5.)

Nuclear instability (Lilley Chap 3)

γ-radioactivity

Transitions

Isomeric transition (leaves Z and
N unchanged) from an exited nuclear state: ${ }_{Z}^{A} X^{*} \rightarrow{ }_{Z}^{A} X+\gamma$
Conservation of energy:
$E_{i}=E_{f}+E_{\gamma}+T_{R}$
Conservation of momentum:
$0=\vec{P}_{R}+\vec{P}_{\gamma} \Rightarrow P_{R}=P_{\gamma}=\frac{1}{c} E_{\gamma}$
\Rightarrow
$E_{\gamma}=\frac{\Delta E}{1+\frac{\Delta E}{2 M_{x} c^{2}}} \simeq \Delta E\left(1-\frac{\Delta E}{2 M_{x} c^{2}}\right)$

Where, E_{i} and E_{f} represents the excitation energy in the initial and final states, $\Delta E=E_{i}-E_{f}$, and T_{R} is the recoil energy.

From the theory of classical electromagnetic radiation

Parity for multipole-field of order L: $\quad \pi(E L)=(-1)^{L}, \pi(M L)=(-1)^{L+1}$

Radiated power:

$$
P(\sigma L)=\frac{2(L+1) c}{\varepsilon_{0} L[(2 L+1)!!]^{2}}\left[\frac{\omega}{c}\right]^{2 L+2}[m(\sigma L)]^{2}
$$

Where $(2 L+1)!!\equiv(2 L+1)(2 L-1)(2 L-3) \ldots .1, \sigma \in E, M$, and $m(\sigma L)$ is the time dependent multipole amplitude.

A quantum mechanical approach

Multipole moment:

$$
M_{f i}(\sigma L)=\int \psi_{f}^{*} m(\sigma L) \psi_{i} d^{3} r
$$

Emitted power:
$P(\sigma L)=T(\sigma L) \cdot \hbar \omega$

Emission rate:

$$
T(\sigma L)=\frac{P(\sigma L)}{\hbar \omega}=\frac{2(L+1)}{\hbar \varepsilon_{0} L[(2 L+1)!!]^{2}}\left[\frac{\omega}{c}\right]^{2 L+1} B(\sigma L)
$$

Reduced transition probability: $\quad B(\sigma L)=\left|M_{f i}\right|^{2}$

Single nucleon (SP) model

Multipole operator: $\quad m(E L) \propto e r^{L} Y_{L M}(\theta, \phi)$

$$
m(M L) \propto r^{L-1} Y_{L M}(\theta, \phi)
$$

Weisskopf sp-approximations: $\quad B_{s p}(E L)=\frac{e^{2}}{4 \pi}\left[\frac{3 R^{L}}{L+3}\right]^{2}$

$$
B_{s p}(M L)=10\left[\frac{\hbar}{m_{p} c R}\right]^{2} B_{s p}(E L)
$$

These approximations lead to: $\quad T(E 1)=10^{14} A^{\frac{2}{3}} E_{\gamma}^{3}$

$$
T(M 1)=3.1 \cdot 10^{13} E_{\gamma}^{3}
$$

If $L \rightarrow L+1: T(L+1) \rightarrow 6 \cdot 10^{-7} A^{\frac{2}{3}} E_{\gamma}^{2} \cdot T(L)$

Note:

1.) The lowest multipole transition has the highest transition probability
2.) For a given order, $T(E L) \simeq 100 \cdot T(M L)$

Selection rules

The photon is a $S=1$ Boson. The direction of this spin is either parallel or antiparallel to \vec{p}_{γ}. This spin cannot be coupled to $\vec{l}=\vec{r} \times \vec{p}_{\gamma}$ because $\vec{S} \perp \vec{l}$.

