
5.)

Nuclear instability (Lilley Chap 3)

γ-radioactivity

Transitions

Isomeric transition (leaves Z and
N unchanged) from an exited nuclear state: A

ZX
∗ →A

Z X + γ

Conservation of energy: Ei = Ef + Eγ + TR

Conservation of momentum: 0 = ~PR + ~Pγ ⇒ PR = Pγ = 1
c
Eγ

⇒ Eγ = ∆E

1+ ∆E

2Mxc2

' ∆E(1− ∆E
2Mxc2 )

Where, Ei and Ef represents the excitation energy in the initial and final states, ∆E = Ei − Ef ,
and TR is the recoil energy.

From the theory of classical electromagnetic radiation

Parity for multipole-field of order L: π(EL) = (−1)L, π(ML) = (−1)L+1

Radiated power: P (σL) = 2(L+1)c
ε0L[(2L+1)!!]2

[
ω
c

]2L+2

[m(σL)]2

Where (2L + 1)!! ≡ (2L + 1)(2L − 1)(2L − 3)....1, σ ∈ E,M , and m(σL) is the time dependent
multipole amplitude.
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A quantum mechanical approach

Multipole moment: Mfi(σL) =
∫
ψ∗

fm(σL)ψid
3r

Emitted power: P (σL) = T (σL) · h̄ω

Emission rate: T (σL) = P(σL)
h̄ω

= 2(L+1)
h̄ε0L[(2L+1)!!]2

[
ω
c

]2L+1

B(σL)

Reduced transition probability: B(σL) =
∣
∣
∣Mfi

∣
∣
∣

2

Single nucleon (SP) model

Multipole operator: m(EL) ∝ erLYLM (θ, φ)

m(ML) ∝ rL−1YLM (θ, φ)

Weisskopf sp-approximations: Bsp(EL) = e2

4π

[
3RL

L+3

]2

Bsp(ML) = 10
[

h̄
mpcR

]2

Bsp(EL)

These approximations lead to: T (E1) = 1014A
2
3E3

γ

T (M1) = 3.1 · 1013E3
γ

If L→ L + 1: T (L + 1) → 6 · 10−7A
2
3E2

γ · T (L)

Note:

1.) The lowest multipole transition has the highest transition probability

2.) For a given order, T (EL) ' 100 · T (ML)

Selection rules

The photon is a S=1 Boson. The direction of this spin is either parallel or antiparallel to ~pγ . This

spin cannot be coupled to ~l = ~r × ~pγ because ~S ⊥ ~l.

Conservation of angular momentum: ~Ii = ~If + ~L

|Ii − If | ≤ L ≤ |Ii + If |, L 6= 0
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Now, if:

∆π = 0: Even EL, odd ML ⇒ M1, E2, M3....

∆π 6= 0 Odd, EL, even ML ⇒ E1, M2, E3....

If Ii or If = 0 ⇒ A particular value of L ⇒ Pure multipole transition.
If Ii = If = 0 Forbidden transition for γ-transition, but an electron conversion is possible.

Experimental determination of multipole contribution

Generally, |Ii − If | ≤ L ≤ |If + Ii| give several possible L-values. This means that L has to be de-
termined experimentally. The easiest way to approach this problem is to find the angular-correlation:

Conversion electrons

The nucleus de-excites by interaction with an atomic electron (mainly S-orbital electrons) ⇒ elec-
tron emission.

Conservation of energy: Te = ∆E −EB

Binding energy: EB(K) > EB(L) > EB(M)....

Transition probability per unit time: λtot = λγ + λe

Conversion coeff.: α = λe

λγ
⇒ λt = λγ(1 + α)

α = αK + αLI + αLII + αLIII + αM ......

Maximum conversion: K-shell electron conversion (n=1) for low-energy, high-polarity transitions
(E � 2mec

2) in heavy nuclei (∝ Z3). The difference between α(EL) and α(ML) can be used to
determine the change of parity. α = ∞ for 0+ → 0+ because L=0 is a forbidden γ-emission tran-
sition. The competition between conversion electrons and γ-emission is analogous to the process
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where Auger electrons and characteristic X-ray emission compete when a de-exitation of electronic
energy-states takes place. (K − LI transition is optically forbidden).

β-Disintegration

There are 3 different processes concerning this topic: β−, β+, ε

β−-disintegration

A
ZX →A

Z+1 X
′ + e− + νe

Energy released: Qβ− = (mP −mD)c2

Qβ− = (∆P − ∆D)c2

Qβ− = TX′ + Te + Tνe

Where TX′ , the recoil energy, is close to zero and mνe
' 0 ⇒ Tνe

= Eνe
. This means that the

energy released in the reaction can be written as below.

