
2.)
Radiation-matter interaction
(Lilley Chap.5)

Interaction of charged particles with matter

Coulomb interactions

What characterizes these interactions, is that their origin of existence is due to the long range
Coulomb-force.

Type of interaction
Interacts with

Elastic Inelastic

Electrons Ionisation

Nuclei Rutherford Scattering Brems strahlung

These interaction processes result in a continuous retardation of charged particles, because of the
long range Coulomb force.
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Heavy charged particles

Energy transfer

Heavy charged particle of mass M , velocity ~V , and charge ze interacts with atomic electron of the
material.

Assuming the binding energy of the electron, EB = 0 and that initially the electron is found at
rest.

Conservation of energy and momentum: TM = T ′

M + T ′
e

~pM = ~pM
′ + ~pe

′

Maximum energy transfer happens when the particles collide head-on. An approximate non rela-
tivistic calculation of the maximum energy transfer from the heavy ion to the electron follows below.

Non relativistic calculation: pc =
√

T (T + 2mc2) ' c
√

2mT

Maximum energy transfer: T ′
emax = 4mM

(m+M)2 TM

For a heavy charged particle m � M ⇒ T ′
emax = 2mV 2

Where V is the initial velocity of the heavy particle, and m is the electron mass. The relativis-
tic expression is a bit more complicated.

Relativistic expression for maximum energy transfer: T ′
emax = 2γ2mV 2

1+ 2γm
M

+ m2

M2

Where γ represents the Lorenz factor:

γ =
1

√

1 − (V
c
)2

(1)
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Stopping power for heavy charged particles interacting with electrons.

Collision stopping power: Sc = −dT
dx

Force acting on the heavy particle: ~F = 1
4πε

ze2

r2 êr

Sc is loss of kinetic energy per unit path length in the scattering medium, due to interactions
between the heavy charged particle and the electrons.
All the electrons in a cylinder shell with a collision parameter b contribute equally to the stopping
power, since the Coulomb force is spherically symmetric.

If the x direction is defined to be along the charged particle’s direction as earlier implied, Fx

does not transfer energy. However, F⊥ does:
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Momentum transfer: ∆p⊥ =
∫
|F | cosθdt = ze2

4πε0

∫ π
2

−
π
2

cos3 θ
b2

b
V

dθ
cos2 θ

This is found assuming that: V' constant

Energy transferred to the electron: E = (∆p⊥)2

2me
= 1

(4πε0)2
2z2e4

meV 2b2

The differential cross section for energy transfer between E and E + dE, per electron in the
stopping medium:

dσ(E) =
dσ(E)

dE
dE = |2πbdb| = 2πz2e4

(4πε0)2meV 2

dE

E2
(2)

Again returning to the stopping power: Sc = −dT
dx

= −dE
dx

= nvZ
∫ Emax

Emin

dσ
dE

EdE

The total contribution to the interaction probability from all of the electrons
inside the cylinder shell(d3V ) is worked out below. nv is the number of atoms per unit volume.

Further on: nvZd3V =nvZ
dσ(E)

dE
dEdx ; nv = NA

A
· ρ

The Stopping power: Sc =
∫ Emax

Emin
nvZ

2πz2e4

(4πε0)2meV 2

dE
E2 E

The total stopping power then comes out to be:

Sc =
2πz2r2

0mec
2

β2
nvZ

[

ln
Emax

Emin

]

; r0 =
e2

4πε0mec2
(3)

Going back to the non relativistic case: Emax = 4mM
(m+M)2

TM

For heavy particles(M � m) ⇒ Emax = 2meV
2

Emin = I2

2meV 2 (I=mean exitation energy)

Mass stopping-power (non relatisvistic): Se

ρ
=

2πz2r2

0

β2 mec
2Na

[
Z
A

]

2 ln
[

Qmax

I

]

,

(M � m), Qmax ≡ Emax

Relativistic expression with corrections:

Sc

ρ
= NA

Z

A
· z2e4

4πε20meV 2

[

ln
Qmax

I
− ln(l − β2) − β2 − c(β2)

Z
− 1

2
δ
]

(4)

Where A represents the molar mass of the stopping material, V is the particle velocity.

