a subtree whose root is labeled n in the
recursion tree. The count includes the initial call at its root. Thus, T .0/ D 1 and
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up, rather than recompute it. Dynamic programming thus uses additional memory
to save computation time; it serves an example of a time-memory trade-off. The
savings may be dramatic: an exponential-time solution may be transformed into a
polynomial-time solution. A dynamic-programming approach runs in polynomial
time when the number of distinct subproblems involved is polynomial in the input
size and we can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming
approach. We shall illustrate both of them with our rod-cutting example.

The first approach is top-down with memoization.2 In this approach, we write
the procedure recursively in a natural manner, but modified to save the result of
each subproblem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level; if not, the procedure computes the
value in the usual manner. We say that the recursive procedure has beenmemoized;
it “remembers” what results it has computed previously.

The second approach is the bottom-up method. This approach typically depends
on some natural notion of the “size” of a subproblem, such that solving any par-
ticular subproblem depends only on solving “smaller” subproblems. We sort the
subproblems by size and solve them in size order, smallest first. When solving a
particular subproblem, we have already solved all of the smaller subproblems its
solution depends upon, and we have saved their solutions. We solve each sub-
problem only once, and when we first see it, we have already solved all of its
prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time,
except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has less overhead for procedure calls.

Here is the the pseudocode for the top-down CUT-ROD procedure, with memo-
ization added:

MEMOIZED-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 for i D 0 to n
3 rŒi ! D !1
4 return MEMOIZED-CUT-ROD-AUX.p; n; r/

2This is not a misspelling. The word really is memoization, not memorization. Memoization comes
from memo, since the technique consists of recording a value so that we can look it up later.
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MEMOIZED-CUT-ROD-AUX.p; n; r/

1 if rŒn! ! 0
2 return rŒn!
3 if n == 0
4 q D 0
5 else q D "1
6 for i D 1 to n
7 q D max.q; pŒi !CMEMOIZED-CUT-ROD-AUX.p; n " i; r//
8 rŒn! D q
9 return q

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray rŒ0 : : n! with the value "1, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value is already known and, if it is, then line 2 returns it. Otherwise, lines 3–7
compute the desired value q in the usual manner, line 8 saves it in rŒn!, and line 9
returns it.

The bottom-up version is even simpler:

BOTTOM-UP-CUT-ROD.p; n/

1 let rŒ0 : : n! be a new array
2 rŒ0! D 0
3 for j D 1 to n
4 q D "1
5 for i D 1 to j
6 q D max.q; pŒi !C rŒj " i !/
7 rŒj ! D q
8 return rŒn!

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j . Thus, the procedure solves subproblems of
sizes j D 0; 1; : : : ; n, in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array rŒ0 : : n! in
which to save the results of the subproblems, and line 2 initializes rŒ0! to 0, since
a rod of length 0 earns no revenue. Lines 3–6 solve each subproblem of size j , for
j D 1; 2; : : : ; n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now
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15.2 Matrix-chain multiplication 
Nok et eksempel på dynamisk programmering. For å matrisemultiplisere en kjede med fire matriser 

  A1 , A2 , A3 , A4  kan vi sette parantesene på fem forskjellige måter: 

  

Hvilken vi velger kan ha stor innvirkning på kostnaden ved multiplikasjonen. 

  

Applying dynamic programming 
For å bruke dynamisk programmering for å bestemme den optimale parantesstrukturen følger vi 
disse fire stegene: 

1. Karakteriser strukturen til en optimal løsning. 
2. Definer verdien til en optimal løsning rekursivt. 
3. Beregn verdien til en optimal løsning. 
4. Konstruer en optimal løsning fra den beregnede informasjonen. 

Disse fire stegene for dette eksemplet er gjennomgått i Cormen side 373-377. 
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.A1.A2.A3A4/// ;

.A1..A2A3/A4// ;

..A1A2/.A3A4// ;

..A1.A2A3//A4/ ;

...A1A2/A3/A4/ :

How we parenthesize a chain of matrices can have a dramatic impact on the cost
of evaluating the product. Consider first the cost of multiplying two matrices. The
standard algorithm is given by the following pseudocode, which generalizes the
SQUARE-MATRIX-MULTIPLY procedure from Section 4.2. The attributes rows
and columns are the numbers of rows and columns in a matrix.
MATRIX-MULTIPLY.A; B/

1 if A:columns ¤ B:rows
2 error “incompatible dimensions”
3 else let C be a new A:rows ! B:columns matrix
4 for i D 1 to A:rows
5 for j D 1 to B:columns
6 cij D 0
7 for k D 1 to A:columns
8 cij D cij C aik " bkj

9 return C

We can multiply two matrices A and B only if they are compatible: the number of
columns of A must equal the number of rows of B . If A is a p ! q matrix and B is
a q ! r matrix, the resulting matrix C is a p ! r matrix. The time to compute C is
dominated by the number of scalar multiplications in line 8, which is pqr . In what
follows, we shall express costs in terms of the number of scalar multiplications.

To illustrate the different costs incurred by different parenthesizations of a matrix
product, consider the problem of a chain hA1; A2; A3i of three matrices. Suppose
that the dimensions of the matrices are 10 ! 100, 100 ! 5, and 5 ! 50, respec-
tively. If we multiply according to the parenthesization ..A1A2/A3/, we perform
10 " 100 " 5 D 5000 scalar multiplications to compute the 10 ! 5 matrix prod-
uct A1A2, plus another 10 " 5 " 50 D 2500 scalar multiplications to multiply this
matrix by A3, for a total of 7500 scalar multiplications. If instead we multiply
according to the parenthesization .A1.A2A3//, we perform 100 " 5 " 50 D 25,000
scalar multiplications to compute the 100 ! 50 matrix product A2A3, plus another
10 " 100 " 50 D 50,000 scalar multiplications to multiply A1 by this matrix, for a
total of 75,000 scalar multiplications. Thus, computing the product according to
the first parenthesization is 10 times faster.

We state the matrix-chain multiplication problem as follows: given a chain
hA1;A2; : : : ;Ani of n matrices, where for i D 1; 2; : : : ; n, matrix Ai has dimension
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Tabellene beregnet av MATRIX-CHAIN-ORDER for n = 6. 

  

For å konstruere den endelige optimale løsningen kaller vi følgende algoritme: 

  

I eksemplet over ville et slikt kall printet   (( A1( A2 A3 ))(( A4 A5 )A6 )).  

15.3 Elements of dynamic programming 
Når skal vi bruke dynamisk programmering? Vi skal se på to nøkkelingredienser som et 
optimeringsproblem må ha for at det skal være noen vits: Optimal substruktur og overlappende 
delproblemer. 
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Figure 15.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n D 6 and the follow-
ing matrix dimensions:

matrix A1 A2 A3 A4 A5 A6

dimension 30 ! 35 35 ! 15 15 ! 5 5 ! 10 10 ! 20 20 ! 25

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the main
diagonal and upper triangle, and the s table uses only the upper triangle. The minimum number of
scalar multiplications to multiply the 6 matrices is mŒ1; 6! D 15,125. Of the darker entries, the pairs
that have the same shading are taken together in line 10 when computing

mŒ2; 5! D min

8
<̂

:̂

mŒ2; 2!CmŒ3; 5!C p1p2p5 D 0C 2500C 35 " 15 " 20 D 13,000 ;

mŒ2; 3!CmŒ4; 5!C p1p3p5 D 2625C 1000C 35 " 5 " 20 D 7125 ;

mŒ2; 4!CmŒ5; 5!C p1p4p5 D 4375C 0C 35 " 10 " 20 D 11,375
D 7125 :

The algorithm first computes mŒi; i ! D 0 for i D 1; 2; : : : ; n (the minimum
costs for chains of length 1) in lines 3–4. It then uses recurrence (15.7) to compute
mŒi; i C 1! for i D 1; 2; : : : ; n # 1 (the minimum costs for chains of length l D 2)
during the first execution of the for loop in lines 5–13. The second time through the
loop, it computes mŒi; iC2! for i D 1; 2; : : : ; n#2 (the minimum costs for chains of
length l D 3), and so forth. At each step, the mŒi; j ! cost computed in lines 10–13
depends only on table entries mŒi; k! and mŒk C 1; j ! already computed.

Figure 15.5 illustrates this procedure on a chain of n D 6 matrices. Since
we have defined mŒi; j ! only for i $ j , only the portion of the table m strictly
above the main diagonal is used. The figure shows the table rotated to make the
main diagonal run horizontally. The matrix chain is listed along the bottom. Us-
ing this layout, we can find the minimum cost mŒi; j ! for multiplying a subchain
AiAiC1 " " " Aj of matrices at the intersection of lines running northeast from Ai and
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Observe that we have relatively few distinct subproblems: one subproblem for
each choice of i and j satisfying 1 ! i ! j ! n, or !

n
2

"
C n D ‚.n2/ in all.

A recursive algorithm may encounter each subproblem many times in different
branches of its recursion tree. This property of overlapping subproblems is the
second hallmark of when dynamic programming applies (the first hallmark being
optimal substructure).

Instead of computing the solution to recurrence (15.7) recursively, we compute
the optimal cost by using a tabular, bottom-up approach. (We present the corre-
sponding top-down approach using memoization in Section 15.3.)

