TFY4225 Nuclear and Radiation physics

1.)

Basic concepts (Lilley Chap.1)

The Nuclei

Notation

The composition of a nucleus is often described using the notation:

$$
{ }_{Z}^{A} \mathrm{X}_{N}
$$

X represents the atoms name. A is defined to be the mass number, Z is the atomic number and N is the neutron number.
It is of course sufficient to describe the nuclei by ${ }^{A} \mathrm{X}$, since X automatically determines the letter Z , which was defined above to be the atom number.

Particle masses

Particle	Index	Mass
Neutron	m_{n}	$m_{n}=1.008665 u$
Proton	m_{p}	$m_{p}=1.007276 u$
Electron	m_{e}	$m_{e}=0.000549 u$

Where u is the atomic mass unit, and $1 \mathrm{u} \equiv \frac{1}{12} m\left({ }^{12} C\right)$

Particle data

All of the three particles above are spin- $\frac{1}{2}$ fermions with non-zero magnetic moments μ_{b}. The neutron and the proton belong to the Baryon (composition of three quarks) family and the electron is a lepton.

Atomic mass of nucleus ${ }_{Z}^{A} \mathrm{X}$

$$
\begin{equation*}
m(A, Z)=Z m_{H}+(A-Z) m_{n}-\frac{B}{c^{2}} \tag{1}
\end{equation*}
$$

Where B represents the total binding energy of ${ }_{Z}^{A} X$. For this to be valid, one has assumed that the mean binding energy of the electrons in ${ }_{Z}^{A} X$ is the same as in ${ }_{1}^{1} H$. Mass excess of ${ }_{Z}^{A} X$ is defined in atomic mass units(u) to be:

$$
\begin{equation*}
\Delta=m(A, Z)-A \tag{2}
\end{equation*}
$$

The nuclear potential (Strong force)

The potential within a nucleus can be approximately modelled as an infinite spherical potential well where the potential is zero inside a given radius, and infinity outside it. This can be expressed as:

$$
V= \begin{cases}0, & \text { if } \mathrm{r} \leq \mathrm{a} \tag{3}\\ \infty, & \text { if } \mathrm{r}>\mathrm{a}\end{cases}
$$

Inserting 3 into the Schrødinger equation:

$$
\begin{equation*}
H \psi=E \psi \tag{4}
\end{equation*}
$$

Assuming a separable wave function solution of the form $\psi=R(r) \cdot Y_{l}^{m}(\phi, \theta)$ where Y_{l}^{m} represents the spherical harmonics.

The radial part of the wave function $R(r)=j_{l}(k r)$, is a spherical Bessel function.
Boundary condition: $j_{l}(k r)=0$ for $k r=k a$
$l=0: j_{0}(k r)=\frac{\sin k r}{k r} \rightarrow j_{0}(k a)=0$ for $k a=n \cdot \pi$. The wave function has its n'th zero at $r=a$.
$l=1: j_{1}(k r)=\frac{\sin k r}{(k r)^{2}}-\frac{\cos k r}{k r}$

A centrifugal potential arises from the angular motion for $l \neq 0 . \Rightarrow$ Energy levels $E=E_{n l} . l$ is substituted with $\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$ for $l=0,1,2,3 \ldots$.
For each value of l we have $2 l+1$ values for the quantum number $m_{l}=0, \pm 1, \pm 2 \ldots \pm l$

This simple model arranges the energy levels, $E_{n l}$, in the right order up to a nucleus size of $\mathrm{A}=40$.