Conservation of angular momentum: $\quad \vec{I}_{i}=\vec{I}_{f}+\vec{L}$

$$
\left|I_{i}-I_{f}\right| \leq L \leq\left|I_{i}+I_{f}\right|, \quad L \neq 0
$$

Now, if:

$$
\begin{array}{lll}
\Delta \pi=0: & \text { Even EL, odd ML } \Rightarrow & \text { M1, E2, M3.... } \\
\Delta \pi \neq 0 & \text { Odd, EL, even ML } \Rightarrow & \text { E1, M2, E3.... }
\end{array}
$$

If I_{i} or $I_{f}=0 \Rightarrow$ A particular value of $L \Rightarrow$ Pure multipole transition.
If $I_{i}=I_{f}=0$ Forbidden transition for γ-transition, but an electron conversion is possible.

Experimental determination of multipole contribution

Generally, $\left|I_{i}-I_{f}\right| \leq L \leq\left|I_{f}+I_{i}\right|$ give several possible L-values. This means that L has to be determined experimentally. The easiest way to approach this problem is to find the angular-correlation:

Conversion electrons

The nucleus de-excites by interaction with an atomic electron (mainly S-orbital electrons) \Rightarrow electron emission.

Conservation of energy:

$$
T_{e}=\Delta E-E_{B}
$$

Binding energy:

$$
E_{B}(K)>E_{B}(L)>E_{B}(M) \ldots
$$

Transition probability per unit time: $\quad \lambda_{t o t}=\lambda_{\gamma}+\lambda_{e}$
Conversion coeff.:

$$
\begin{aligned}
& \alpha=\frac{\lambda_{e}}{\lambda_{\gamma}} \Rightarrow \lambda_{t}=\lambda_{\gamma}(1+\alpha) \\
& \alpha=\alpha_{K}+\alpha_{L I}+\alpha_{L I I}+\alpha_{L I I I}+\alpha_{M} \ldots \ldots
\end{aligned}
$$

Maximum conversion: K-shell electron conversion ($n=1$) for low-energy, high-polarity transitions $\left(E \ll 2 m_{e} c^{2}\right)$ in heavy nuclei ($\propto Z^{3}$). The difference between $\alpha(E L)$ and $\alpha(M L)$ can be used to determine the change of parity. $\alpha=\infty$ for $0^{+} \rightarrow 0^{+}$because $L=0$ is a forbidden γ-emission transition. The competition between conversion electrons and γ-emission is analogous to the process
where Auger electrons and characteristic X-ray emission compete when a de-exitation of electronic energy-states takes place. ($K-L_{I}$ transition is optically forbidden).

β-Disintegration

There are 3 different processes concerning this topic: $\beta^{-}, \beta^{+}, \varepsilon$

β^{-}-disintegration

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} X^{\prime}+e^{-}+\bar{\nu}_{e}
$$

Energy released:

$$
\begin{aligned}
& Q_{\beta^{-}}=\left(m_{P}-m_{D}\right) c^{2} \\
& Q_{\beta^{-}}=\left(\Delta_{P}-\Delta_{D}\right) c^{2} \\
& Q_{\beta^{-}}=T_{X^{\prime}}+T_{e}+T_{\bar{\nu}_{e}}
\end{aligned}
$$

Where $T_{X^{\prime}}$, the recoil energy, is close to zero and $m_{\bar{\nu}_{e}} \simeq 0 \Rightarrow T_{\bar{\nu}_{e}}=E_{\bar{\nu}_{e}}$. This means that the energy released in the reaction can be written as below.

$$
\text { Energy released: } \quad Q_{\beta^{-}}=T_{e}+T_{\bar{\nu}_{e}}=T_{e, \max }=T_{\bar{\nu}_{e}, \max }
$$

β^{+}-disintegration

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} X^{\prime}+\beta^{+}+\nu_{e}
$$

Energy released: $\quad Q_{\beta^{+}}=\left(m_{P}-m_{D}-2 m_{e}\right) c^{2}$

$$
\begin{aligned}
& Q_{\beta^{+}}=\left(\Delta_{P}-\Delta_{D}-2 m_{e}\right) c^{2} \\
& Q_{\beta^{+}}=\underbrace{T_{X^{\prime}}}_{\simeq 0}+T_{\beta_{+}}+\underbrace{T_{\nu_{e}}}_{\simeq E_{\nu_{e}}} \text { because } m_{\nu_{e}} \simeq 0 \\
& Q_{\beta^{-}}=T_{\beta^{+}, \text {max }}=T_{\nu_{e}, \max }
\end{aligned}
$$

