
4.)

Nuclear structure (Lilley Chap. 2)

Models

Nuclear force

This is a short range attractive force, but repulsive for even shorter distances⇒ There is a certain
optimal distance between nuclear particles.

Liquid drop model

The nucleus is considered as a spherical liquid drop with constant internal density.

Evidence for the existence of the liquid drop model:

The internal charge distribution:

a.) Electron scattering experiments imply the charge density function below:

Number of nucleons per unit volume is approximately constant ⇒ ρ = A
4
3
πR3

b.) The nuclear charge distribution affects the energy levels of the S-orbital electrons.
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c.) The potential energy difference between mirror nuclei:

Example:

13
7 N6

β+

→ 13
6 C7, Measure Emax for β+

∆EC = 3
5

e2

4πε0

1
R

[

Z2 − (Z − 1)2
]

︸ ︷︷ ︸

(2Z−1)=A

⇒ ∆Ec = 3
5

e2

4πε0

1
R0

A
2
3

The internal mass distribution:

a.) Neutron scattering (elastic)

This is the same calculation as used for electron scattering, remembering to exchange the

electron’s electro-magnetic potential with the neutron’s potential

⇒ Scattering data give the Fourier transform of the mass distribution.

b.) Deviation from the expected angular dependency of Rutherford scattering for r > R.

c.) Calculating the tunneling probability for α-disintegration.

d.) Measuring the difference between Ek-energies for atoms

with π − mesons
︸ ︷︷ ︸

Strong force+Coulomb

and muons
︸ ︷︷ ︸

Coulomb only

instead of electrons.

These four points, from a.) through d.), result in a conclusion:ρm ' ρe, R = R0A
1
3 , R0 = 1.2fm
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Measuring atomic masses

Mass excess, ∆ = m− A is

{
≥0, if A < 12
≤0, if A > 12

Binding energy

Binding energy: B =
[

Zm(1H) + Nmn − m(A
ZX)

]

c2, where c2 = 931.5MeV
u

Neutron separation energy: Sn =
[

mn + m(A−1
Z XN−1) − m(A

ZXN)
]

c2

Proton separation energy: Sp =
[

mp + m(A−1
Z−1XN ) − m(A

ZXN )
]

c2

Binding energy: B = av · A − asA
2
3 − ac ·Z(Z − 1)A− 1

3 (Liquid drop model)

−asym · (A−2Z)2

A
+ δpair (Shell effects)

Where δ =







+apA
− 3

4 , if Z & N are even numbers
0, if A is an odd number
−apA

− 3
4 , if Z & N are odd numbers

Semi-empirical mass formula: M(Z, A) = Zm(1H) + Nmn − B(Z,A)
c2

M(A,Z) is sketched below for fixed values of A:
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Minimum mass: ∂M
∂Z

= 0 ⇒ Z = Zmin =
[mn−m(1H)]+acA

−

1
3 +4asym

2acA
−

1
3 +8asymA−1

The nuclear shell model

This model is the nuclear analogy to the electron shell model.
Experimental data show that the ionisation energy decreases and the atomic radius increases rapidly
for the first electron outside a full shell. I.e for Li, Na, K etc. The same occurs for nucleons in the
nucleus.

Experimental data that justify the theory of a nuclear shell structure

a.) There is a rapid fall in 2-neutron and 2-proton separation energy when passing

the magic nucleon numbers; 8, 20, 28, 50, 82, 126

b.) α-energy reaches maximum for radio-nuclei where the daughter nucleus has a structure

corresponding to magic numbers.

c.) The neutron scattering cross-section for nuclei with N=magic numbers is extraordinarily small.

d.) There is a huge increase in the nuclear radius when the number of neutrons exceed magic numbers.
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A realistic potential for the shell model (Woods-Saxon potential):

V =
−V0

1 + e
r−R

a

(1)

Where V0 ' 50MeV , R = R0A
1
3 , R0 = 1.2fm

Spin-Orbit coupling

Energy difference: ∆E = −(~l · ~s) Vso, Vso > 0

Total angular momentum: ~j = ~l + ~s

From this, it follows that < ~l · ~s >= 1
2 < [~j2 − ~l2 − ~s2] >=1

2 [j(j + 1) − l(l + 1) − s(s + 1)]h̄2

Energy splitting: δE = Vso[< ~l · ~s >j=l− 1
2
− < ~l · ~s >j=l+ 1

2
]= h̄2

2 Vso(2l + 1)
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# of identical nucleons per energy level: (2j+1)

Remember that the Pauli principle applies only for identical Fermions (protons and neutrons are
counted independently).