Energy released: Qβ− = Te + Tνe
= Te,max = Tνe,max
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β+-disintegration

A
ZX →A

Z−1 X
′ + β+ + νe

Energy released: Qβ+ = (mP −mD − 2me)c
2

Qβ+ = (∆P − ∆D − 2me)c
2

Qβ+ = TX′

︸︷︷︸

'0

+Tβ+
+ Tνe

︸︷︷︸

'Eνe

because mνe
' 0

Qβ− = Tβ+,max = Tνe,max

Electron capture (ε or EC)

A
ZX + e− →A

Z−1 X
′ + νe

Released energy: QEC = c2(mP −mD) −EB

QEC = T ′
X + Tνe

The recoil energy, T ′
X , is very small and can therefore in most cases be neglected. EB is the binding

energy for the captured electron’s initial orbital. Since this is a two-body problem, the neutrino is
emitted with well-defined energy and is therefore said to be mono-energetic.

Possible QEC values if mP ' mD: EB(K) > EB(L) ⇒
{
QEC(K) < 0 No transition
QEC(L) > 0 Transition possible
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Fermi theory for β-disintegration

Distinctive traits (in comparison to α-disintegration):

1.) The potential barrier is of no relevance (me � mα, and therefore P (tunneling) ' 1).

2.) An electron and an anti neutrino has to be created.

3.) A relativistic approach is necessary.

4.) ”3-body problem” for β±.

Fermi’s golden rule: λ = 2π
h̄
|Vfi|2ρ(Ef )

Matrix element: Vfi = g
∫
ψ∗

fV ψid
3r

Initial state: ψi = ψiN

Final state: ψf = ψfNφeφν̄e

Where g is a constant which characterizes the strength of the weak interactions.

Number of states: n = pL
h

, for x ∈ [0, L] and p ∈ [0, p]

⇒ d2n = dnednνe
= (4π)2V 2p2dpq2dq

h6

Where p is the linear momentum of the electron and q that of the neutrino. For the electron
and neutrino states, we use zero order approximations which give allowed transitions.

Electron state: φe(~r) = 1√
V
ei

~p·~r
h̄ ' 1√

V

[

1 + i~p·~r
h̄

+ ...
]

' 1√
V

Neutrino state: φνe
(~r) = 1√

V
ei ~q·~r

h̄ ' 1√
V

[

1 + i~q·~r
h̄

+ ...
]

' 1√
V

Now, by inserting this into Fermi’s golden rule one obtains:
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Transition probability rate: dλ(p) = 2π
h̄

∣
∣
∣g

∫
ψ∗

fNφ
∗
eφ

∗
νe
Oxψid

3r
∣
∣
∣

2
(4π)2V 2p2dpq2

h6

dq
dEf

Conservation of energy: Ef = Ee +Eνe
= Ee + qc, assuming Mνe

≡ 0

⇒ dEf

dq
= c for fixed Ee

Released energy: Q = Te + qc ⇒ q = Q−Te

c

Transition probability rate: dλ(p) = 2π
h̄
g2

∣
∣
∣Mfi

∣
∣
∣

2

(4π)2 p2dpq2

h6

1
c

dλ(p) ∝ N(p)dp = Cp2q2dp

Electron distribution: N(p) = C
c2 p

2(Q − Te)
2 = C

c2 p
2[Q−

√

(pc)2 + (mc2)2 +mc2]2

N(p)dp = N(Te)dTe ⇒ dp
dTe

= 1
c2p

(Te +mc2)

⇒ N(Te) = C
c5

√

T 2
e + 2Temc2(Q− Te)

2(Te +mc2)

The Fermi factor Fβ±(Z′, Te) represents the Coulomb interactions with the nucleus:

Electron distribution: N(p) ∝ p2(Q− Te)
2F (Z′, p)

∣
∣
∣Mfi

∣
∣
∣

2

S(p, q)

Where the form factor S(p, q) =

{
1, for allowed transitions
6= 1, for forbidden transitions
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Fermi-Curie-plot

y =

√

N(p)

p2F (Z′, p)
∝ (Q− Te), Mfi = constant

Total transition probability rate: λ =
∫ p,max

p=0
dλ(p)

The Fermi integral: f = 1
(mc)3

1
(mc2)2

∫ p,max

0
F (Z′, p)p2(E0 −Ee)

2dp

Conservation of energy: E0 −Ee = Q+mc2 − (Te +mc2) = Q− Te

Comparable half-life: ft 1
2

= f ln 2
λ

ft 1
2

= 0.693 · 2π3h̄7

g2m5
ec4|Mfi|2 ' 103 − 1020s

For ”super-allowed transitions:
logft 1

2
∈ (3 − 4)

For 0+ − 0+, Mfi =
√

2 ⇒ ft 1
2
-values for these transitions should be of equal magnitude. This

corresponds with experiments performed. logft 1
2

increases for increasing order of forbiddenness.
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Selection rules

Conservation of angular momentum: ~Ii = ~If + ~Lβ + ~Sβ

Parity: πP = πD(−1)Lβ

Allowed transitions: ~Lβ = ~0

First forbidden: ~Lβ = ~1

Second forbidden: ~Lβ = ~2

Fermi transitions ~S = ~0

Gamow-Teller transitions ~S = ~1

Where ~Lβ and ~Sβ refer to the (β, ν) particle system.