Electron capture (ε or EC)

$$
{ }_{Z}^{A} X+e^{-} \rightarrow{ }_{Z-1}^{A} X^{\prime}+\nu_{e}
$$

Released energy:

$$
\begin{aligned}
& Q_{E C}=c^{2}\left(m_{P}-m_{D}\right)-E_{B} \\
& Q_{E C}=T_{X}^{\prime}+T_{\nu_{e}}
\end{aligned}
$$

The recoil energy, T_{X}^{\prime}, is very small and can therefore in most cases be neglected. E_{B} is the binding energy for the captured electron's initial orbital. Since this is a two-body problem, the neutrino is emitted with well-defined energy and is therefore said to be mono-energetic.

Possible $Q_{E C}$ values if $m_{P} \simeq m_{D}: E_{B}(K)>E_{B}(L) \Rightarrow \begin{cases}Q_{E C(K)}<0 & \text { No transition } \\ Q_{E C(L)}>0 & \text { Transition possible }\end{cases}$

Fermi theory for β-disintegration

Distinctive traits (in comparison to α-disintegration):

1.) The potential barrier is of no relevance ($m_{e} \ll m_{\alpha}$, and therefore $P($ tunneling $) \simeq 1$).
2.) An electron and an anti neutrino has to be created.
3.) A relativistic approach is necessary.
4.) "3-body problem" for $\beta^{ \pm}$.

Fermi's golden rule: $\quad \lambda=\frac{2 \pi}{\hbar}\left|V_{f i}\right|^{2} \rho\left(E_{f}\right)$
Matrix element: $\quad V_{f i}=g \int \psi_{f}^{*} V \psi_{i} d^{3} r$
Initial state: $\quad \psi_{i}=\psi_{i N}$
Final state: $\quad \psi_{f}=\psi_{f N} \phi_{e} \phi_{\bar{\nu}_{e}}$

Where g is a constant which characterizes the strength of the weak interactions.

$$
\text { Number of states: } \quad n=\frac{p L}{h} \text {, for } x \in[0, L] \text { and } p \in[0, p]
$$

$$
\Rightarrow \quad d^{2} n=d n_{e} d n_{\nu_{e}}=\frac{(4 \pi)^{2} V^{2} p^{2} d p q^{2} d q}{h^{6}}
$$

Where p is the linear momentum of the electron and q that of the neutrino. For the electron and neutrino states, we use zero order approximations which give allowed transitions.

$$
\begin{array}{ll}
\text { Electron state: } & \phi_{e}(\vec{r})=\frac{1}{\sqrt{V}} e^{i \frac{\vec{\rightharpoonup} \cdot \vec{r}}{\hbar}} \simeq \frac{1}{\sqrt{V}}\left[1+i \frac{\vec{p} \cdot \vec{r}}{\hbar}+\ldots\right] \simeq \frac{1}{\sqrt{V}} \\
\text { Neutrino state: } & \phi_{\bar{\nu}_{e}}(\vec{r})=\frac{1}{\sqrt{V}} e^{i \frac{\vec{i} \cdot \vec{r}}{\hbar}} \simeq \frac{1}{\sqrt{V}}\left[1+i \frac{\vec{q} \cdot \vec{r}}{\hbar}+\ldots\right] \simeq \frac{1}{\sqrt{V}}
\end{array}
$$