Parity: (−1)l ⇒

{

π+ for s, d, g..
π− for p, f, h..

This shell model with spin-orbit coupling gives the right spin and parity. Further on, it predicts
reasonable energy levels, and introduces the magical numbers corresponding to filled shells.
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Angular momentum and spin

For each nucleon: ~j = ~l + ~s

For the nucleus: ~I =
∑

~ji

~I2 = h̄2I(I + 1)

Iz = mh̄

For nuclei with one valence-nucleon: ~I = ~jvn

For nuclei with two valence-nucleons: ~I = ~j1 +~j2

For nuclei with even numbers of A: I ∈ integer

For nuclei with odd numbers of A: I ∈ half integer

For even-even nuclei(Z&A even): I=0 in the ground state

Valence nucleons

Excited states: The valence nucleon jumps to a higher energy state in the shell model by absorbing
excitation energy. This model agrees with experimental data for nuclei with one valence nucleon.

Experimental data which justify the orbital model for nucleons

Electron-scattering experiments to find the charge-distribution difference between 206
82 Pb124 and

205
81 T l124. The difference, ∆ρe, takes place because Pb has one extra proton in a 3S 1

2
-state.

⇒ ∆ρe corresponds to a 3s 1
2
-orbital.
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Protons and neutrons are found as proton- and neutron-pairs in the shell structure. To excite a
nucleon, one has to break a pair bond (typically 2MeV binding energy). Energy and spin is then
found from the two odd nucleons. Coupling of the two angular momenta ~j1 +~j2 gives values from
|j1 + j2| to |j1 − j2|.

Collective structure contributions in even-even nuclei

Experimentally:

All even-even nuclei have a low 2+ excited state with excitation energy around half the energy re-
quired to separate a pair of nucleons, indicating another type of excited state than single nucleon
excitation.
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Experimental data:

Nuclear vibrations(for A < 150)

The nuclear surface:

R(t) = Rav +
∑

λ≥1

λ∑

µ=−λ

αλµ(t)Yλµ(θ, φ) (2)

A nuclear quadrupole-moment corresponds to Y20(l = 2)

Exited phonon states with equidistant energy levels ⇒ E = n · h̄ω

If the 4+ state is due to a two-phonon excitation and 2+ corresponds to a one-phonon excita-
tion, one can easily draw the conclusion that E(4+)/E(2+) = 2. Experimental data for A < 150
confirms this model.
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Rotating deformed nuclei (150 < A < 190, A > 220)

R(θ, φ) = R0

[
1 + βY20(θ, φ)

]
(3)

Deformation parameter: β = 4
3

√
π
5

∆R
Rav

' ∆R
Rav

Intrinsic quadrupole moment, Q ,in the nucleus’ rest frame: Q0 = 3√
5π

· R2
avZβ(1 + 0.16β)

A rotating prolate
︸ ︷︷ ︸

Q0>0

ellipsoid rotates perpendicular to the symmetry-axis ⇒ Q < 0.

Rotational states

E =
h̄2

2Υ
I(I + 1) (4)

The ground state for even-even nuclei has a total angular momentum I=0, and superimposed ro-
tational states have even spin due to symmetry. Υ is the effective nuclear mass moment of inertia.
Deformed nuclei are found where Z&N take values far from magic numbers.
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Super-deformation

The Schrødinger equation for deformed nuclei gives a new set of states. When deforming a nucleus
' 2:1 prolate ellipsoid, a new shell structure arises ⇒ super-deformed states.
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