5.)
Nuclear instability (Lilley Chap 3)

~v-radioactivity

Transitions

Isomeric transition (leaves Z and
N unchanged) from an exited nuclear state: 4X* —4 X +

Conservation of energy: E,=FE;+FE,+1TRr
Conservation of momentum: 0= ﬁR + ﬁ,y = Pr=P, = % E,
= E, = 28— ~ AE(1 - 53%)

2M . c2

Where, E; and Ey represents the excitation energy in the initial and final states, AE = E; — Ey,
and Tg is the recoil energy.

From the theory of classical electromagnetic radiation

Parity for multipole-field of order L: w(EL) = (—1)%, 7(ML) = (—1)F*!

2L+2
Radiated power: P(oL) = % [%} [m(oL))?

Where (2L + 1)!! = (2L + 1)(2L — 1)(2L — 3)....1, 0 € E, M, and m(cL) is the time dependent
multipole amplitude.



A quantum mechanical approach

Multipole moment: Myi(oL) = [¢im(oL)yd®r
Emitted power: P(ocL)=T(cL) - hw
2L+1
P P(oL L w
Emission rate: T(cL) = (hw ) = hsgLQ[((2ZrJlr)1)!!]2 [;} B(oL)

2
Reduced transition probability: B(oL) = ’M i

Single nucleon (SP) model

Multipole operator: m(EL) o< er® Y (0, ¢)
m(ML) ocr* =YL (0, )

2

2
Weisskopf sp-approximations: Byp(EL) = i= [3RL}

T

2
Bey(ML) = 10 [ﬁ} B, (EL)

These approximations lead to: T(E1) = 1014A%E:°;

T(M1) =3.1-10"E3

IfL—L+1: T(L+1)—6-10""ASE2. T(L)

Note:
1.) The lowest multipole transition has the highest transition probability
2) For a given order, T(EL) ~ 100 - T(ML)

Selection rules

The photon is a S=1 Boson. The direction of this spin is either parallel or antiparallel to p,. This
spin cannot be coupled to [ = 7 x p, because S L [.

-

Conservation of angular momentum: I; = ; +L

|\ = If| < L <|L;+1f|, L#0



Now, if:
Ar =0: Even EL, odd ML = M1, E2, M3....

AT #£0 Odd, EL, even ML = E1, M2, E3....

If I; or Iy =0 = A particular value of L = Pure multipole transition.
If I; = Iy = 0 Forbidden transition for y-transition, but an electron conversion is possible.

Experimental determination of multipole contribution

Generally, |I; — Iy| < L < |Iy + I;| give several possible L-values. This means that L has to be de-
termined experimentally. The easiest way to approach this problem is to find the angular-correlation:

o
il T | b4 Coincident detection of a
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bl
T

G"L
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Conversion electrons

The nucleus de-excites by interaction with an atomic electron (mainly S-orbital electrons) = elec-
tron emission.

Conservation of energy: T.=AF —FEp
Binding energy: Ep(K) > Ep(L) > Eg(M)....

Transition probability per unit time: Aot = Ay + Ae

>

Conversion coeft.: a=35 = M=X\(1+a)

~

>

a=oag+aoarr+arrr+arrrr +ap......

Maximum conversion: K-shell electron conversion (n=1) for low-energy, high-polarity transitions
(E < 2m.c?) in heavy nuclei (x Z3). The difference between o(EL) and a(ML) can be used to
determine the change of parity. o = oo for 07 — 0T because L=0 is a forbidden 7-emission tran-
sition. The competition between conversion electrons and ~-emission is analogous to the process



where Auger electrons and characteristic X-ray emission compete when a de-exitation of electronic
energy-states takes place. (K — Ly transition is optically forbidden).

p-Disintegration

There are 3 different processes concerning this topic: 37,87, ¢

[~ -disintegration

42X =4, X +e + 7.

Energy released: Qp- = (mp —mp)c?

Q- = (Ap —Ap)c?
Qp- =Tx +Tc + 15,

Where Tx, the recoil energy, is close to zero and my, ~ 0 = Ty, = Fy,. This means that the
energy released in the reaction can be written as below.

Energy released: Qp- =T + 15, = Temaz = T, max

-
le “ase




Bt-disintegration

éX —>§71 ¢ +5+ + Ve
Energy released: Qg+ = (mp —mp — 2me)c?

Qﬁ+ = (AP - AD - 2m8)02

Qp+ = Tx' +T5, + T, because m,_ ~0
<~ ~~

~0 ~F,,
Qﬁ* = Tﬁ*,mam = Tue,maac
Electron capture (¢ or EC)

éX—i—e* —>§71 X' + v,

Released energy: Qpc = c*(mp —mp) — Ep
Qec=Tx + T,

The recoil energy, T%, is very small and can therefore in most cases be neglected. Ep is the binding
energy for the captured electron’s initial orbital. Since this is a two-body problem, the neutrino is
emitted with well-defined energy and is therefore said to be mono-energetic.

Qec
2Mg cloll MeV/

Ot

QEc(x) <0 No transition

Possible Qrc values if mp ~ mp: Eg(K) > Fg(L) = {QEC(L) >0 Transition possible



Fermi theory for §-disintegration

Distinctive traits (in comparison to a-disintegration):

1.)  The potential barrier is of no relevance (m. < mgq, and therefore P(tunneling) ~ 1).
2.)  An electron and an anti neutrino has to be created.
3.) A relativistic approach is necessary.