Now, by inserting this into Fermi's golden rule one obtains:

$$
\begin{array}{ll}
\text { Transition probability rate: } & d \lambda(p)=\frac{2 \pi}{\hbar}\left|g \int \psi_{f N}^{*} \phi_{e}^{*} \phi_{\bar{\nu}_{e}}^{*} O_{x} \psi_{i} d^{3} r\right|^{2} \frac{(4 \pi)^{2} V^{2} p^{2} d p q^{2}}{h^{6}} \frac{d q}{d E_{f}} \\
\text { Conservation of energy: } & E_{f}=E_{e}+E_{\bar{\nu}_{e}}=E_{e}+q c, \text { assuming } M_{\bar{\nu}_{e}} \equiv 0 \\
\Rightarrow & \frac{d E_{f}}{d q}=c \text { for fixed } E_{e} \\
\text { Released energy: } & Q=T_{e}+q c \Rightarrow q=\frac{Q-T_{e}}{c} \\
\text { Transition probability rate: } & d \lambda(p)=\frac{2 \pi}{\hbar} g^{2}\left|M_{f i}\right|^{2}(4 \pi)^{2} \frac{p^{2} d p q^{2}}{h^{6}} \frac{1}{c} \\
& d \lambda(p) \propto N(p) d p=C p^{2} q^{2} d p \\
\text { Electron distribution: } & N(p)=\frac{C}{c^{2}} p^{2}\left(Q-T_{e}\right)^{2}=\frac{C}{c^{2}} p^{2}\left[Q-\sqrt{(p c)^{2}+\left(m c^{2}\right)^{2}}+m c^{2}\right]^{2} \\
\Rightarrow & N(p) d p=N\left(T_{e}\right) d T_{e} \Rightarrow \frac{d p}{d T_{e}}=\frac{1}{c^{2} p}\left(T_{e}+m c^{2}\right) \\
\Rightarrow & N\left(T_{e}\right)=\frac{C}{c^{5}} \sqrt{T_{e}^{2}+2 T_{e} m c^{2}}\left(Q-T_{e}\right)^{2}\left(T_{e}+m c^{2}\right)
\end{array}
$$

The Fermi factor $F_{\beta^{ \pm}}\left(Z^{\prime}, T_{e}\right)$ represents the Coulomb interactions with the nucleus:

Electron distribution:

$$
N(p) \propto p^{2}\left(Q-T_{e}\right)^{2} F\left(Z^{\prime}, p\right)\left|M_{f i}\right|^{2} S(p, q)
$$

Where the form factor $S(p, q)= \begin{cases}1, & \text { for allowed transitions } \\ \neq 1, & \text { for forbidden transitions }\end{cases}$

Fermi-Curie-plot

$$
y=\sqrt{\frac{N(p)}{p^{2} F\left(Z^{\prime}, p\right)}} \propto\left(Q-T_{e}\right), \quad M_{f i}=\mathrm{constant}
$$

Total transition probability rate: $\quad \lambda=\int_{p=0}^{p, \max } d \lambda(p)$
The Fermi integral:

$$
f=\frac{1}{(m c)^{3}} \frac{1}{\left(m c^{2}\right)^{2}} \int_{0}^{p, m a x} F\left(Z^{\prime}, p\right) p^{2}\left(E_{0}-E_{e}\right)^{2} d p
$$

Conservation of energy:

$$
E_{0}-E_{e}=Q+m c^{2}-\left(T_{e}+m c^{2}\right)=Q-T_{e}
$$

Comparable half-life:

$$
f t_{\frac{1}{2}}=f \frac{\ln 2}{\lambda}
$$

$$
f t_{\frac{1}{2}}=0.693 \cdot \frac{2 \pi^{3} \hbar^{7}}{g^{2} m_{e}^{5} c^{4}\left|M_{f i}\right|^{2}} \simeq 10^{3}-10^{20} s
$$

For "super-allowed transitions:

$$
\log f t_{\frac{1}{2}} \in(3-4)
$$

For $0^{+}-0^{+}, M_{f i}=\sqrt{2} \Rightarrow f t_{\frac{1}{2}^{-}}$-values for these transitions should be of equal magnitude. This corresponds with experiments performed. $\log \mathrm{ft}_{\frac{1}{2}}$ increases for increasing order of forbiddenness.