We shall implement the tabular, bottom-up method in the procedure MATRIX-
CHAIN-ORDER, which appears below. This procedure assumes that matrix Ai

has dimensions pi!1 " pi for i D 1; 2; : : : ; n. Its input is a sequence p D
hp0; p1; : : : ; pni, where p: length D n C 1. The procedure uses an auxiliary
table mŒ1 : : n; 1 : : n! for storing the mŒi; j ! costs and another auxiliary table
sŒ1 : : n # 1; 2 : : n! that records which index of k achieved the optimal cost in com-
puting mŒi; j !. We shall use the table s to construct an optimal solution.

In order to implement the bottom-up approach, we must determine which entries
of the table we refer to when computing mŒi; j !. Equation (15.7) shows that the
cost mŒi; j ! of computing a matrix-chain product of j #iC1 matrices depends only
on the costs of computing matrix-chain products of fewer than j # i C 1 matrices.
That is, for k D i; i C 1; : : : ; j # 1, the matrix Ai ::k is a product of k # i C 1 <
j # i C 1 matrices and the matrix AkC1::j is a product of j # k < j # i C 1
matrices. Thus, the algorithm should fill in the table m in a manner that corresponds
to solving the parenthesization problem on matrix chains of increasing length. For
the subproblem of optimally parenthesizing the chain AiAiC1 $ $ $ Aj , we consider
the subproblem size to be the length j # i C 1 of the chain.
MATRIX-CHAIN-ORDER.p/

1 n D p: length # 1
2 let mŒ1 : : n; 1 : : n! and sŒ1 : : n # 1; 2 : : n! be new tables
3 for i D 1 to n
4 mŒi; i ! D 0
5 for l D 2 to n // l is the chain length
6 for i D 1 to n # l C 1
7 j D i C l # 1
8 mŒi; j ! D 1
9 for k D i to j # 1

10 q D mŒi; k!CmŒk C 1; j !C pi!1pkpj

11 if q < mŒi; j !
12 mŒi; j ! D q
13 sŒi; j ! D k
14 return m and s

15.2 Matrix-chain multiplication 377

northwest from Aj . Each horizontal row in the table contains the entries for matrix
chains of the same length. MATRIX-CHAIN-ORDER computes the rows from bot-
tom to top and from left to right within each row. It computes each entry mŒi; j !
using the products pi!1pkpj for k D i; i C 1; : : : ; j ! 1 and all entries southwest
and southeast from mŒi; j !.

A simple inspection of the nested loop structure of MATRIX-CHAIN-ORDER
yields a running time of O.n3/ for the algorithm. The loops are nested three deep,
and each loop index (l , i , and k) takes on at most n!1 values. Exercise 15.2-5 asks
you to show that the running time of this algorithm is in fact also ".n3/. The al-
gorithm requires ‚.n2/ space to store the m and s tables. Thus, MATRIX-CHAIN-
ORDER is much more efficient than the exponential-time method of enumerating
all possible parenthesizations and checking each one.

Step 4: Constructing an optimal solution
Although MATRIX-CHAIN-ORDER determines the optimal number of scalar mul-
tiplications needed to compute a matrix-chain product, it does not directly show
how to multiply the matrices. The table sŒ1 : : n ! 1; 2 : : n! gives us the informa-
tion we need to do so. Each entry sŒi; j ! records a value of k such that an op-
timal parenthesization of AiAiC1 " " " Aj splits the product between Ak and AkC1.
Thus, we know that the final matrix multiplication in computing A1::n optimally
is A1::sŒ1;n!AsŒ1;n!C1::n. We can determine the earlier matrix multiplications recur-
sively, since sŒ1; sŒ1; n!! determines the last matrix multiplication when computing
A1::sŒ1;n! and sŒsŒ1; n! C 1; n! determines the last matrix multiplication when com-
puting AsŒ1;n!C1::n. The following recursive procedure prints an optimal parenthe-
sization of hAi ; AiC1; : : : ; Aj i, given the s table computed by MATRIX-CHAIN-
ORDER and the indices i and j . The initial call PRINT-OPTIMAL-PARENS.s; 1; n/
prints an optimal parenthesization of hA1; A2; : : : ; Ani.

PRINT-OPTIMAL-PARENS.s; i; j /

1 if i == j
2 print “A”i

3 else print “(”
4 PRINT-OPTIMAL-PARENS.s; i; sŒi; j !/
5 PRINT-OPTIMAL-PARENS.s; sŒi; j ! C 1; j /
6 print “)”

In the example of Figure 15.5, the call PRINT-OPTIMAL-PARENS.s; 1; 6/ prints
the parenthesization ..A1.A2A3//..A4A5/A6//.



 

Optimal substructure 
Et problem har opt imal substruktur  dersom en optimal løsning til problemet inneholder optimale 
løsninger til delproblemene. Følgende mønster går igjen når vi leter etter en optimal substruktur: 

1. Vi viser at løsningen til problemet består av å ta et valg, for eksempel det første kuttet i et 
stålrør. Ved å ta dette valget får vi flere delproblemer som må løses. 

2. Vi antar at for et gitt problem blir vi gitt valget som gir optimal løsning. 
3. Gitt dette valget finner vi ut hvilke delproblemer som melder seg og hvordan vi best kan 

karakterisere denne mengden av delproblemer. 
4. Vi viser at løsningene til delproblemene som må brukes i en optimal løsning på 

hovedproblemet i seg selv er optimale ved bruk av "klipp-og-lim"-teknikken. Vi antar altså at 
løsningen av hvert delproblem ikke er optimal og viser at dette gir en kontradiksjon. Ved å 
"klippe ut" den ikke-optimale løsningen og "lime inn" den optimale viser vi at dette gir en 
bedre løsning til hovedproblemet. Altså viser vi ved kontradiksjon at vi hadde en optimal 
løsning i utgangspunktet.  

For å beskrive mengden delproblemer er det en god regel å prøve å holde dette så enkelt som mulig, 
og heller utvide det dersom det blir nødvendig. 

Optimal substruktur varierer på to måter: 

1. hvor mange delproblemer en optimal løsning av hovedproblemet bruker, og 
2. hvor mange valg vi har når vi skal bestemme hvilke delproblemer vi bruker i en optimal 

løsning. 

Kjøretida til en algoritme i dynamisk programmering avhenger av et produkt av to faktorer: Antall 
delproblemer og hvor mange valg vi har i hvert delproblem. I rørkuttingen hadde vi   Θ(n )  

delproblemer, og max n valg i hvert, altså fikk vi kjøretid   Ο(n2 ).  

Overlappende delproblemer 
For at det skal være snakk om dynamisk programmering krever vi at en rekursivt algoritme for 
problemet løser de samme delproblemene om og om og om og om igjen. 



 

  

Chapter 16 Greedy Algorithms 

Man må være uhyre forsiktig hvis man vil konstruere en grådig algoritme som løsning på et problem. 
Det kan være relativt lett å finne en slik en, men uhyre vanskelig å bevise at den faktisk gir optimal 
løsning for alle input. I noen tilfeller kan vi også finne grådige algoritmer som ikke fungerer for alle 
input, men som vi tror gjør det, fordi de fungerer for visse input (de vi trenger) 

For å designe grådige algoritmer går vi gjennom følgende tre steg: 

1. Gjør om optimeringsproblemet til et der vi må gjøre et valg, og står igjen med kun ett 
delproblem. 

2. Bevis at det alltid finnes en optimal løsning til hovedproblemet som tar det grådige valget, 
slik at det alltid er trygt å velge det grådige valget. 

3. Demonstrer den optimale delstrukturen ved å vise at etter vi har tatt det grådige valget står vi 
igjen med et delproblem som innehar den egenskapen at dersom vi kombinerer en optimal 
løsning til delproblemet med det grådige valget vi tok, får vi en optimal løsning på det 
originale problemet. 

Vi trenger altså en greedy-choice  property  og en opt imal de ls truktur .  
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MEMOIZED-MATRIX-CHAIN.p/

1 n D p: length ! 1
2 let mŒ1 : : n; 1 : : n! be a new table
3 for i D 1 to n
4 for j D i to n
5 mŒi; j ! D 1
6 return LOOKUP-CHAIN.m; p; 1; n/

LOOKUP-CHAIN.m; p; i; j /

1 if mŒi; j ! <1
2 return mŒi; j !
3 if i == j
4 mŒi; j ! D 0
5 else for k D i to j ! 1
6 q D LOOKUP-CHAIN.m; p; i; k/

C LOOKUP-CHAIN.m; p; k C 1; j /C pi!1pkpj

7 if q < mŒi; j !
8 mŒi; j ! D q
9 return mŒi; j !

The MEMOIZED-MATRIX-CHAIN procedure, like MATRIX-CHAIN-ORDER,
maintains a table mŒ1 : : n; 1 : : n! of computed values of mŒi; j !, the minimum num-
ber of scalar multiplications needed to compute the matrix Ai ::j . Each table entry
initially contains the value1 to indicate that the entry has yet to be filled in. Upon
calling LOOKUP-CHAIN.m; p; i; j /, if line 1 finds that mŒi; j ! <1, then the pro-
cedure simply returns the previously computed cost mŒi; j ! in line 2. Otherwise,
the cost is computed as in RECURSIVE-MATRIX-CHAIN, stored in mŒi; j !, and
returned. Thus, LOOKUP-CHAIN.m; p; i; j / always returns the value of mŒi; j !,
but it computes it only upon the first call of LOOKUP-CHAIN with these specific
values of i and j .

Figure 15.7 illustrates how MEMOIZED-MATRIX-CHAIN saves time compared
with RECURSIVE-MATRIX-CHAIN. Shaded subtrees represent values that it looks
up rather than recomputes.

