# 5.) Nuclear instability (Lilley Chap 3)

# $\gamma$ -radioactivity

# Transitions

| Isomeric transition (leaves Z and N unchanged) from an exited nuclear state: | ${}^A_Z X^* \to^A_Z X + \gamma$                                                                               |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Conservation of energy:                                                      | $E_i = E_f + E_\gamma + T_R$                                                                                  |
| Conservation of momentum:                                                    | $0 = \vec{P}_R + \vec{P}_\gamma \Rightarrow P_R = P_\gamma = \frac{1}{c}E_\gamma$                             |
| $\Rightarrow$                                                                | $E_{\gamma} = \frac{\Delta E}{1 + \frac{\Delta E}{2M_x c^2}} \simeq \Delta E (1 - \frac{\Delta E}{2M_x c^2})$ |

Where,  $E_i$  and  $E_f$  represents the excitation energy in the initial and final states,  $\Delta E = E_i - E_f$ , and  $T_R$  is the recoil energy.

#### From the theory of classical electromagnetic radiation

Parity for multipole-field of order L:  $\pi(EL) = (-1)^L$ ,  $\pi(ML) = (-1)^{L+1}$ 

Radiated power: 
$$P(\sigma L) = \frac{2(L+1)c}{\varepsilon_0 L[(2L+1)!!]^2} \left[\frac{\omega}{c}\right]^{2L+2} [m(\sigma L)]^2$$

Where  $(2L+1)!! \equiv (2L+1)(2L-1)(2L-3)...1$ ,  $\sigma \in E, M$ , and  $m(\sigma L)$  is the time dependent multipole amplitude.

#### A quantum mechanical approach

Multipole moment: $M_{fi}(\sigma L) = \int \psi_f^* m(\sigma L) \psi_i d^3 r$ Emitted power: $P(\sigma L) = T(\sigma L) \cdot \hbar \omega$ Emission rate: $T(\sigma L) = \frac{P(\sigma L)}{\hbar \omega} = \frac{2(L+1)}{\hbar \varepsilon_0 L[(2L+1)!!]^2} \left[\frac{\omega}{c}\right]^{2L+1} B(\sigma L)$ Reduced transition probability: $B(\sigma L) = \left| M_{fi} \right|^2$ 

## Single nucleon (SP) model

$$\begin{split} \text{Multipole operator:} & m(EL) \propto er^L Y_{LM}(\theta, \phi) \\ & m(ML) \propto r^{L-1} Y_{LM}(\theta, \phi) \\ \text{Weisskopf sp-approximations:} & B_{sp}(EL) = \frac{e^2}{4\pi} \Big[ \frac{3R^L}{L+3} \Big]^2 \\ & B_{sp}(ML) = 10 \Big[ \frac{\hbar}{m_p cR} \Big]^2 B_{sp}(EL) \\ \text{These approximations lead to:} & T(E1) = 10^{14} A^{\frac{2}{3}} E^3_{\gamma} \\ & T(M1) = 3.1 \cdot 10^{13} E^3_{\gamma} \end{split}$$

If  $L \to L + 1$ :  $T(L+1) \to 6 \cdot 10^{-7} A^{\frac{2}{3}} E_{\gamma}^2 \cdot T(L)$ 

#### Note:

1.) The lowest multipole transition has the highest transition probability

2.) For a given order,  $T(EL) \simeq 100 \cdot T(ML)$ 

# Selection rules

The photon is a S=1 Boson. The direction of this spin is either parallel or antiparallel to  $\vec{p}_{\gamma}$ . This spin cannot be coupled to  $\vec{l} = \vec{r} \times \vec{p}_{\gamma}$  because  $\vec{S} \perp \vec{l}$ .

Conservation of angular momentum:  $\vec{I_i} = \vec{I_f} + \vec{L}$ 

 $|I_i - I_f| \le L \le |I_i + I_f|, \quad L \ne 0$ 

Now, if:

If  $I_i$  or  $I_f = 0 \Rightarrow A$  particular value of  $L \Rightarrow$  Pure multipole transition. If  $I_i = I_f = 0$  Forbidden transition for  $\gamma$ -transition, but an electron conversion is possible.