Stability and existence of nuclei

Chart of nuclides

Radioactivity

Spontaneous radioactive processes:
With or without a secondary
gamma ray emission. $\left\{\begin{array}{l}\alpha \\ \beta^{-} \\ \beta^{+} \\ \text {electroncapture }\end{array}\right.$
$\underline{\alpha}: \quad$ Induced by strong interactions $\quad{ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} X^{\prime}+{ }_{2}^{4} \alpha, \quad Q_{\alpha}=c^{2}\left(m_{P}-m_{D}-m_{H e}\right)=T_{x^{\prime}}+T_{\alpha}$

$$
T_{\alpha}=\frac{Q_{\alpha}}{1+\frac{m_{\alpha}}{m_{x^{\prime}}}}
$$

$\underline{\beta^{-}}$: Induced by weak interactions

$$
\begin{aligned}
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} X^{\prime}+\beta^{-}+\bar{\nu} \quad Q_{\beta_{-}} & =c^{2}\left(m_{P}-m_{D}\right)=T_{x^{\prime}}+T_{\beta^{-}}+T_{\bar{\nu}} \\
Q_{\beta^{-}} & =\left(\Delta_{P}-\Delta_{D}\right), T_{x^{\prime}} \simeq 0
\end{aligned}
$$

$\underline{\beta^{+}}$: Induced by weak interactions

$$
\begin{aligned}
{ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} X^{\prime}+\beta^{+}+\nu & Q_{\beta^{+}}
\end{aligned}=c^{2}\left(m_{P}-m_{D}-2 m_{e}\right)=T_{x^{\prime}}+T_{\beta^{+}}+T_{\nu} .
$$

$\underline{\varepsilon}: \quad$ Induced by weak interactions $\quad{ }_{Z}^{A} X+e^{-} \rightarrow{ }_{Z-1}^{A} X^{\prime}+\nu \quad Q_{E C}=\left(m_{P}-m_{D}\right) c^{2}-E_{B}=T_{\nu}$
Electron capture, where an electron is absorbed by the nucleus, is an energetically favorable process which is competing with the β^{+}disintegration process. ε is followed by characteristic X-ray radiation.
$\underline{\gamma}: \quad$ Induced by E.M interactions $\quad{ }_{Z}^{A} X^{*} \rightarrow{ }_{Z}^{A} X+\gamma \quad Q_{\gamma}=\left(m_{P}-m_{D}\right) c^{2}=T_{x}^{\prime}+h \nu$

$$
T_{x^{\prime}} \simeq 0
$$

γ - and X-ray radiation are both secondary processes, which are characteristic of the final daughter nucleus after a disintegration.

The disintegration constant λ

$$
\begin{equation*}
\frac{d N}{d t}=-\lambda \cdot N \Rightarrow N(t)=N(0) e^{-\lambda t} \tag{5}
\end{equation*}
$$

In the equation above, one can see that λ represents a constant transition probability per unit time. $[\lambda]=s^{-1}=B q$
A good argument supporting the assumed disintegration model in 5 is based on elementary timedependent perturbation theory.

Radioactivity. Disintegration kinetics

Statistically defined variables:

Half-life $\quad T_{\frac{1}{2}}, \quad T_{\frac{1}{2}}=\frac{\ln 2}{\lambda} \simeq \frac{0.693}{\lambda}$
Mean life-time $\quad \tau, \quad \tau=\frac{1}{N_{0}} \int_{0}^{\infty} t \lambda N(t) d t=\frac{1}{\lambda}$
Activity $\quad A, \quad A=\lambda \cdot N$
Specific activity SA $S A=\lambda \cdot n$ (n is the number of atoms per mass unit)
$n=\frac{N_{A}}{A}$ where N_{A} is Avogadro's number, and A is the molar mass of the atom.

1 Bq is defined to be the amount of radio-nuclei you need of a specific isotope, to get one disintegration per second.

Disintegration chains

A disintegration chain appears when the daughter nucleus of the previous disintegration is unstable.

$$
\mathrm{A} \stackrel{\lambda_{A}}{\rightarrow} \quad \mathrm{~B} \xrightarrow{\rightarrow} \quad \mathrm{C}
$$