Like the bottom-up dynamic-programming algorithm MATRIX-CHAIN-ORDER,
the procedure MEMOIZED-MATRIX-CHAIN runs in O.n3/ time. Line 5 of
MEMOIZED-MATRIX-CHAIN executes ‚.n2/ times. We can categorize the calls
of LOOKUP-CHAIN into two types:
1. calls in which mŒi; j ! D1, so that lines 3–9 execute, and
2. calls in which mŒi; j ! <1, so that LOOKUP-CHAIN simply returns in line 2.



 

22.2 Breadth-first search 
Prims og Dijkstras algoritmer for MST og shortest path bygger på BFS . 
 

  

Kjøretid:   Θ(V + E).  

Shortest paths 
BFS kan brukes til å finne korteste veier. Vi definerer en kortes te  ve i    δ (s ,v )  fra s til v som det 

minste antall kanter i enhver vei fra s til v. Dersom ingen veier finnes er   δ (s ,v )= ∞.  

22.3 Depth-first search 
Dybde-først-søk (DFS) utforsker kanter ut fra den mest nylig oppdagede noden v som fortsatt har 
uoppdagede kanter ut fra seg. Deretter backtracker søket for å utforske kantene som går ut fra 
noden som oppdaget v. 

Kjøretid:   Θ(V + E).  

Classification of edges 

Vi har fire typer kanter i en DFS-skog  Gπ  produsert av DFS kjørt på G: 

1. Tree edges  er kanter i DFS-skogen  Gπ . 

2. Back edges  er de kantene som fobinder en node u til en forgjenger v i et DFS-tre. Self-loops 
ses på som back edges. 

3. Forward edges  er kanter som ikke er tree edges og som forbinder en node u til en 
etterkommer v i et DFS-tre. 

22.2 Breadth-first search 595

The breadth-first-search procedure BFS below assumes that the input graph
G D .V; E/ is represented using adjacency lists. It attaches several additional
attributes to each vertex in the graph. We store the color of each vertex u 2 V
in the attribute u:color and the predecessor of u in the attribute u:! . If u has no
predecessor (for example, if u D s or u has not been discovered), then u:! D NIL.
The attribute u:d holds the distance from the source s to vertex u computed by the
algorithm. The algorithm also uses a first-in, first-out queue Q (see Section 10.1)
to manage the set of gray vertices.

BFS.G; s/

1 for each vertex u 2 G:V ! fsg
2 u:color D WHITE
3 u:d D 1
4 u:! D NIL
5 s:color D GRAY
6 s:d D 0
7 s:! D NIL
8 Q D ;
9 ENQUEUE.Q; s/

10 whileQ ¤ ;
11 u D DEQUEUE.Q/
12 for each " 2 G:AdjŒu#
13 if ":color == WHITE
14 ":color D GRAY
15 ":d D u:dC 1
16 ":! D u
17 ENQUEUE.Q; "/
18 u:color D BLACK

Figure 22.3 illustrates the progress of BFS on a sample graph.
The procedure BFS works as follows. With the exception of the source vertex s,

lines 1–4 paint every vertex white, set u:d to be infinity for each vertex u, and set
the parent of every vertex to be NIL. Line 5 paints s gray, since we consider it to be
discovered as the procedure begins. Line 6 initializes s:d to 0, and line 7 sets the
predecessor of the source to be NIL. Lines 8–9 initialize Q to the queue containing
just the vertex s.

The while loop of lines 10–18 iterates as long as there remain gray vertices,
which are discovered vertices that have not yet had their adjacency lists fully ex-
amined. This while loop maintains the following invariant:

At the test in line 10, the queue Q consists of the set of gray vertices.



 

4. Cross edges  er alle andre kanter. Disse kan gå mellom kanter i samme DFS-tre, så lenge den 
ene noden ikke er etterkommer av den andre, eller de kan gå mellom noder i forskjellige 
DFS-trær. 

Når vi først oppdager en kant fra u til v, forteller fargen til node v oss noe om kanten: 

• WHITE indikerer en tree edge, 
• GRAY indikerer en back edge, og 
• BLACK indikerer en forward eller cross edge. 

22.4 Topological sort 
Vi kan bruke DFS til topologisk sortering av en directed acyclic graph (dag). En topolog isk 
sorter ing  av en dag   G = (V , E)  er en lineær ordning av alle nodene slik at dersom det finnes en kant 
fra u til v, forekommer u før v i ordningen. Dette er ikke oppnåelig dersom grafen har sykler. 

  

Kjøretid:   Θ(V + E).  

Chapter 23 Minimum Spanning Trees 

For å koble sammen n noder på et kretskort kan vi bruke et oppsett med n - 1 kabler, der hver kabel 
kobler sammen to noder. Det optimale er å bruke så lite kabel som mulig. Vi kan se på dette 
problemet som en sammenkoblet, urettet graf   G = (V , E) , der V er mengden noder, E er mengden 
mulige sammenkoblinger og w(u, v) er mengden kabel som trengs for å sammenkoble to noder. Vi 
ønsker å finne et asyklisk subsett  T ⊆ E  som sammenkobler alle nodene og hvis totale vekt 

 
  
w(T )= w(u ,v )

(u ,v )∈T
∑  

er minimert. Siden T er asyklisk og kobler sammen alle nodene, må det være et tre, som vi kaller et 
spenntre , siden det spenner ut grafen G. Vi kaller problemet over et minimalt  spenntre -problem . 
Figuren på neste side viser et eksempel på en sammenkoblet graf og et minimalt spenntre. 
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Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.



 

  

Et minimalt spenntre for en sammenkoblet graf. 

Theorem 23.1 
La   G = (V , E)  være en sammenkoblet, urettet, vektet graf og la A være en mengde kanter inkludert i 
et eller annet MST for G. La   (S ,V − S )  være et kutt som respekterer A, og la (u, v) være en lett kant 
som kutter   (S ,V − S ) . Da er kanten (u, v) en trygg kant for A. 

  

En måte å se et kutt av grafen på forrige figur på. De svarte nodene er i settet S, og de hvite er i settet V - S. 
(d, c) er den unike lette kanten. 
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Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown,
and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This
minimum spanning tree is not unique: removing the edge .b; c/ and replacing it with the edge .a; h/
yields another spanning tree with weight 37.

to problems. For the minimum-spanning-tree problem, however, we can prove that
certain greedy strategies do yield a spanning tree with minimum weight. Although
you can read this chapter independently of Chapter 16, the greedy methods pre-
sented here are a classic application of the theoretical notions introduced there.

Section 23.1 introduces a “generic” minimum-spanning-tree method that grows
a spanning tree by adding one edge at a time. Section 23.2 gives two algorithms
that implement the generic method. The first algorithm, due to Kruskal, is similar
to the connected-components algorithm from Section 21.1. The second, due to
Prim, resembles Dijkstra’s shortest-paths algorithm (Section 24.3).

Because a tree is a type of graph, in order to be precise we must define a tree in
terms of not just its edges, but its vertices as well. Although this chapter focuses
on trees in terms of their edges, we shall operate with the understanding that the
vertices of a tree T are those that some edge of T is incident on.

23.1 Growing a minimum spanning tree

Assume that we have a connected, undirected graph G D .V; E/ with a weight
function w W E ! R, and we wish to find a minimum spanning tree for G. The
two algorithms we consider in this chapter use a greedy approach to the problem,
although they differ in how they apply this approach.

This greedy strategy is captured by the following generic method, which grows
the minimum spanning tree one edge at a time. The generic method manages a set
of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree.
At each step, we determine an edge .u; !/ that we can add to A without violating
this invariant, in the sense that A[f.u; !/g is also a subset of a minimum spanning
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Figure 23.2 Two ways of viewing a cut .S; V ! S/ of the graph from Figure 23.1. (a) Black
vertices are in the set S , and white vertices are in V ! S . The edges crossing the cut are those
connecting white vertices with black vertices. The edge .d; c/ is the unique light edge crossing the
cut. A subset A of the edges is shaded; note that the cut .S; V ! S/ respects A, since no edge of A
crosses the cut. (b) The same graph with the vertices in the set S on the left and the vertices in the
set V ! S on the right. An edge crosses the cut if it connects a vertex on the left with a vertex on the
right.

Proof Let T be a minimum spanning tree that includes A, and assume that T
does not contain the light edge .u; !/, since if it does, we are done. We shall
construct another minimum spanning tree T 0 that includes A [ f.u; !/g by using a
cut-and-paste technique, thereby showing that .u; !/ is a safe edge for A.

The edge .u; !/ forms a cycle with the edges on the simple path p from u
to ! in T , as Figure 23.3 illustrates. Since u and ! are on opposite sides of the
cut .S; V ! S/, at least one edge in T lies on the simple path p and also crosses
the cut. Let .x; y/ be any such edge. The edge .x; y/ is not in A, because the cut
respects A. Since .x; y/ is on the unique simple path from u to ! in T , remov-
ing .x; y/ breaks T into two components. Adding .u; !/ reconnects them to form
a new spanning tree T 0 D T ! f.x; y/g [ f.u; !/g.

We next show that T 0 is a minimum spanning tree. Since .u; !/ is a light edge
crossing .S; V !S/ and .x; y/ also crosses this cut, w.u; !/ " w.x; y/. Therefore,
w.T 0/ D w.T / ! w.x; y/Cw.u; !/

" w.T / :
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Proof Let T be a minimum spanning tree that includes A, and assume that T
does not contain the light edge .u; !/, since if it does, we are done. We shall
construct another minimum spanning tree T 0 that includes A [ f.u; !/g by using a
cut-and-paste technique, thereby showing that .u; !/ is a safe edge for A.