#### Experimental determination of multipole contribution

Generally,  $|I_i - I_f| \le L \le |I_f + I_i|$  give several possible *L*-values. This means that *L* has to be determined experimentally. The easiest way to approach this problem is to find the angular-correlation:



#### **Conversion** electrons

The nucleus de-excites by interaction with an atomic electron (mainly S-orbital electrons)  $\Rightarrow$  electron emission.

| Conservation of energy:               | $T_e = \Delta E - E_B$                                                                                |
|---------------------------------------|-------------------------------------------------------------------------------------------------------|
| Binding energy:                       | $E_B(K) > E_B(L) > E_B(M)$                                                                            |
| Transition probability per unit time: | $\lambda_{tot} = \lambda_{\gamma} + \lambda_e$                                                        |
| Conversion coeff.:                    | $\alpha = \frac{\lambda_e}{\lambda_{\gamma}}  \Rightarrow  \lambda_t = \lambda_{\gamma} (1 + \alpha)$ |
|                                       | $\alpha = \alpha_K + \alpha_{LI} + \alpha_{LII} + \alpha_{LIII} + \alpha_M \dots$                     |

Maximum conversion: K-shell electron conversion (n=1) for low-energy, high-polarity transitions  $(E \ll 2m_e c^2)$  in heavy nuclei  $(\propto Z^3)$ . The difference between  $\alpha(EL)$  and  $\alpha(ML)$  can be used to determine the change of parity.  $\alpha = \infty$  for  $0^+ \to 0^+$  because L=0 is a forbidden  $\gamma$ -emission transition. The competition between conversion electrons and  $\gamma$ -emission is analogous to the process

where Auger electrons and characteristic X-ray emission compete when a de-exitation of electronic energy-states takes place.  $(K - L_I \text{ transition is optically forbidden}).$ 

# $\beta$ -Disintegration

There are 3 different processes concerning this topic:  $\beta^-,\beta^+,\varepsilon$ 

# $\beta^-$ -disintegration

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X' + e^{-} + \overline{\nu}_{e}$$

Energy released:

$$Q_{\beta^-} = (m_P - m_D)c^2$$
$$Q_{\beta^-} = (\Delta_P - \Delta_D)c^2$$
$$Q_{\beta^-} = T_{X'} + T_e + T_{\overline{\nu}_e}$$

Where  $T_{X'}$ , the recoil energy, is close to zero and  $m_{\overline{\nu}_e} \simeq 0 \Rightarrow T_{\overline{\nu}_e} = E_{\overline{\nu}_e}$ . This means that the energy released in the reaction can be written as below.

Energy released:

$$Q_{\beta^-} = T_e + T_{\overline{\nu}_e} = T_{e,max} = T_{\overline{\nu}_e,max}$$



# $\beta^+$ -disintegration

$$^{A}_{Z}X \rightarrow^{A}_{Z-1}X' + \beta^{+} + \nu_{e}$$

Energy released:  $Q_{\beta^+} = (m_P - m_D - 2m_e)c^2$   $Q_{\beta^+} = (\Delta_P - \Delta_D - 2m_e)c^2$   $Q_{\beta^+} = \underbrace{T_{X'}}_{\simeq 0} + T_{\beta_+} + \underbrace{T_{\nu_e}}_{\simeq E_{\nu_e}}$  because  $m_{\nu_e} \simeq 0$  $Q_{\beta^-} = T_{\beta^+,max} = T_{\nu_e,max}$ 

## Electron capture ( $\varepsilon$ or EC)

$$^{A}_{Z}X + e^{-} \rightarrow^{A}_{Z-1} X' + \nu_{e}$$

Released energy:

$$Q_{EC} = c^2 (m_P - m_D) - E_B$$
$$Q_{EC} = T'_X + T_{\nu_e}$$

The recoil energy,  $T'_X$ , is very small and can therefore in most cases be neglected.  $E_B$  is the binding energy for the captured electron's initial orbital. Since this is a two-body problem, the neutrino is emitted with well-defined energy and is therefore said to be mono-energetic.