1.) Allowed transitions:(~Lβ = 0, πP = πD)

Fermi type: (~S = ~0)

~Ii = ~If

∆I = 0

0+ → 0+ Super-allowed.

Gamow-Teller type: (~S = ~1)

~Ii = ~If +~1

∆I = 0, 1; not 0+ → 0+

0+ → 1+ Pure Gamow-Teller.

2.) First forbidden transitions:(~Lβ = ~1, πP = −πD)

Fermi type:(~S = ~0)

~Ii = ~If +~1

∆I = 0, 1

Gamow-Teller type:(~S = ~1)

~Ii = ~If +~1 +~1
︸ ︷︷ ︸

~0,~1,~2

Three types:

∆I = 0

∆I = 0, 1

∆I = 0, 1, 2
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Violation of parity conservation during β-disintegration

When a physical law is invariant during a symmetry operation, there is a corresponding conserved
quantity. Gravitation and electromagnetism are invariant during a spatial reflection (Parity operator
P), charge (C) and time (T) ⇒ Parity should be a conserved quantity.
⇒ < OPS >=

∫
Ψ∗ÔPSΨd3r = 0.

Where OPS is an operator that is representing a pseudo-scalar quantity, for example ~p · ~S, which is
a product of a polar vector (~p) and an axial vector ~S. P (~p) = −~p, P (~S) = ~S. < OPS >= 0 because
the integrand is an odd function if parity is a conserved quantity.

The P-reflection experiment emits in the ”forward” direction, while the original experiment emits
backwards relative to ~I. Wu et al. showed in 1957 that < ~p · ~I > < 0 in this experiment, i.e. parity
is not necessarily conserved in β−disintegration.

α-disintegration

α-disintegration takes place in nuclei with low N
P

-ratio.

A
ZX →A−4

Z−2 X
′ + α

Energy released:

Qα = (mP −mD −mHe)c
2 (atomic masses)

Qα = (∆P − ∆D − ∆He)c
2

Qα = TX′ + Tα(Assuming X is initially at rest)

Conservation of momentum: ~PX′ + ~Pα = 0

⇒ Tα = Qα

1+ Mα
M

X′

These α-energies are well defined, i.e monoenergetic, because this is a two-body problem.
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Disintegration constant: λ = f · P · A2
α

Where f is the number of collisions with the potential barrier per second, P is the tunneling prob-
ability and A is the spectroscopical factor expressed below.

Spectroscopical factor: A2
α =

∣
∣
∣ < Ψ∗

f (A− 4)Ψ∗
α(4)|Ψi(A) >

∣
∣
∣

2

The physical interpretation of this spectroscopical factor is that it is the probability for creating
an α-particle inside the nucleus.

Gamow factor: G =
∫ b

a

√
2mα

h̄2 [V (r) −Q]dr

WKB-approximation solution: G =
√

2mα

h̄2Q
zZ′e2

4πε0

[

arccos

√

Q

B
−

√

Q

B
(1 − Q

B
)
]

︸ ︷︷ ︸

'π
2
−2

√
Q
B

for Q�B

Tunneling probability: P = e−2G

Collision frequency: f ' v
a

Velocity : v '
√

2(Q+V0)
mαc2 · c
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Where v is the α-particle’s velocity inside its nucleus-orbital, and a is the nuclear radius R. A2
α

is assumed to be 1.

Geiger-Nuttals rule: t 1
2

= 0.693a
c

√
mc2

2(V0+Q)
exp

[

2
√

2mc2

(h̄c)2Q
· zZ′e2

4πε0
(π

2
− 2

√
Q
B

)
]

This can again be simplified by introducing a few assumptions. V0 + Q ' V0, 2
√

Q
B

� π
2

⇒
lg t 1

2
= C1 + C2√

Q
. See Lilley Fig.3.9.

Effects due to angular momenta

The centrifugal potential makes the potential barrier increase.

Selection rule: ~Ii = ~If +~lα

|Ii − If | ≤ lα ≤ |If + Ii|

Parity rule: πP = πD(−1)lα

A typical example is a transition to rotational energy-states in deformed nuclei. lα ∈even num-
bers because of symmetry and parity.
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Deviation from Geiger-Nuttals rule:

1.) For deformed nuclei there is a higher probability for emitting through the poles,

because bigger a(≡ R) ⇒ lower potential barrier

2.) A2
α can be significantly ≤ 1, for example if the creation of an α-particle requires a break-up

of nucleon bonds in filled shells.
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