The edge .u; !/ forms a cycle with the edges on the simple path p from u
to ! in T , as Figure 23.3 illustrates. Since u and ! are on opposite sides of the
cut .S; V ! S/, at least one edge in T lies on the simple path p and also crosses
the cut. Let .x; y/ be any such edge. The edge .x; y/ is not in A, because the cut
respects A. Since .x; y/ is on the unique simple path from u to ! in T , remov-
ing .x; y/ breaks T into two components. Adding .u; !/ reconnects them to form
a new spanning tree T 0 D T ! f.x; y/g [ f.u; !/g.

We next show that T 0 is a minimum spanning tree. Since .u; !/ is a light edge
crossing .S; V !S/ and .x; y/ also crosses this cut, w.u; !/ " w.x; y/. Therefore,
w.T 0/ D w.T / ! w.x; y/Cw.u; !/

" w.T / :
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Figure 23.3 The proof of Theorem 23.1. Black vertices are in S , and white vertices are in V ! S .
The edges in the minimum spanning tree T are shown, but the edges in the graph G are not. The
edges in A are shaded, and .u; !/ is a light edge crossing the cut .S; V ! S/. The edge .x; y/ is
an edge on the unique simple path p from u to ! in T . To form a minimum spanning tree T 0 that
contains .u; !/, remove the edge .x; y/ from T and add the edge .u; !/.

But T is a minimum spanning tree, so that w.T / " w.T 0/; thus, T 0 must be a
minimum spanning tree also.

It remains to show that .u; !/ is actually a safe edge for A. We have A # T 0,
since A # T and .x; y/ 62 A; thus, A [ f.u; !/g # T 0. Consequently, since T 0 is a
minimum spanning tree, .u; !/ is safe for A.

Theorem 23.1 gives us a better understanding of the workings of the GENERIC-
MST method on a connected graph G D .V; E/. As the method proceeds, the
set A is always acyclic; otherwise, a minimum spanning tree including A would
contain a cycle, which is a contradiction. At any point in the execution, the graph
GA D .V; A/ is a forest, and each of the connected components of GA is a tree.
(Some of the trees may contain just one vertex, as is the case, for example, when
the method begins: A is empty and the forest contains jV j trees, one for each
vertex.) Moreover, any safe edge .u; !/ for A connects distinct components of GA,
since A [ f.u; !/g must be acyclic.

The while loop in lines 2–4 of GENERIC-MST executes jV j ! 1 times because
it finds one of the jV j ! 1 edges of a minimum spanning tree in each iteration.
Initially, when A D ;, there are jV j trees in GA, and each iteration reduces that
number by 1. When the forest contains only a single tree, the method terminates.

The two algorithms in Section 23.2 use the following corollary to Theorem 23.1.



 

 
Illustrasjon av beviset på teoremet over. 

Corollary 23.2 
Den lette kanten som kobler sammen et MST for G med en annen samenkoblet komponent er trygg 

for A. Dette er fordi kuttet mellom MST og resten blir respektert av   (VC ,V −VC ) . Da kanten det 

er snakk om er den lette kanten for dette kuttet er denne trygg. 

23.2 The (MST-)algorithms of Kruskal and Prim 

  

Kjøretid:   Ο(E lgV ).  

  

Kjøretid:   Ο(E + E lgV ).  
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contains .u; !/, remove the edge .x; y/ from T and add the edge .u; !/.

But T is a minimum spanning tree, so that w.T / " w.T 0/; thus, T 0 must be a
minimum spanning tree also.

It remains to show that .u; !/ is actually a safe edge for A. We have A # T 0,
since A # T and .x; y/ 62 A; thus, A [ f.u; !/g # T 0. Consequently, since T 0 is a
minimum spanning tree, .u; !/ is safe for A.

Theorem 23.1 gives us a better understanding of the workings of the GENERIC-
MST method on a connected graph G D .V; E/. As the method proceeds, the
set A is always acyclic; otherwise, a minimum spanning tree including A would
contain a cycle, which is a contradiction. At any point in the execution, the graph
GA D .V; A/ is a forest, and each of the connected components of GA is a tree.
(Some of the trees may contain just one vertex, as is the case, for example, when
the method begins: A is empty and the forest contains jV j trees, one for each
vertex.) Moreover, any safe edge .u; !/ for A connects distinct components of GA,
since A [ f.u; !/g must be acyclic.

The while loop in lines 2–4 of GENERIC-MST executes jV j ! 1 times because
it finds one of the jV j ! 1 edges of a minimum spanning tree in each iteration.
Initially, when A D ;, there are jV j trees in GA, and each iteration reduces that
number by 1. When the forest contains only a single tree, the method terminates.

The two algorithms in Section 23.2 use the following corollary to Theorem 23.1.
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23.2 The algorithms of Kruskal and Prim

The two minimum-spanning-tree algorithms described in this section elaborate on
the generic method. They each use a specific rule to determine a safe edge in line 3
of GENERIC-MST. In Kruskal’s algorithm, the set A is a forest whose vertices are
all those of the given graph. The safe edge added to A is always a least-weight
edge in the graph that connects two distinct components. In Prim’s algorithm, the
set A forms a single tree. The safe edge added to A is always a least-weight edge
connecting the tree to a vertex not in the tree.

Kruskal’s algorithm
Kruskal’s algorithm finds a safe edge to add to the growing forest by finding, of all
the edges that connect any two trees in the forest, an edge .u; !/ of least weight.
Let C1 and C2 denote the two trees that are connected by .u; !/. Since .u; !/ must
be a light edge connecting C1 to some other tree, Corollary 23.2 implies that .u; !/
is a safe edge for C1. Kruskal’s algorithm qualifies as a greedy algorithm because
at each step it adds to the forest an edge of least possible weight.

Our implementation of Kruskal’s algorithm is like the algorithm to compute
connected components from Section 21.1. It uses a disjoint-set data structure to
maintain several disjoint sets of elements. Each set contains the vertices in one tree
of the current forest. The operation FIND-SET.u/ returns a representative element
from the set that contains u. Thus, we can determine whether two vertices u and !
belong to the same tree by testing whether FIND-SET.u/ equals FIND-SET.!/. To
combine trees, Kruskal’s algorithm calls the UNION procedure.

MST-KRUSKAL.G; w/

1 A D ;
2 for each vertex ! 2 G:V
3 MAKE-SET.!/
4 sort the edges of G:E into nondecreasing order by weight w
5 for each edge .u; !/ 2 G:E, taken in nondecreasing order by weight
6 if FIND-SET.u/ ¤ FIND-SET.!/
7 A D A [ f.u; !/g
8 UNION.u; !/
9 return A

Figure 23.4 shows how Kruskal’s algorithm works. Lines 1–3 initialize the set A
to the empty set and create jV j trees, one containing each vertex. The for loop in
lines 5–8 examines edges in order of weight, from lowest to highest. The loop
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Prim’s algorithm
Like Kruskal’s algorithm, Prim’s algorithm is a special case of the generic min-
imum-spanning-tree method from Section 23.1. Prim’s algorithm operates much
like Dijkstra’s algorithm for finding shortest paths in a graph, which we shall see in
Section 24.3. Prim’s algorithm has the property that the edges in the set A always
form a single tree. As Figure 23.5 shows, the tree starts from an arbitrary root
vertex r and grows until the tree spans all the vertices in V . Each step adds to the
tree A a light edge that connects A to an isolated vertex—one on which no edge
of A is incident. By Corollary 23.2, this rule adds only edges that are safe for A;
therefore, when the algorithm terminates, the edges in A form a minimum spanning
tree. This strategy qualifies as greedy since at each step it adds to the tree an edge
that contributes the minimum amount possible to the tree’s weight.

In order to implement Prim’s algorithm efficiently, we need a fast way to select
a new edge to add to the tree formed by the edges in A. In the pseudocode below,
the connected graph G and the root r of the minimum spanning tree to be grown
are inputs to the algorithm. During execution of the algorithm, all vertices that
are not in the tree reside in a min-priority queue Q based on a key attribute. For
each vertex !, the attribute !:key is the minimum weight of any edge connecting !
to a vertex in the tree; by convention, !:key D 1 if there is no such edge. The
attribute !:" names the parent of ! in the tree. The algorithm implicitly maintains
the set A from GENERIC-MST as
A D f.!; !:"/ W ! 2 V ! frg ! Qg :

When the algorithm terminates, the min-priority queue Q is empty; the minimum
spanning tree A for G is thus
A D f.!; !:"/ W ! 2 V ! frgg :

MST-PRIM.G; w; r/

1 for each u 2 G:V
2 u:key D 1
3 u:" D NIL
4 r:key D 0
5 Q D G:V
6 whileQ ¤ ;
7 u D EXTRACT-MIN.Q/
8 for each ! 2 G:AdjŒu#
9 if ! 2 Q and w.u; !/ < !:key

10 !:" D u
11 !:key D w.u; !/



 

Chapter 24 Single-Source Shortest Paths 

  

Det å re laxe  en kant består i teste hvorvidt vi kan forbedre den korteste veien til v ved å gå gjennom 
u, og i tilfelle oppdatere v.d og v.π. 

  

Alle korteste vei-algoritmene vi ser på her bruker denne teknikken, dog på foskjellige kanter til 
forskjellige tider. 