Possible  $Q_{EC}$  values if  $m_P \simeq m_D$ :  $E_B(K) > E_B(L) \Rightarrow \begin{cases} Q_{EC(K)} < 0 & \text{No transition} \\ Q_{EC(L)} > 0 & \text{Transition possible} \end{cases}$ 

## Fermi theory for $\beta$ -disintegration

#### Distinctive traits (in comparison to $\alpha$ -disintegration):

- 1.) The potential barrier is of no relevance  $(m_e \ll m_\alpha, \text{ and therefore } P(tunneling) \simeq 1)$ .
- 2.) An electron and an anti neutrino has to be created.
- 3.) A relativistic approach is necessary.
- 4.) "3-body problem" for  $\beta^{\pm}$ .

Fermi's golden rule:  $\lambda = \frac{2\pi}{\hbar} |V_{fi}|^2 \rho(E_f)$ 

Matrix element:  $V_{fi} = g \int \psi_f^* V \psi_i d^3 r$ 

- Initial state:  $\psi_i = \psi_{iN}$
- Final state:  $\psi_f = \psi_{fN} \phi_e \phi_{\bar{\nu}_e}$

Where g is a constant which characterizes the strength of the weak interactions.

Number of states:  $n = \frac{pL}{h}$ , for  $x \in [0, L]$  and  $p \in [0, p]$ 

$$\Rightarrow \qquad \qquad d^2n = dn_e dn_{\nu_e} = \frac{(4\pi)^2 V^2 p^2 dpq^2 dq}{h^6}$$

Where p is the linear momentum of the electron and q that of the neutrino. For the electron and neutrino states, we use zero order approximations which give allowed transitions.

Electron state: 
$$\phi_e(\vec{r}) = \frac{1}{\sqrt{V}} e^{i\frac{\vec{p}\cdot\vec{r}}{\hbar}} \simeq \frac{1}{\sqrt{V}} \left[ 1 + i\frac{\vec{p}\cdot\vec{r}}{\hbar} + \dots \right] \simeq \frac{1}{\sqrt{V}}$$
  
Neutrino state:  $\phi_{\overline{\nu}_e}(\vec{r}) = \frac{1}{\sqrt{V}} e^{i\frac{\vec{q}\cdot\vec{r}}{\hbar}} \simeq \frac{1}{\sqrt{V}} \left[ 1 + i\frac{\vec{q}\cdot\vec{r}}{\hbar} + \dots \right] \simeq \frac{1}{\sqrt{V}}$ 

Now, by inserting this into Fermi's golden rule one obtains:

| Transition probability rate: | $d\lambda(p) = \frac{2\pi}{\hbar} \left  g \int \psi_{fN}^* \phi_e^* \phi_{\overline{\nu}_e}^* O_x \psi_i d^3r \right ^2 \frac{(4\pi)^2 V^2 p^2 dp q^2}{h^6} \frac{dq}{dE_f}$ |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conservation of energy:      | $E_f = E_e + E_{\overline{\nu}_e} = E_e + qc$ , assuming $M_{\overline{\nu}_e} \equiv 0$                                                                                      |
| $\Rightarrow$                | $\frac{dE_f}{dq} = c$ for fixed $E_e$                                                                                                                                         |
| Released energy:             | $Q = T_e + qc \Rightarrow q = \frac{Q - T_e}{c}$                                                                                                                              |
| Transition probability rate: | $d\lambda(p) = \frac{2\pi}{\hbar}g^2 \left  M_{fi} \right ^2 (4\pi)^2 \frac{p^2 dpq^2}{\hbar^6} \frac{1}{c}$                                                                  |
|                              | $d\lambda(p) \propto N(p)dp = Cp^2q^2dp$                                                                                                                                      |
| Electron distribution:       | $N(p) = \frac{C}{c^2} p^2 (Q - T_e)^2 = \frac{C}{c^2} p^2 [Q - \sqrt{(pc)^2 + (mc^2)^2} + mc^2]^2$                                                                            |
|                              | $N(p)dp = N(T_e)dT_e \Rightarrow \frac{dp}{dT_e} = \frac{1}{c^2p}(T_e + mc^2)$                                                                                                |
| $\Rightarrow$                | $N(T_e) = \frac{C}{c^5} \sqrt{T_e^2 + 2T_e mc^2} (Q - T_e)^2 (T_e + mc^2)$                                                                                                    |
|                              |                                                                                                                                                                               |

The Fermi factor  $F_{\beta^{\pm}}(Z', T_e)$  represents the Coulomb interactions with the nucleus:



Electron distribution:

$$N(p) \propto p^2 (Q - T_e)^2 F(Z', p) \left| M_{fi} \right|^2 S(p, q)$$

Where the form factor  $S(p,q) = \begin{cases} 1, & \text{for allowed transitions} \\ \neq 1, & \text{for forbidden transitions} \end{cases}$ 

Fermi-Curie-plot



For  $0^+ - 0^+$ ,  $M_{fi} = \sqrt{2} \Rightarrow ft_{\frac{1}{2}}$ -values for these transitions should be of equal magnitude. This corresponds with experiments performed.  $log ft_{\frac{1}{2}}$  increases for increasing order of forbiddenness.

# Selection rules

| Conservation of angular momentum: | $\vec{I}_i = \vec{I}_f + \vec{L}_\beta + \vec{S}_\beta$ |
|-----------------------------------|---------------------------------------------------------|
| Parity:                           | $\pi_P = \pi_D (-1)^{L_\beta}$                          |
| Allowed transitions:              | $\vec{L}_{eta} = \vec{0}$                               |
| First forbidden:                  | $ec{L}_eta=ec{1}$                                       |
| Second forbidden:                 | $ec{L}_eta=ec{2}$                                       |
| Fermi transitions                 | $\vec{S} = \vec{0}$                                     |
| Gamow-Teller transitions          | $\vec{S} = \vec{1}$                                     |

Where  $\vec{L}_{\beta}$  and  $\vec{S}_{\beta}$  refer to the  $(\beta, \nu)$  particle system.

# 1.) Allowed transitions: $(\vec{L}_{\beta} = 0, \pi_P = \pi_D)$

 $\begin{array}{ll} \mbox{Fermi type: } (\vec{S}=\vec{0}) & \mbox{Gamow-Teller type: } (\vec{S}=\vec{1}) \\ \\ \vec{I_i}=\vec{I_f} & \mbox{I_i}=\vec{I_f}+\vec{1} \\ \\ \Delta I=0 & \mbox{} \Delta I=0,1; \mbox{ not } 0^+ \rightarrow 0^+ \end{array}$ 

 $0^+ \rightarrow 0^+$  Super-allowed.  $0^+ \rightarrow 1^+$  Pure Gamow-Teller.

# 2.) First forbidden transitions: $(\vec{L}_{\beta} = \vec{1}, \pi_P = -\pi_D)$

Fermi type: $(\vec{S} = \vec{0})$  Gamow-Teller type: $(\vec{S} = \vec{1})$ 

$$\vec{I}_i = \vec{I}_f + \vec{1} \qquad \qquad \vec{I}_i = \vec{I}_f + \underbrace{\vec{1}}_{\vec{0},\vec{1},\vec{2}}$$
$$\Delta I = 0, 1$$

Three types:

$$\begin{split} \Delta I &= 0\\ \Delta I &= 0, 1\\ \Delta I &= 0, 1, 2 \end{split}$$

#### Violation of parity conservation during $\beta$ -disintegration

When a physical law is invariant during a symmetry operation, there is a corresponding conserved quantity. Gravitation and electromagnetism are invariant during a spatial reflection (Parity operator P), charge (C) and time (T)  $\Rightarrow$  Parity should be a conserved quantity.  $\Rightarrow \langle O_{PS} \rangle = \int \Psi^* \hat{O}_{PS} \Psi d^3 r = 0.$ 

Where  $O_{PS}$  is an operator that is representing a pseudo-scalar quantity, for example  $\vec{p} \cdot \vec{S}$ , which is a product of a polar vector  $(\vec{p})$  and an axial vector  $\vec{S}$ .  $P(\vec{p}) = -\vec{p}$ ,  $P(\vec{S}) = \vec{S}$ .  $\langle O_{PS} \rangle = 0$  because the integrand is an odd function if parity is a conserved quantity.



The P-reflection experiment emits in the "forward" direction, while the original experiment emits backwards relative to  $\vec{I}$ . Wu et al. showed in 1957 that  $\langle \vec{p} \cdot \vec{I} \rangle < 0$  in this experiment, i.e. parity is not necessarily conserved in  $\beta$ -disintegration.