Using equation 5 in several steps, assuming that nucleus C is stable, this reaction becomes:

$$
\begin{equation*}
\frac{d N_{A}}{d t}=-\lambda_{A} \cdot N_{A} ; \quad \frac{d N_{B}}{d t}=\lambda_{A} \cdot N_{A}-\lambda_{B} \cdot N_{B} ; \quad \frac{d N_{C}}{d t}=\lambda_{B} \cdot N_{B} \tag{6}
\end{equation*}
$$

Example:

C stable $\Rightarrow N_{A}+N_{B}+N_{C}=N_{0}$, initial values: $N_{A}(0)=N_{0} ; N_{B}(0)=N_{C}=0$
\Rightarrow
$N_{B}=\frac{\lambda_{A} N_{A}}{\lambda_{B}-\lambda_{A}}\left(e^{-\lambda_{A} t}-e^{-\lambda_{B} t}\right) \quad$ (Correction:In this equation $\left.\mathrm{NA}=\mathrm{NA}(0)=\mathrm{N} 0\right)$
$N_{A}=N_{0} e^{-\lambda_{A} t}$
\Rightarrow
$N_{B}=\frac{\lambda_{A}}{\lambda_{B}} N_{0}\left(1-e^{-\lambda_{B} t}\right)$ if $\lambda_{A} \ll \lambda_{B}$
$\underline{\text { Permanent equilibrium for } t \gg 1 / \lambda_{B}\left(T_{A} \gg T_{B}\right)}$:
$Q_{B}=\lambda_{B} N_{B} \rightarrow \lambda_{A} N_{A}=Q_{A}$
$\underline{\text { Transient equilibrium }\left(T_{A}>T_{B}\right)}$:
$Q_{B}=\lambda_{B} N_{B} \rightarrow \frac{\lambda_{A} \lambda_{B} N_{0}}{\lambda_{B}-\lambda_{A}} e^{-\lambda_{A} t}=Q_{A}$
$Q_{B} \rightarrow \frac{\lambda_{B}}{\lambda_{B}-\lambda_{A}} Q_{A}$ When $\mathrm{t} \rightarrow \infty$
$\underline{\text { No equilibrium }\left(T_{A}<T_{B}\right)}$

Nuclear reactions

$\overbrace{a+\underbrace{A}_{\text {Target }}}^{\text {Entrance }}$ channel $\rightarrow \overbrace{B+b}^{\text {chans }}$ Exit $\overbrace{B+1}^{\text {channel }}$
$\underline{\text { Energy released: }} Q=\left(m_{a}+m_{A}-m_{b}-m_{B}\right) c^{2} \quad \mathrm{Q}\left\{\begin{array}{l}>0, \text { exoterm, releases energy } \\ <0, \text { endoterm, absorbs energy }\end{array}\right.$

Scattering cross-section

Cross-section

Number of particles per second within $\overrightarrow{d \Omega}: \quad d R=d \sigma \cdot \dot{\Phi}$ per target atom.
Total cross-section:
$\sigma=\int_{\Omega} \frac{d \sigma}{d \Omega} d \Omega$ per target atom

Where σ is commonly given in barns(b). $1 \mathrm{~b}=10^{-28} \mathrm{~m}^{2}$

Examples:

Example: Production of isotopes by neutron capture

Production rate: $\quad \frac{d N_{0}(t)}{d t}=-\sigma \dot{\Phi} N_{0}$

The radioactive nuclei produced have a disintegration constant λ
Rate of change of produced nuclei:

$$
\frac{d N_{1}(t)}{d t}=\sigma \dot{\Phi} N_{0}(t)-\lambda N_{1}(t)
$$

Instantaneous radioactivity due to the produced nuclei: $\quad A_{1}=\lambda \cdot N_{1}$

Example: Rutherford scattering

Elastic scattering; Central-symmetric Coulomb potential.
Differential cross-section: $\quad \frac{d \sigma}{d \Omega}=\left[\frac{Z_{1} Z_{2} e^{2}}{16 \pi \varepsilon_{0} T_{a}}\right]^{2} \frac{1}{\sin ^{4} \frac{\theta}{2}}$