23.1 The Bellman-Ford algorithm 
Bellman-Ford returnerer korteste vei og dens vekter, eller FALSE, dersom grafen inneholder negative 
sykler. 

  

Bellman-Ford-algoritmen kjører på   Ο(VE)  tid. I Cormen side 651-653 finnes en del fine lemmaer 
og korollarer, for den som er sugen på mer av det. 

24.2 Single-source shortest paths in directed acyclic graphs 
Dersom vi relaxer alle kantene i en vektet dag i topologisk rekkefølge finner vi korteste vei på 

  Θ(V + E)  tid. 
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Figure 24.2 (a) A weighted, directed graph with shortest-path weights from source s. (b) The
shaded edges form a shortest-paths tree rooted at the source s. (c) Another shortest-paths tree with
the same root.

Shortest paths are not necessarily unique, and neither are shortest-paths trees. For
example, Figure 24.2 shows a weighted, directed graph and two shortest-paths trees
with the same root.

Relaxation
The algorithms in this chapter use the technique of relaxation. For each vertex
! 2 V , we maintain an attribute !:d, which is an upper bound on the weight of
a shortest path from source s to !. We call !:d a shortest-path estimate. We
initialize the shortest-path estimates and predecessors by the following ‚.V /-time
procedure:
INITIALIZE-SINGLE-SOURCE.G; s/

1 for each vertex ! 2 G:V
2 !:d D 1
3 !:" D NIL
4 s:d D 0

After initialization, we have !:" D NIL for all ! 2 V , s:d D 0, and !:d D 1 for
! 2 V ! fsg.

The process of relaxing an edge .u; !/ consists of testing whether we can im-
prove the shortest path to ! found so far by going through u and, if so, updat-
ing !:d and !:" . A relaxation step1 may decrease the value of the shortest-path

1

The use of the term is historical. The outcome of a relaxation step can be viewed as a relaxation
of the constraint !:d " u:d C w.u; !/, which, by the triangle inequality (Lemma 24.10), must be
satisfied if u:d D ı.s; u/ and !:d D ı.s; !/. That is, if !:d " u:d C w.u; !/, there is no “pressure”

It may seem strange that the term “relaxation” is used for an operation that tightens an upper bound.

so the constraint is “relaxed.”to satisfy this constraint,
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Figure 24.3 Relaxing an edge .u; !/ with weight w.u; !/ D 2. The shortest-path estimate of each
vertex appears within the vertex. (a) Because !:d > u:d C w.u; !/ prior to relaxation, the value
of !:d decreases. (b) Here, !:d ! u:dCw.u; !/ before relaxing the edge, and so the relaxation step
leaves !:d unchanged.

estimate !:d and update !’s predecessor attribute !:" . The following code per-
forms a relaxation step on edge .u; !/ in O.1/ time:
RELAX.u; !; w/

1 if !:d > u:dCw.u; !/
2 !:d D u:d Cw.u; !/
3 !:" D u

Figure 24.3 shows two examples of relaxing an edge, one in which a shortest-path
estimate decreases and one in which no estimate changes.

Each algorithm in this chapter calls INITIALIZE-SINGLE-SOURCE and then re-
peatedly relaxes edges. Moreover, relaxation is the only means by which shortest-
path estimates and predecessors change. The algorithms in this chapter differ in
how many times they relax each edge and the order in which they relax edges. Dijk-
stra’s algorithm and the shortest-paths algorithm for directed acyclic graphs relax
each edge exactly once. The Bellman-Ford algorithm relaxes each edge jV j " 1
times.

Properties of shortest paths and relaxation
To prove the algorithms in this chapter correct, we shall appeal to several prop-
erties of shortest paths and relaxation. We state these properties here, and Sec-
tion 24.5 proves them formally. For your reference, each property stated here in-
cludes the appropriate lemma or corollary number from Section 24.5. The latter
five of these properties, which refer to shortest-path estimates or the predecessor
subgraph, implicitly assume that the graph is initialized with a call to INITIALIZE-
SINGLE-SOURCE.G; s/ and that the only way that shortest-path estimates and the
predecessor subgraph change are by some sequence of relaxation steps.
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24.1 The Bellman-Ford algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths problem in
the general case in which edge weights may be negative. Given a weighted, di-
rected graph G D .V; E/ with source s and weight function w W E ! R, the
Bellman-Ford algorithm returns a boolean value indicating whether or not there is
a negative-weight cycle that is reachable from the source. If there is such a cy-
cle, the algorithm indicates that no solution exists. If there is no such cycle, the
algorithm produces the shortest paths and their weights.

The algorithm relaxes edges, progressively decreasing an estimate !:d on the
weight of a shortest path from the source s to each vertex ! 2 V until it achieves
the actual shortest-path weight ı.s; !/. The algorithm returns TRUE if and only if
the graph contains no negative-weight cycles that are reachable from the source.

BELLMAN-FORD.G; w; s/

1 INITIALIZE-SINGLE-SOURCE.G; s/
2 for i D 1 to jG:Vj ! 1
3 for each edge .u; !/ 2 G:E
4 RELAX.u; !; w/
5 for each edge .u; !/ 2 G:E
6 if !:d > u:dCw.u; !/
7 return FALSE
8 return TRUE

Figure 24.4 shows the execution of the Bellman-Ford algorithm on a graph
with 5 vertices. After initializing the d and " values of all vertices in line 1,
the algorithm makes jV j ! 1 passes over the edges of the graph. Each pass is
one iteration of the for loop of lines 2–4 and consists of relaxing each edge of the
graph once. Figures 24.4(b)–(e) show the state of the algorithm after each of the
four passes over the edges. After making jV j ! 1 passes, lines 5–8 check for a
negative-weight cycle and return the appropriate boolean value. (We’ll see a little
later why this check works.)

The Bellman-Ford algorithm runs in time O.VE/, since the initialization in
line 1 takes ‚.V / time, each of the jV j ! 1 passes over the edges in lines 2–4
takes ‚.E/ time, and the for loop of lines 5–7 takes O.E/ time.

To prove the correctness of the Bellman-Ford algorithm, we start by showing that
if there are no negative-weight cycles, the algorithm computes correct shortest-path
weights for all vertices reachable from the source.



 

  

24.3 Dijkstra's algorithm 
Dijsktras algoritme kjører raskere enn Bellman-Ford. 

  

Kjøretida avhenger av så mye rart, men det virker som vi ender på rundt en   Ο(E lgV )  for sparse 
grafer. 
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25.2 The Floyd-Warshall algorithm 

  

Kjøretiden til Floyd-Warshall bestemmes av den tre-doble for-løkka fra linje 3-7 som gir kjøretid 

 Koden er tight uten fancy datastrukturer, og har dermed kun en liten konstant. Dermed er 
Floyd-Warshall-algoritmen ganske praktisk selv for moderat store inputs. 

Transitiv lukking av Floyd-Warshall: 
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24.1-5 ?
Let G D .V; E/ be a weighted, directed graph with weight function w W E ! R.
Give an O.VE/-time algorithm to find, for each vertex ! 2 V , the value ı!.!/ D
minu2V fı.u; !/g.
24.1-6 ?
Suppose that a weighted, directed graph G D .V; E/ has a negative-weight cycle.
Give an efficient algorithm to list the vertices of one such cycle. Prove that your
algorithm is correct.

24.2 Single-source shortest paths in directed acyclic graphs

By relaxing the edges of a weighted dag (directed acyclic graph) G D .V; E/
according to a topological sort of its vertices, we can compute shortest paths from
a single source in ‚.V CE/ time. Shortest paths are always well defined in a dag,
since even if there are negative-weight edges, no negative-weight cycles can exist.

The algorithm starts by topologically sorting the dag (see Section 22.4) to im-
pose a linear ordering on the vertices. If the dag contains a path from vertex u to
vertex !, then u precedes ! in the topological sort. We make just one pass over the
vertices in the topologically sorted order. As we process each vertex, we relax each
edge that leaves the vertex.

DAG-SHORTEST-PATHS.G; w; s/

1 topologically sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE.G; s/
3 for each vertex u, taken in topologically sorted order
4 for each vertex ! 2 G:AdjŒu"
5 RELAX.u; !; w/

Figure 24.5 shows the execution of this algorithm.
The running time of this algorithm is easy to analyze. As shown in Section 22.4,

the topological sort of line 1 takes ‚.V C E/ time. The call of INITIALIZE-
SINGLE-SOURCE in line 2 takes ‚.V / time. The for loop of lines 3–5 makes one
iteration per vertex. Altogether, the for loop of lines 4–5 relaxes each edge exactly
once. (We have used an aggregate analysis here.) Because each iteration of the
inner for loop takes ‚.1/ time, the total running time is ‚.V CE/, which is linear
in the size of an adjacency-list representation of the graph.

The following theorem shows that the DAG-SHORTEST-PATHS procedure cor-
rectly computes the shortest paths.
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24.2-4
Give an efficient algorithm to count the total number of paths in a directed acyclic
graph. Analyze your algorithm.

24.3 Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on a weighted,
directed graph G D .V; E/ for the case in which all edge weights are nonnegative.
In this section, therefore, we assume that w.u; !/ ! 0 for each edge .u; !/ 2 E. As
we shall see, with a good implementation, the running time of Dijkstra’s algorithm
is lower than that of the Bellman-Ford algorithm.

Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path
weights from the source s have already been determined. The algorithm repeat-
edly selects the vertex u 2 V "S with the minimum shortest-path estimate, adds u
to S , and relaxes all edges leaving u. In the following implementation, we use a
min-priority queue Q of vertices, keyed by their d values.