Selection rules

Conservation of angular momentum:	$\vec{I}_{i}=\vec{I}_{f}+\vec{L}_{\beta}+\vec{S}_{\beta}$
Parity:	$\pi_{P}=\pi_{D}(-1)^{L_{\beta}}$
Allowed transitions:	$\vec{L}_{\beta}=\overrightarrow{0}$
First forbidden:	$\vec{L}_{\beta}=\overrightarrow{1}$
Second forbidden:	$\vec{L}_{\beta}=\overrightarrow{2}$
Fermi transitions	$\vec{S}=\overrightarrow{0}$
Gamow-Teller transitions	$\vec{S}=\overrightarrow{1}$

Where \vec{L}_{β} and \vec{S}_{β} refer to the (β, ν) particle system.
1.) Allowed transitions: $\left(\vec{L}_{\beta}=0, \pi_{P}=\pi_{D}\right)$

Fermi type: $(\vec{S}=\overrightarrow{0}) \quad$ Gamow-Teller type: $(\vec{S}=\overrightarrow{1})$
$\vec{I}_{i}=\vec{I}_{f} \quad \vec{I}_{i}=\vec{I}_{f}+\overrightarrow{1}$
$\Delta I=0 \quad \Delta I=0,1 ; \operatorname{not} 0^{+} \rightarrow 0^{+}$
$0^{+} \rightarrow 0^{+}$Super-allowed. $\quad 0^{+} \rightarrow 1^{+}$Pure Gamow-Teller.
2.) First forbidden transitions: $\left(\vec{L}_{\beta}=\overrightarrow{1}, \pi_{P}=-\pi_{D}\right)$

Fermi type: $(\vec{S}=\overrightarrow{0}) \quad$ Gamow-Teller type: $(\vec{S}=\overrightarrow{1})$
$\vec{I}_{i}=\vec{I}_{f}+\overrightarrow{1}$
$\vec{I}_{i}=\vec{I}_{f}+\underbrace{\overrightarrow{1}+\overrightarrow{1}}_{\overrightarrow{0}, \overrightarrow{1}, \overrightarrow{2}}$
$\Delta I=0,1$
Three types:
$\Delta I=0$
$\Delta I=0,1$
$\Delta I=0,1,2$

Violation of parity conservation during β-disintegration

When a physical law is invariant during a symmetry operation, there is a corresponding conserved quantity. Gravitation and electromagnetism are invariant during a spatial reflection (Parity operator $\mathrm{P})$, charge (C) and time $(\mathrm{T}) \Rightarrow$ Parity should be a conserved quantity. $\Rightarrow<O_{P S}>=\int \Psi^{*} \hat{O}_{P S} \Psi d^{3} r=0$.
Where $O_{P S}$ is an operator that is representing a pseudo-scalar quantity, for example $\vec{p} \cdot \vec{S}$, which is a product of a polar vector (\vec{p}) and an axial vector $\vec{S} . P(\vec{p})=-\vec{p}, P(\vec{S})=\vec{S} .<O_{P S}>=0$ because the integrand is an odd function if parity is a conserved quantity.
Experiment

P-reflection

The P-reflection experiment emits in the "forward" direction, while the original experiment emits backwards relative to \vec{I}. Wu et al. showed in 1957 that $\langle\vec{p} \cdot \vec{I}\rangle<0$ in this experiment, i.e. parity is not necessarily conserved in β-disintegration.

α-disintegration

α-disintegration takes place in nuclei with low $\frac{N}{P}$-ratio.

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} X^{\prime}+\alpha
$$

Energy released:

$$
\begin{aligned}
& Q_{\alpha}=\left(m_{P}-m_{D}-m_{H e}\right) c^{2}(\text { atomic masses }) \\
& Q_{\alpha}=\left(\Delta_{P}-\Delta_{D}-\Delta_{H e}\right) c^{2} \\
& Q_{\alpha}=T_{X^{\prime}}+T_{\alpha}(\text { Assuming } \mathrm{X} \text { is initially at rest })
\end{aligned}
$$

Conservation of momentum: $\quad \vec{P}_{X^{\prime}}+\vec{P}_{\alpha}=0$

$$
\Rightarrow \quad T_{\alpha}=\frac{Q_{\alpha}}{1+\frac{M_{\alpha}}{M_{X^{\prime}}}}
$$

These α-energies are well defined, ie monoenergetic, because this is a two-body problem.