The two last terms in the expression are added as a shell correction and a density effect, respectively.
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The last term is a correction which appears because there is also a field set up from other atoms
in the stopping material.
Note that this expression is independent of the mass of the incoming particle.

Stopping-power for composite materials: nvZ ln I ⇒
∑

i
nviZi ln Ii

Range

Range for heavy charged particles

Mono energetic particles, for example α particles:
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Particle range in a stopping-material: R(T ) =
∫ 0

T
dT

−
dT
dx

−dT
dx

= z2G(β)

dT = g(β) ·Mdβ

Particle range in a stopping-material: R(β) = M
z2

∫ 0

β
h(β)dβ=M

z2 f(β)

This is a useful formula for comparing range of particles having identical initial velocity.

Linear energy transfer(LET): LET =
[

− dT
dx

]

c

NOTE! The range is defined to be the distance along the particle track, not the penetration depth.
Generally, we have R > x0 where x0 is the penetration depth. Nevertheless, for heavy charged par-
ticles: R ' x0. This means that a heavy charged particle, fired at a target medium, will travel along
a path that hardly deviates from it’s original direction, until it is retarded down to zero velocity.

β-particles

Stopping-power for β-particles (z=1)

Sc

ρ
= NA

Z

A

e4

4πε0mec2β2

[

ln
mec

2τ
√

τ + 2√
2I

+ F±(β)
]

(5)

τ represents the β-particle’s kinetic energy: τ = T
mec2

For electrons: F−(β) = 1−β2

2

[

1 + τ2

8
− (2τ + 1) ln2

]

For positrons: F +(β) = ln2 − β2

24

[

23 + 14
τ+2 + 10

(τ+2)2 + 4
(τ+2)3

]

Differences between β, and heavy charged particles’ interactions with matter:
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1 β-particles can loose all their energy in one collision with an atomic electron.

2 β−-particles are identical with the object they interact with (electrons).

(We assume that the electron with the lowest energy is the one that belonged to the material.)

3 Relativistic formulas are required (for Te > 10keV ).

Bremsstrahlung contribution to the stopping power

−
[

dE
dx

]

rad

−
[

dE
dx

]

col

' ZE

800
= 2.5 · 10−4ZE

︸ ︷︷ ︸

E is total energy in MeV

(6)

Effective bremsstrahlung contribution:

Y (T0) =
1

T0

∫ T0

0

y(T )dT ' 6 · 10−4Z

MeV
︷︸︸︷

T

1 + 6 · 10−4ZT
; y(T ) ≡

−
[

dT
dx

]

rad

−
[

dT
dx

]

tot

(7)

This is the fraction of the incoming particle’s kinetic energy, which is converted into bremsstrahlung
during the entire retardation process.
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Range for β-particles

Usually, electrons have a continuous energy spectrum up to Emax, and the range is defined relative
to this energy Emax. The electron range is always greater than the penetration depth. NOTE
that in this case it is very important to use the total stopping power in the calculations, since the
bremsstrahlung contribution is highly significant.

R(T ) =

∫

s

ds =

∫ 0

T

dT

−
[

dT
dx

]

tot

(8)

Photons

Photon interactions

Type of interaction:

Interacts with:
Elastic scattering Inelastic scattering Absorption

(Coherent) (Incoherent)

Atomic electrons σCoh.sc ≡ σR σIncoh.sc ≡ σCT σpe

Rayleigh Compton Photo-electric effect

Nuclei/Nucleons Elastic nuclear Nuclear resonance Photo-nuclear
scattering scattering reactions

Electric field σpp

from charged particles Pair production
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Attenuation coefficients

When measuring attenuation coefficients, one always measure in a ”good(proper) geometry” setup.