DIJKSTRA.G; w; s/

1 INITIALIZE-SINGLE-SOURCE.G; s/
2 S D ;
3 Q D G:V
4 whileQ ¤ ;
5 u D EXTRACT-MIN.Q/
6 S D S [ fug
7 for each vertex ! 2 G:AdjŒu"
8 RELAX.u; !; w/

Dijkstra’s algorithm relaxes edges as shown in Figure 24.6. Line 1 initializes
the d and # values in the usual way, and line 2 initializes the set S to the empty
set. The algorithm maintains the invariant that Q D V " S at the start of each
iteration of the while loop of lines 4–8. Line 3 initializes the min-priority queue Q
to contain all the vertices in V ; since S D ; at that time, the invariant is true after
line 3. Each time through thewhile loop of lines 4–8, line 5 extracts a vertex u from
Q D V "S and line 6 adds it to set S , thereby maintaining the invariant. (The first
time through this loop, u D s.) Vertex u, therefore, has the smallest shortest-path
estimate of any vertex in V " S . Then, lines 7–8 relax each edge .u; !/ leaving u,
thus updating the estimate !:d and the predecessor !:# if we can improve the
shortest path to ! found so far by going through u. Observe that the algorithm
never inserts vertices into Q after line 3 and that each vertex is extracted from Q
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FLOYD-WARSHALL.W /

1 n D W:rows
2 D.0/ D W
3 for k D 1 to n

4 let D.k/ D
!
d .k/

ij

" be a new n ! n matrix
5 for i D 1 to n
6 for j D 1 to n

7 d .k/
ij D min !

d .k!1/
ij ; d .k!1/

ik C d .k!1/
kj

"

8 return D.n/

Figure 25.4 shows the matrices D.k/ computed by the Floyd-Warshall algorithm
for the graph in Figure 25.1.

The running time of the Floyd-Warshall algorithm is determined by the triply
nested for loops of lines 3–7. Because each execution of line 7 takes O.1/ time,
the algorithm runs in time ‚.n3/. As in the final algorithm in Section 25.1, the
code is tight, with no elaborate data structures, and so the constant hidden in the
‚-notation is small. Thus, the Floyd-Warshall algorithm is quite practical for even
moderate-sized input graphs.

Constructing a shortest path
There are a variety of different methods for constructing shortest paths in the Floyd-
Warshall algorithm. One way is to compute the matrix D of shortest-path weights
and then construct the predecessor matrix … from the D matrix. Exercise 25.1-6
asks you to implement this method so that it runs in O.n3/ time. Given the pre-
decessor matrix …, the PRINT-ALL-PAIRS-SHORTEST-PATH procedure will print
the vertices on a given shortest path.

Alternatively, we can compute the predecessor matrix … while the algorithm
computes the matrices D.k/. Specifically, we compute a sequence of matrices
….0/; ….1/; : : : ; ….n/, where … D ….n/ and we define ! .k/

ij as the predecessor of
vertex j on a shortest path from vertex i with all intermediate vertices in the set
f1; 2; : : : ; kg.

We can give a recursive formulation of ! .k/
ij . When k D 0, a shortest path from i

to j has no intermediate vertices at all. Thus,

! .0/
ij D

(
NIL if i D j or wij D1 ;

i if i ¤ j and wij <1 :
(25.6)

For k " 1, if we take the path i ! k ! j , where k ¤ j , then the predecessor
of j we choose is the same as the predecessor of j we chose on a shortest path
from k with all intermediate vertices in the set f1; 2; : : : ; k # 1g. Otherwise, we

  Θ(n3 ).



 

  

Chapter 26 Maximum Flow 

26.1 Flow networks 

Flow networks and flows 
Et f l y tnet tverk    G = (V , E)  er en rettet graf der hver kant har en ikkenegativ kapasi te t    c(u ,v )≥ 0.  
Vi har to særegne noder i nettverket, en kilde  s og et s luk t. 

  

Et flytnettverk for et trucking problem. Grafen til venstre viser kun kapasitet, mens grafen til høyre viser 
faktisk flyt for hver kant. 

I et max-f ly t -problem  er vi gitt et flytnettverk G med s og t og ønsker å finne den største mulige 
flyten. 

26.2 The Ford-Fulkerson method 
En metode for å løse max-flyt-problemet. Metoden øker verdien av flyten iterativt. 
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1 2

4 3

T .0/ D

!
1 0 0 0
0 1 1 1
0 1 1 0
1 0 1 1

"
T .1/ D

!
1 0 0 0
0 1 1 1
0 1 1 0
1 0 1 1

"
T .2/ D

!
1 0 0 0
0 1 1 1
0 1 1 1
1 0 1 1

"

T .3/ D

!
1 0 0 0
0 1 1 1
0 1 1 1
1 1 1 1

"
T .4/ D

!
1 0 0 0
1 1 1 1
1 1 1 1
1 1 1 1

"
Figure 25.5 A directed graph and the matrices T .k/ computed by the transitive-closure algorithm.

TRANSITIVE-CLOSURE.G/

1 n D jG:Vj
2 let T .0/ D

!
t .0/
ij

" be a new n ! n matrix
3 for i D 1 to n
4 for j D 1 to n
5 if i == j or .i; j / 2 G:E
6 t .0/

ij D 1

7 else t .0/
ij D 0

8 for k D 1 to n

9 let T .k/ D
!
t .k/
ij

" be a new n ! n matrix
10 for i D 1 to n
11 for j D 1 to n

12 t .k/
ij D t .k!1/

ij _
!
t .k!1/
ik ^ t .k!1/

kj

"

13 return T .n/

Figure 25.5 shows the matrices T .k/ computed by the TRANSITIVE-CLOSURE
procedure on a sample graph. The TRANSITIVE-CLOSURE procedure, like the
Floyd-Warshall algorithm, runs in ‚.n3/ time. On some computers, though, log-
ical operations on single-bit values execute faster than arithmetic operations on
integer words of data. Moreover, because the direct transitive-closure algorithm
uses only boolean values rather than integer values, its space requirement is less
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Figure 26.1 (a) A flow network G D .V; E/ for the Lucky Puck Company’s trucking problem.
The Vancouver factory is the source s, and the Winnipeg warehouse is the sink t . The company ships
pucks through intermediate cities, but only c.u; !/ crates per day can go from city u to city !. Each
edge is labeled with its capacity. (b) A flow f in G with value jf j D 19. Each edge .u; !/ is labeled
by f .u; !/=c.u; !/. The slash notation merely separates the flow and capacity; it does not indicate
division.

We call the nonnegative quantity f .u; !/ the flow from vertex u to vertex !. The
value jf j of a flow f is defined as
jf j D

X

!2V

f .s; !/ !
X

!2V

f .!; s/ ; (26.1)

that is, the total flow out of the source minus the flow into the source. (Here, the j"j
notation denotes flow value, not absolute value or cardinality.) Typically, a flow
network will not have any edges into the source, and the flow into the source, given
by the summation P!2V f .!; s/, will be 0. We include it, however, because when
we introduce residual networks later in this chapter, the flow into the source will
become significant. In themaximum-flow problem, we are given a flow network G
with source s and sink t , and we wish to find a flow of maximum value.

Before seeing an example of a network-flow problem, let us briefly explore the
definition of flow and the two flow properties. The capacity constraint simply
says that the flow from one vertex to another must be nonnegative and must not
exceed the given capacity. The flow-conservation property says that the total flow
into a vertex other than the source or sink must equal the total flow out of that
vertex—informally, “flow in equals flow out.”

An example of flow
A flow network can model the trucking problem shown in Figure 26.1(a). The
Lucky Puck Company has a factory (source s) in Vancouver that manufactures
hockey pucks, and it has a warehouse (sink t) in Winnipeg that stocks them. Lucky



 

  

Residual networks 
Gitt et nettverk G og en flyt f består residualnettverket 

 
G f

 av kanter med kapasiteter som kan 

representere hvordan vi kan endre flyten gjennom kanter i G. Gitt en s og t og et nodepar u, v i V 
har vi res idualkapasi te t en 

  
c f (u ,v )  gitt ved 

 

  

c f (u ,v )=
c(u ,v )− f (u ,v hvis (u ,v )∈E,

f (v ,u ) hvis (v ,u )∈E,

0 ellers.

⎧

⎨
⎪

⎩
⎪

 

 
Edmonds-Karp algorithm 

Forbedring av FORD-FULKERSON som kjører i   Ο(VE2 )  tid. Trikset med Edmonds-Karp er å finne 
stien p vha. BFS. Altså finner vi den korteste veien fra s til t i residual-nettverket, der vi ser bort fra 
kantvekter. Vi har at denne korteste-vei avstanden vil være monotont økende for hver flytendring: 

  

Det kan vises at Edmonds-Karp får en øvre grense for kjøretiden: 

  
 

26.3 Maximum pipartite matching 
Vi skal se at problemer som tilsynelatende ikke har noe særlig til felles med flytnettverk kan 
reduseres til max-flyt-problemer. Et slikt problem er å finne maksimal matching in en bipartitt graf. 
For å løse dette problemet skal vi bruke Ford-Fulkerson. 

The maximum-bipartite-matching problem 
I en urettet graf G er en matching  et subsett av kantene M som er slik at alle nodene v i G er 
representert i M med maksimalt én av sine kanter. En maximum matching  er en matching av 

maksimal kardinalitet, altså at for en hver matching M' har vi   M ≥ M ' .  
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the flow network. We end this section by presenting one specific implementation
of the Ford-Fulkerson method and analyzing its running time.