Disintegration constant: $\quad \lambda=f \cdot P \cdot A_{\alpha}^{2}$

Where f is the number of collisions with the potential barrier per second, P is the tunneling probability and A is the spectroscopical factor expressed below.

$$
\text { Spectroscopical factor: } \quad A_{\alpha}^{2}=\left|<\Psi_{f}^{*}(A-4) \Psi_{\alpha}^{*}(4)\right| \Psi_{i}(A)>\left.\right|^{2}
$$

The physical interpretation of this spectroscopical factor is that it is the probability for creating an α-particle inside the nucleus.

Gamow factor:

$$
G=\int_{a}^{b} \sqrt{\frac{2 m_{\alpha}}{\hbar^{2}}[V(r)-Q]} d r
$$

WKB-approximation solution: $\quad G=\sqrt{\frac{2 m_{\alpha}}{\hbar^{2} Q} \frac{z Z^{\prime} e^{2}}{4 \pi \varepsilon_{0}}} \underbrace{\left[\arccos \sqrt{\frac{Q}{B}}-\sqrt{\frac{Q}{B}\left(1-\frac{Q}{B}\right)}\right]}_{\simeq \frac{\pi}{2}-2 \sqrt{\frac{Q}{B}} \text { for } Q \ll B}$
$\begin{array}{ll}\text { Tunneling probability: } & P=e^{-2 G} \\ \text { Collision frequency: } & f \simeq \frac{v}{a} \\ \text { Velocity : } & v \simeq \sqrt{\frac{2\left(Q+V_{0}\right)}{m_{\alpha} c^{2}}} \cdot c\end{array}$

Where v is the α-particle's velocity inside its nucleus-orbital, and a is the nuclear radius R. A_{α}^{2} is assumed to be 1 .

$$
\text { Geiger-Nuttals rule: } \quad t_{\frac{1}{2}}=0.693 \frac{a}{c} \sqrt{\frac{m c^{2}}{2\left(V_{0}+Q\right)}} \exp \left[2 \sqrt{\frac{2 m c^{2}}{(\hbar c)^{2} Q}} \cdot \frac{z Z^{\prime} e^{2}}{4 \pi \varepsilon_{0}}\left(\frac{\pi}{2}-2 \sqrt{\frac{Q}{B}}\right)\right]
$$

This can again be simplified by introducing a few assumptions. $V_{0}+Q \simeq V_{0}, \quad 2 \sqrt{\frac{Q}{B}} \ll \frac{\pi}{2} \Rightarrow$ $\lg t_{\frac{1}{2}}=C_{1}+\frac{C_{2}}{\sqrt{Q}}$. See Lilley Fig.3.9.

Effects due to angular momenta

The centrifugal potential makes the potential barrier increase.
Selection rule: $\quad \vec{I}_{i}=\vec{I}_{f}+\vec{l}_{\alpha}$

$$
\left|I_{i}-I_{f}\right| \leq l_{\alpha} \leq\left|I_{f}+I_{i}\right|
$$

Parity rule: $\quad \pi_{P}=\pi_{D}(-1)^{l_{\alpha}}$

A typical example is a transition to rotational energy-states in deformed nuclei. $l_{\alpha} \in$ even numbers because of symmetry and parity.

Deviation from Geiger-Nuttals rule:

1.) For deformed nuclei there is a higher probability for emitting through the poles,
because bigger $a(\equiv R) \Rightarrow$ lower potential barrier
2.) $\quad A_{\alpha}^{2}$ can be significantly ≤ 1, for example if the creation of an α-particle requires a break-up of nucleon bonds in filled shells.