Detected intensity with/without absorber I
I0

= e−µl·x

Linear attenuation coeff: µl =lim
x→0

1
x

ln I0

I
= −1

I
dI
dx

Atomic attenuation coeff: σa = µl

nV

Mass attenuation coeff: µl

ρ
= σa NA

A

The atomic attenuation coefficient is often called the atomic scattering cross-section. This is mea-
sured in barn. nv is the number of atoms per unit volume.
The atomic cross-sections for the different atoms in composite materials are additive.

Photon - atomic electron interaction

Compton scattering:
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Assuming that the electron is free and initially at rest:

Conservation of energy: hν + mec
2 = hν ′ + γmec

2

Conservation of momentum: hν
c

= hν′

c
cos θ + p′e cosφ

Relativistic electron after interaction: (p′ec)
2 = T ′(T ′ + 2mec

2)

Neglecting the electronic binding energy(as earlier implied): T ′ = h(ν − ν ′)

Change in wavelength: ∆λ = λ′ − λ = λc(1 − cosθ)

Compton wavelength: λc = h
mec

Scattered photon’s energy:hν ′ = hν
1+α(1−cosθ)

,α = hν
mec2

Scattering angles: cotφ = (1 + α) tan θ
2

Minimum scattering: θ ' 0 ⇒ φ = π
2 ; hν ′ ' hν ; T ′

e ' 0

Maximum scattering: θ = π ⇒ φ = 0 ; hν ′ → hν
1+2α

; T ′
e = hν 2α

1+2α

Fraction of energy scattered: hν′

hν

Fraction of energy transferred to the Compton electron: (1 − hν′

hν
)

Klein-Nishina cross-section (per electron)

σe,KN

dΩ
=

r2
0

2

[ 1 + cos2 θ

[1 + α(1 − cos θ)]2
+

α2(1 − cosθ)2

[1 + α(1− cos θ)]3

]

(9)

Where r0 is the classical electron radius as defined before.

Alternatively:
dσe,KN

dΩ
=

r2
0

2

[ν ′

ν

]2[ ν

ν ′
+

ν ′

ν
− sin2(θ)

]

(10)
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For low energies, α → 0:

dσKN

dΩ → r2

0

2 [1 + cos2 θ]

This cross-section describes scattering of photons by a free electron target, consistent with clas-
sical electro-magnetic theory. This is also called the Thomson cross section. This scattering process
results in coherent scattering(hν ′ = hν). In reality one has to introduce a scattering form-factor F ,
for this formula to agree with experimental data.

Cross section for coherent scattering (Low energy description)

dσkoh.sc

dΩ
=

r2
0

2
(1 + cos2 θ)

[

F (hν, θ, Z)
]2

(11)

Cross section for incoherent scattering

dσis

dΩ
=

dσKN

dΩ
S(hν, θ, Z) (12)

S is here a structure-factor (fraction of incoherent scattering). This factor describes the probability
for the target atom to get excited, or ionized after interacting with the incoming photon.
Incoherent scattering ≡ compton scattering:
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Total compton scattering cross-section σCT = σCA + σCS

Cross-section describing energy transfer to scattered photon: σCS = hν′

hν
σCT

Cross-section describing energy transfer to compton electron: σCA =
[

1 − hν′

hν

]

σCT

Photo-electric effect

This is not possible for a free electron (There is no solution to the compton equations for hν ′ = 0).

Kinetic energy for the electron: T ′
e = hν − EB

Photon - Coulomb field interaction

Pair production

Threshold energy: hν ≥ 2moc
2
[

1 + m0c2

Mxc2

]

Photon - nuclear Coulomb field interaction(Mx � m0): hν ≥ 2m0c
2
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Triplet production

Photon-electronic Coulomb field interaction:(Mx = m0): hν ≥ 4m0c
2

In this case, there is no way telling which two of the electrons are the produced ones, and which one
is the original target. That is why the process is called :”triplet production”.