The Ford-Fulkerson method iteratively increases the value of the flow. We start
with f .u; !/ D 0 for all u; ! 2 V , giving an initial flow of value 0. At each
iteration, we increase the flow value in G by finding an “augmenting path” in an
associated “residual network” Gf . Once we know the edges of an augmenting
path in Gf , we can easily identify specific edges in G for which we can change
the flow so that we increase the value of the flow. Although each iteration of the
Ford-Fulkerson method increases the value of the flow, we shall see that the flow
on any particular edge of G may increase or decrease; decreasing the flow on some
edges may be necessary in order to enable an algorithm to send more flow from the
source to the sink. We repeatedly augment the flow until the residual network has
no more augmenting paths. The max-flow min-cut theorem will show that upon
termination, this process yields a maximum flow.

FORD-FULKERSON-METHOD.G; s; t/

1 initialize flow f to 0
2 while there exists an augmenting path p in the residual network Gf

3 augment flow f along p
4 return f

In order to implement and analyze the Ford-Fulkerson method, we need to intro-
duce several additional concepts.

Residual networks
Intuitively, given a flow network G and a flow f , the residual network Gf consists
of edges with capacities that represent how we can change the flow on edges of G.
An edge of the flow network can admit an amount of additional flow equal to the
edge’s capacity minus the flow on that edge. If that value is positive, we place
that edge into Gf with a “residual capacity” of cf .u; !/ D c.u; !/ ! f .u; !/.
The only edges of G that are in Gf are those that can admit more flow; those
edges .u; !/ whose flow equals their capacity have cf .u; !/ D 0, and they are not
in Gf .

The residual network Gf may also contain edges that are not in G, however.
As an algorithm manipulates the flow, with the goal of increasing the total flow, it
might need to decrease the flow on a particular edge. In order to represent a pos-
sible decrease of a positive flow f .u; !/ on an edge in G, we place an edge .!; u/
into Gf with residual capacity cf .!; u/ D f .u; !/—that is, an edge that can admit
flow in the opposite direction to .u; !/, at most canceling out the flow on .u; !/.
These reverse edges in the residual network allow an algorithm to send back flow
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which contradicts our assumption that ıf 0.s; !/ < ıf .s; !/. We conclude that our
assumption that such a vertex ! exists is incorrect.

The next theorem bounds the number of iterations of the Edmonds-Karp algo-
rithm.

Theorem 26.8
If the Edmonds-Karp algorithm is run on a flow network G D .V; E/ with source s
and sink t , then the total number of flow augmentations performed by the algorithm
is O.VE/.

Proof We say that an edge .u; !/ in a residual network Gf is critical on an aug-
menting path p if the residual capacity of p is the residual capacity of .u; !/, that
is, if cf .p/ D cf .u; !/. After we have augmented flow along an augmenting path,
any critical edge on the path disappears from the residual network. Moreover, at
least one edge on any augmenting path must be critical. We will show that each of
the jEj edges can become critical at most jV j =2 times.

Let u and ! be vertices in V that are connected by an edge in E. Since augment-
ing paths are shortest paths, when .u; !/ is critical for the first time, we have
ıf .s; !/ D ıf .s; u/C 1 :

Once the flow is augmented, the edge .u; !/ disappears from the residual network.
It cannot reappear later on another augmenting path until after the flow from u to !
is decreased, which occurs only if .!; u/ appears on an augmenting path. If f 0 is
the flow in G when this event occurs, then we have
ıf 0.s; u/ D ıf 0.s; !/C 1 :

Since ıf .s; !/ ! ıf 0.s; !/ by Lemma 26.7, we have
ıf 0.s; u/ D ıf 0.s; !/C 1

" ıf .s; !/C 1

D ıf .s; u/C 2 :

Consequently, from the time .u; !/ becomes critical to the time when it next
becomes critical, the distance of u from the source increases by at least 2. The
distance of u from the source is initially at least 0. The intermediate vertices on a
shortest path from s to u cannot contain s, u, or t (since .u; !/ on an augmenting
path implies that u ¤ t). Therefore, until u becomes unreachable from the source,
if ever, its distance is at most jV j# 2. Thus, after the first time that .u; !/ becomes
critical, it can become critical at most .jV j # 2/=2 D jV j =2 # 1 times more, for a
total of at most jV j =2 times. Since there are O.E/ pairs of vertices that can have an
edge between them in a residual network, the total number of critical edges during



 

Finding a maximum bipartite matching 

  

En bipartitt graf G og matching med karidnalitet 2, 3 og et flytnettverk med max flyt. 

Vi ser en sammenheng mellom matching i G og et flytnettverk G'. Dette er formulert i følgende 
lemma: 

  

Følgende teorem og korollar stadfester sammenhengen mellom problemet og finne maksimal 
matching i en bipartitt graf og maxflytproblemet: 

  

  

Altså kan vi finne maksimal matching M i en bipartitt graf ved å generere flytnettverket G', kjøre 
Ford-Fulkerson, og få en maksimal matching M fra heltallsverdien an maxflyten f. 

Vi kan finne M i en bipartitt graf i   Ο(VE ')= Ο(VE)  tid (siden   E ' =Θ(E).
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s t

(a) (c)
L R

(b)

Figure 26.8 A bipartite graph G D .V; E/ with vertex partition V D L [ R. (a) A matching
with cardinality 2, indicated by shaded edges. (b) A maximum matching with cardinality 3. (c) The
corresponding flow network G0 with a maximum flow shown. Each edge has unit capacity. Shaded
edges have a flow of 1, and all other edges carry no flow. The shaded edges from L to R correspond
to those in the maximum matching from (b).

directed edges of G0 are the edges of E, directed from L to R, along with jV j new
directed edges:
E 0 D f.s; u/ W u 2 Lg [ f.u; !/ W .u; !/ 2 Eg [ f.!; t/ W ! 2 Rg :

To complete the construction, we assign unit capacity to each edge in E 0. Since
each vertex in V has at least one incident edge, jEj ! jV j =2. Thus, jEj " jE 0j D
jEj C jV j " 3 jEj, and so jE 0j D ‚.E/.

The following lemma shows that a matching in G corresponds directly to a flow
in G’s corresponding flow network G0. We say that a flow f on a flow network
G D .V; E/ is integer-valued if f .u; !/ is an integer for all .u; !/ 2 V # V .

Lemma 26.9
Let G D .V; E/ be a bipartite graph with vertex partition V D L [ R, and let
G0 D .V 0; E 0/ be its corresponding flow network. If M is a matching in G, then
there is an integer-valued flow f in G0 with value jf j D jM j. Conversely, if f
is an integer-valued flow in G0, then there is a matching M in G with cardinality
jM j D jf j.

Proof We first show that a matching M in G corresponds to an integer-valued
flow f in G0. Define f as follows. If .u; !/ 2 M , then f .s; u/ D f .u; !/ D
f .!; t/ D 1. For all other edges .u; !/ 2 E 0, we define f .u; !/ D 0. It is simple
to verify that f satisfies the capacity constraint and flow conservation.
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corresponding flow network G0 with a maximum flow shown. Each edge has unit capacity. Shaded
edges have a flow of 1, and all other edges carry no flow. The shaded edges from L to R correspond
to those in the maximum matching from (b).

directed edges of G0 are the edges of E, directed from L to R, along with jV j new
directed edges:
E 0 D f.s; u/ W u 2 Lg [ f.u; !/ W .u; !/ 2 Eg [ f.!; t/ W ! 2 Rg :

To complete the construction, we assign unit capacity to each edge in E 0. Since
each vertex in V has at least one incident edge, jEj ! jV j =2. Thus, jEj " jE 0j D
jEj C jV j " 3 jEj, and so jE 0j D ‚.E/.

The following lemma shows that a matching in G corresponds directly to a flow
in G’s corresponding flow network G0. We say that a flow f on a flow network
G D .V; E/ is integer-valued if f .u; !/ is an integer for all .u; !/ 2 V # V .

Lemma 26.9
Let G D .V; E/ be a bipartite graph with vertex partition V D L [ R, and let
G0 D .V 0; E 0/ be its corresponding flow network. If M is a matching in G, then
there is an integer-valued flow f in G0 with value jf j D jM j. Conversely, if f
is an integer-valued flow in G0, then there is a matching M in G with cardinality
jM j D jf j.

Proof We first show that a matching M in G corresponds to an integer-valued
flow f in G0. Define f as follows. If .u; !/ 2 M , then f .s; u/ D f .u; !/ D
f .!; t/ D 1. For all other edges .u; !/ 2 E 0, we define f .u; !/ D 0. It is simple
to verify that f satisfies the capacity constraint and flow conservation.
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Intuitively, each edge .u; !/ 2 M corresponds to one unit of flow in G0 that
traverses the path s ! u ! ! ! t . Moreover, the paths induced by edges in M
are vertex-disjoint, except for s and t . The net flow across cut .L [ fsg ; R [ ftg/
is equal to jM j; thus, by Lemma 26.4, the value of the flow is jf j D jM j.

To prove the converse, let f be an integer-valued flow in G0, and let
M D f.u; !/ W u 2 L; ! 2 R; and f .u; !/ > 0g :

Each vertex u 2 L has only one entering edge, namely .s; u/, and its capacity
is 1. Thus, each u 2 L has at most one unit of flow entering it, and if one unit of
flow does enter, by flow conservation, one unit of flow must leave. Furthermore,
since f is integer-valued, for each u 2 L, the one unit of flow can enter on at most
one edge and can leave on at most one edge. Thus, one unit of flow enters u if and
only if there is exactly one vertex ! 2 R such that f .u; !/ D 1, and at most one
edge leaving each u 2 L carries positive flow. A symmetric argument applies to
each ! 2 R. The set M is therefore a matching.