#### $\alpha$ -disintegration

 $\alpha\text{-disintegration takes place in nuclei with low <math display="inline">\frac{N}{P}\text{-ratio.}$ 

$$^{A}_{Z}X \rightarrow^{A-4}_{Z-2}X' + \alpha$$

Energy released:

$$Q_{\alpha} = (m_P - m_D - m_{He})c^2 \text{ (atomic masses)}$$
$$Q_{\alpha} = (\Delta_P - \Delta_D - \Delta_{He})c^2$$
$$Q_{\alpha} = T_{X'} + T_{\alpha} \text{(Assuming X is initially at rest)}$$

Conservation of momentum:  $\vec{P}_{X'} + \vec{P}_{\alpha} = 0$ 

$$\Rightarrow \qquad T_{\alpha} = \frac{Q_{\alpha}}{1 + \frac{M_{\alpha}}{M_{X'}}}$$

These  $\alpha$ -energies are well defined, i.e monoenergetic, because this is a two-body problem.



Disintegration constant:  $\lambda = f \cdot P \cdot A_{\alpha}^2$ 

Where f is the number of collisions with the potential barrier per second, P is the tunneling probability and A is the spectroscopical factor expressed below.

Spectroscopical factor:  $A_{\alpha}^2 = \left| < \Psi_f^*(A-4)\Psi_{\alpha}^*(4) |\Psi_i(A) > \right|^2$ 

The physical interpretation of this spectroscopical factor is that it is the probability for creating an  $\alpha$ -particle inside the nucleus.

$$G = \int_{a}^{b} \sqrt{\frac{2m_{\alpha}}{\hbar^{2}} [V(r) - Q]} dr$$

WKB-approximation solution:  $G = \sqrt{\frac{2m_{\alpha}}{\hbar^2 Q}} \frac{zZ'e^2}{4\pi\varepsilon_0} \left[ \arccos \sqrt{\frac{Q}{B}} - \sqrt{\frac{Q}{B}(1-\frac{Q}{B})} \right]$ 

$$\simeq \frac{\pi}{2} - 2\sqrt{\frac{Q}{B}} \quad for \quad Q \ll B$$

Tunneling probability:  $P = e^{-2G}$ 

Collision frequency:  $f \simeq \frac{v}{a}$ 

Velocity :  $v \simeq \sqrt{\frac{2(Q+V_0)}{m_{\alpha}c^2}} \cdot c$ 



Where v is the  $\alpha$ -particle's velocity inside its nucleus-orbital, and a is the nuclear radius R.  $A_{\alpha}^2$  is assumed to be 1.

Geiger-Nuttals rule:  $t_{\frac{1}{2}} = 0.693 \frac{a}{c} \sqrt{\frac{mc^2}{2(V_0+Q)}} exp \left[ 2\sqrt{\frac{2mc^2}{(\hbar c)^2 Q}} \cdot \frac{zZ'e^2}{4\pi\varepsilon_0} (\frac{\pi}{2} - 2\sqrt{\frac{Q}{B}}) \right]$ This can again be simplified by introducing a few assumptions.  $V_0 + Q \simeq V_0, \quad 2\sqrt{\frac{Q}{B}} \ll \frac{\pi}{2} \Rightarrow \log t_{\frac{1}{2}} = C_1 + \frac{C_2}{\sqrt{Q}}$ . See Lilley Fig.3.9.

#### Effects due to angular momenta

The centrifugal potential makes the potential barrier increase.

Selection rule:  $\vec{I}_i = \vec{I}_f + \vec{l}_{\alpha}$ 

 $|I_i - I_f| \le l_\alpha \le |I_f + I_i|$ 

Parity rule:  $\pi_P = \pi_D(-1)^{l_\alpha}$ 

A typical example is a transition to rotational energy-states in deformed nuclei.  $l_{\alpha} \in$  even numbers because of symmetry and parity.



## Deviation from Geiger-Nuttals rule:

1.) For deformed nuclei there is a higher probability for emitting through the poles,

because bigger  $a(\equiv R) \Rightarrow$  lower potential barrier

2.)  $A_{\alpha}^2$  can be significantly  $\leq 1$ , for example if the creation of an  $\alpha$ -particle requires a break-up of nucleon bonds in filled shells.