β+ annihilation

β+ annihilation is usually a result of positronium(β+&e−) being formed after the β+ particle has
lost its kinetic energy. Positronium has lifetime, τ ' 10−10s. Alternatively, the β+ annihilation can
occur ”in flight”.

Total interaction cross-section for photons

Total attenuation coeff: µ = µR + µPE + µCT + µPP

Mass-energy transfer coefficient, (µtr

ρ
) represents the fraction of the incoming photon’s energy, which

is transferred to charged particles (secondary electrons), thus increasing their kinetic energy.

µtr

ρ
=

µPE

ρ

[

1 − δ

hν

]

+
µCT

ρ

[

1 − hν ′

hν

]

+
µPP

ρ

[

1 − 2m0c
2

hν

]

(13)

δ represents the mean energy emitted by characteristic X-ray radiation. δ = EB·Probability for
a de-excitation by X-ray radiation, as opposed to Auger electron emission.
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Mass-energy absorption coefficient:

µen

ρ
=

[µtr

ρ

]

[1− g] (14)

g is the fraction of the secondary electrons’ energy, which is emitted as bremsstrahlung. (This
energy is not locally deposited in the stopping media)

Z-dependence of the photon cross sections

Generally: σa = Z · σe

σe is one of the electron cross-sections,
for example σKN

Linear attenuation coeff: µl

ρ
= σa NA

A
= σe Z

A
NA

For most materials, Z' 0.45A for A > 1: µl

ρ
' 0.45NAσe

This means that µl

ρ
' constant(close to Z-independency) within the Compton range.

Photo-electric effect: σa
PE ∝ Z4

(hν)3

Compton: σa
CT ∝ Z → σe

CT ' constant

Pair production: σa
PP ∝ Z2

Neutrons

Classification of neutrons

Thermal neutrons: E ' 0.025eV

Epithermal neutrons: E ' 1eV

Slow neutrons: E ' 1keV

Fast neutrons: 100keV − 10MeV
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Neutron sources

(α, n)-sources consist of an α-emitter and 9Be:⇒ 4
2He +9

4 Be →12
6 C + n

For example, a mixture of 226Ra and 9Be ⇒ constant neutron emission rate (not mono-energetic,
due to energy loss of the α-particles in the sample).

(γ, n)-sources give nearly mono-energetic neutrons.: γ +9
4 Be →8

4 Be + n

The γ-photon’s threshold energy for this process to work: hν ≥ Eb

Where Eb is the binding energy of the neutron.

Spontaneous fission, for instance: 252Cf

Nuclear reactions: Choosing a specific Ta and exit angle θ ⇒ Selective mono-energetic neutron
flux.

Example:

3H + d →4 He + n Q=17.6MeV

9Be +4 He →12 C + n Q=5.7MeV

Reactor as a source: Large flux of neutrons for activation analysis.

Absorption and moderation of neutrons

There are several possible reactions for fast neutrons: (n,p), (n,α), (n, 2n) Usually, these reactions
have very strong resonances.

Without the resonances: σ ∝ 1
v

Attenuation of mono-energetic neutrons: I = I0e
−σtnx = I0e

−Σx

Where Σ represents the ”macroscopic cross-section”.(But really is a linear attenuation coefficient)
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Energy distribution after scattering of mono-energetic neutrons

Scattering is isotropic in the CM frame.

E′

E
=

A2 + 2A cos θ + 1

(A + 1)2

(E′

E

)

min
=

[A − 1

A + 1

]2

, for θ = π (15)

Logarithmic decrement: ξ = 1
4π

∫
ln E

E′
· dΩ = 1 +

(A−1)2

2A
ln A−1

A+1

Median energy after n interactions: E′
n

This energy is defined as: lnE′
n ≡ lnEn = lnE0 − nξ
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Example:Thermal moderation of neutrons

Thermalizing 2 MeV neutrons in different moderators:

Moderator ξ n

1H 1.0 18

2H 0.725 25

12C 0.158 115

238U 0.008 2200
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