To see that jM j D jf j, observe that for every matched vertex u 2 L, we have
f .s; u/ D 1, and for every edge .u; !/ 2 E ! M , we have f .u; !/ D 0. Conse-
quently, f .L [ fsg ; R [ ftg/, the net flow across cut .L [ fsg ; R [ ftg/, is equal
to jM j. Applying Lemma 26.4, we have that jf j D f .L[fsg ; R[ftg/ D jM j.

Based on Lemma 26.9, we would like to conclude that a maximum matching
in a bipartite graph G corresponds to a maximum flow in its corresponding flow
network G0, and we can therefore compute a maximum matching in G by running
a maximum-flow algorithm on G0. The only hitch in this reasoning is that the
maximum-flow algorithm might return a flow in G0 for which some f .u; !/ is
not an integer, even though the flow value jf j must be an integer. The following
theorem shows that if we use the Ford-Fulkerson method, this difficulty cannot
arise.

Theorem 26.10 (Integrality theorem)
If the capacity function c takes on only integral values, then the maximum flow f
produced by the Ford-Fulkerson method has the property that jf j is an integer.
Moreover, for all vertices u and !, the value of f .u; !/ is an integer.

Proof The proof is by induction on the number of iterations. We leave it as
Exercise 26.3-2.

We can now prove the following corollary to Lemma 26.9.

26.3 Maximum bipartite matching 735

Corollary 26.11
The cardinality of a maximum matching M in a bipartite graph G equals the value
of a maximum flow f in its corresponding flow network G0.

Proof We use the nomenclature from Lemma 26.9. Suppose that M is a max-
imum matching in G and that the corresponding flow f in G0 is not maximum.
Then there is a maximum flow f 0 in G0 such that jf 0j > jf j. Since the ca-
pacities in G0 are integer-valued, by Theorem 26.10, we can assume that f 0 is
integer-valued. Thus, f 0 corresponds to a matching M 0 in G with cardinality
jM 0j D jf 0j > jf j D jM j, contradicting our assumption that M is a maximum
matching. In a similar manner, we can show that if f is a maximum flow in G0, its
corresponding matching is a maximum matching on G.

Thus, given a bipartite undirected graph G, we can find a maximum matching by
creating the flow network G0, running the Ford-Fulkerson method, and directly ob-
taining a maximum matching M from the integer-valued maximum flow f found.
Since any matching in a bipartite graph has cardinality at most min.L; R/ D O.V /,
the value of the maximum flow in G0 is O.V /. We can therefore find a maximum
matching in a bipartite graph in time O.VE 0/ D O.VE/, since jE 0j D ‚.E/.

Exercises
26.3-1
Run the Ford-Fulkerson algorithm on the flow network in Figure 26.8(c) and show
the residual network after each flow augmentation. Number the vertices in L top
to bottom from 1 to 5 and in R top to bottom from 6 to 9. For each iteration, pick
the augmenting path that is lexicographically smallest.
26.3-2
Prove Theorem 26.10.
26.3-3
Let G D .V; E/ be a bipartite graph with vertex partition V D L [ R, and let G0

be its corresponding flow network. Give a good upper bound on the length of any
augmenting path found in G0 during the execution of FORD-FULKERSON.
26.3-4 ?
A perfect matching is a matching in which every vertex is matched. Let G D
.V; E/ be an undirected bipartite graph with vertex partition V D L [ R, where
jLj D jRj. For any X ! V , define the neighborhood of X as
N.X/ D fy 2 V W .x; y/ 2 E for some x 2 Xg ;



VII Selected Topics 

Chapter 27 Multithreaded Algorithms 

27.1 The basics of dynamic multithreasing 

Performance measures 
Vi har work law : 

 
  
TP ≥

T1

P
 

Vi har span law : 

  TP ≥ T∞  

Vi definerer speedup  til å være   T1 TP ,  og denne sier noe om hvor mange ganger raskere 

beregningen kjører på P prosessorer enn på 1 prosessor. Speedup'en er begrenset av work law til å 

være i høyden P fordi   T1 TP ≤ P .  

Vi støter ofte på l ineær speedup ,   T1 TP =Θ(P ) . Når   T1 TP = P  har vi per fekt l ineær speedup . 

Vi sier at   T1 T∞  betegner paral l e l l i t e t en til den multitrådede beregningen. Denne betegner 

maksimalt oppnåelig speedup for et gitt antall prosessorer, men den gir oss også en grense for 
sannsynligheten for å oppnå perfekt lineær speedup. Altså, dersom vi har flere prosessorer enn 
parallelliteten, er det ikke mulig å oppnå perfekt lineær speedup for beregningen. 

Fra work law har vi at den beste oppnåelige kjøretida er   TP = T1 P ,  og fra span law har vi at den beste 

oppnåelige kjøretida er   TP = T∞ .  



 

Chapter 34 NP-Completeness 

34.5 NP-complete problems 

34.5.1 The clique problem 
En c l ique  i en urettet graf G er en komplett subgraf av G. Det vi kaller c l ique problem  kan vi gjøre 
om til et decision problem ved å spørre om hvorvidt det finnes en cilque av størrelse k i grafen. 
Clique-problemet er NP-komplett: 

  

34.5.2 The vertex-cover problem 
Et ver tex cover  til en urettet graf G er et subsett av nodene V' som er slik at dersom en kant går fra 
u til v i G så er enten u i V', u i V' eller begge er det. 

Det kan vises at CLIQUE kan reduseres til VERTEX-COVER.  Med andre ord kan vi vise at vertex-
cover-problemet også er NP-komplett: 

  

Reduksjon av CLIQUE til VERTEX-COVER. 

Flere NP-komplette problemer inkluderer, men er ikke begrenset til: 

• The hamiltonian-cycle problem (34.5.3) 
• The traveling-salesman problem (34.5.4)  
• The subset-sum problem (34.5.5) 
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CIRCUIT-SAT

SAT

3-CNF-SAT

CLIQUE

VERTEX-COVER

SUBSET-SUM

HAM-CYCLE

TSP

Figure 34.13 The structure of NP-completeness proofs in Sections 34.4 and 34.5. All proofs ulti-
mately follow by reduction from the NP-completeness of CIRCUIT-SAT.

a graph. As a decision problem, we ask simply whether a clique of a given size k
exists in the graph. The formal definition is
CLIQUE D fhG; ki W G is a graph containing a clique of size kg :

A naive algorithm for determining whether a graph G D .V; E/ with jV j ver-
tices has a clique of size k is to list all k-subsets of V , and check each one to
see whether it forms a clique. The running time of this algorithm is !.k2

!jV j
k

"
/,

which is polynomial if k is a constant. In general, however, k could be near jV j =2,
in which case the algorithm runs in superpolynomial time. Indeed, an efficient
algorithm for the clique problem is unlikely to exist.

Theorem 34.11
The clique problem is NP-complete.

Proof To show that CLIQUE 2 NP, for a given graph G D .V; E/, we use the
set V 0 ! V of vertices in the clique as a certificate for G. We can check whether V 0

is a clique in polynomial time by checking whether, for each pair u; " 2 V 0, the
edge .u; "/ belongs to E.

We next prove that 3-CNF-SAT "P CLIQUE, which shows that the clique prob-
lem is NP-hard. You might be surprised that we should be able to prove such a
result, since on the surface logical formulas seem to have little to do with graphs.

The reduction algorithm begins with an instance of 3-CNF-SAT. Let # D
C1 ^ C2 ^ # # # ^ Ck be a boolean formula in 3-CNF with k clauses. For r D
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Figure 34.15 Reducing CLIQUE to VERTEX-COVER. (a) An undirected graph G D .V; E/ with
clique V 0 D fu; !; x; yg. (b) The graph G produced by the reduction algorithm that has vertex cover
V ! V 0 D fw; ´g.

determine whether a graph has a vertex cover of a given size k. As a language, we
define
VERTEX-COVERD fhG; ki W graph G has a vertex cover of size kg :

The following theorem shows that this problem is NP-complete.

Theorem 34.12
The vertex-cover problem is NP-complete.

Proof We first show that VERTEX-COVER 2 NP. Suppose we are given a graph
G D .V; E/ and an integer k. The certificate we choose is the vertex cover V 0 " V
itself. The verification algorithm affirms that jV 0j D k, and then it checks, for each
edge .u; !/ 2 E, that u 2 V 0 or ! 2 V 0. We can easily verify the certificate in
polynomial time.

We prove that the vertex-cover problem is NP-hard by showing that CLIQUE #P
VERTEX-COVER. This reduction relies on the notion of the “complement” of a
graph. Given an undirected graph G D .V; E/, we define the complement of G
as G D .V; E/, where E D f.u; !/ W u; ! 2 V; u ¤ !; and .u; !/ 62 Eg. In other
words, G is the graph containing exactly those edges that are not in G. Figure 34.15
shows a graph and its complement and illustrates the reduction from CLIQUE to
VERTEX-COVER.

The reduction algorithm takes as input an instance hG; ki of the clique problem.
It computes the complement G, which we can easily do in polynomial time. The
output of the reduction algorithm is the instance hG; jV j ! ki of the vertex-cover
problem. To complete the proof, we show that this transformation is indeed a