4.) 73-body problem” for 3*.

Fermi’s golden rule: A = 2Z|Vy;|2p(Ey)

Matrix element: Vii=g [V;Viid®r
Initial state: i = PN
Final state: Vi =ViNe Do,

Where ¢ is a constant which characterizes the strength of the weak interactions.

Number of states: n = %, for z € [0, L] and p € [0, p)

4 2y,2 2d 2d
N P = dnodn,, — BV Ay

Where p is the linear momentum of the electron and ¢ that of the neutrino. For the electron
and neutrino states, we use zero order approximations which give allowed transitions.

. _ 1 BT 1 PF 1
Electron state: Pe(F) = €' 7 ~ - [1 +i5 + ] ~ =
Neutrino state: ¢z (7) = ﬁei% ~ o [1 +4iZ7 } ~ o

Now, by inserting this into Fermi’s golden rule one obtains:



Transition probability rate: d\(p) = &£ gfq/);,N(bZ(b;e O, bid?r QM%
Conservation of energy: Ey=FE.+ E;, = E, + qc, assuming My, =0

= % = c for fixed E,

Released energy: Q=T.+qc=q= Q;Te

Transition probability rate: d\(p) = 2Zg? ’M i ’2(47r)2p2i—€‘12%

d\(p) o< N(p)dp = Cp*q*dp

Electron distribution: N(p) = $p*(Q — T.)? = $p°[Q — /(pc)? + (mc2)? + mc?)?
N(p)dp = N(T.)dT, = §& = =5 (Te +mc?)

= N(T.) = /T2 +2T.mc2(Q — T.)*(T. + mc?)

The Fermi factor Fg+(Z',Te) represents the Coulomb interactions with the nucleus:

N(‘E‘c.)
N ('T‘.¢_>-F,|- -~ NCTe) Fat
* ™
A € 2t
- N(T)= M) T (E Te NGYT (2
e, N T-Q. = > T{'
l(!" L ys I(‘* B

Electron distribution: N(p) x p*(Q — T.)?>F(Z',p) ’Mﬂ 2S’(p, q)

1, for allowed transitions

Where the form factor S(p, q) = { # 1, for forbidden transitions



Fermi-Curie-plot

N(p)
p*F(Z',p)

For forbidden transitions, the plot is linearized
with 5
e e

e\ s
=

x (Q —T.), My; = constant

Qs

)
e g— -
‘ = Ie "i-o
Total transition probability rate: A = ]f:gax d\(p)
The Fermi integral: f= ﬁﬁ éo’max F(Z',p)p*(Eo — Ee)*dp
Conservation of energy: Eo—E.=Q+mc?— (T.+mc?)=Q—T.

Comparable half-life: ft L= flnT2
37
fty =0.693 - o2l ~ 10° - 10%s

For ”super-allowed transitions:
logfty € (3-4)

For 0F — 0%, My = V2 = ft 1-values for these transitions should be of equal magnitude. This
corresponds with experiments performed. log ft% increases for increasing order of forbiddenness.



Selection rules

Conservation of angular momentum: I = } + f,ﬁ + gﬁ
Parity: np =np(—1)ks
Allowed transitions: fjﬁ =0

First forbidden: f,ﬁ =1

Second forbidden: Ly=2

Fermi transitions §=0
Gamow-Teller transitions S=1

Where f,ﬁ and S}, refer to the (3, v) particle system.

1.) Allowed transitions:(fjﬁ =0, mp =7p)

Fermi type: (S = 0) Gamow-Teller type: (S = 1)
i1 A
Al =0 Al =0,1; not 07 — 0T

0" — 0T Super-allowed. 0" — 17 Pure Gamow-Teller.

2.) First forbidden transitions:(fjﬁ =1,7p = —7p)

. =

Fermi type:(S = 0)  Gamow-Teller type:(S = 1)

[ =T a1 L=Tp+1+1
I’L f + 1 f \ ,

0,1,2
Al =0,1

Three types:

AI =0
AI=0,1
AI=0,1,2



Violation of parity conservation during (-disintegration

When a physical law is invariant during a symmetry operation, there is a corresponding conserved
quantity. Gravitation and electromagnetism are invariant during a spatial reflection (Parity operator
P), charge (C) and time (T) = Parity should be a conserved quantity.

= < Ops >= [U*Ops¥d’r = 0.

Where Opg is an operator that is representing a pseudo-scalar quantlty, for example - S which is
a product of a polar vector (5) and an axial vector S. P(§) = —p, P(S) = S. < Opg >= 0 because
the integrand is an odd function if parity is a conserved quantity.

Experiment P-reflection

! _ |8 <tP
¢* &
6o (o

Lo Co
P 1

The P-reflection experiment emits in the ”forward” direction, while the original experiment emits
backwards relative to I. Wu et al. showed in 1957 that < p’- I > < 0 in this experiment, i.e. parity
is not necessarily conserved in S—disintegration.

a-disintegration

a-disintegration takes place in nuclei with low %—ratio.

A4
72X =755 X +a

Energy released:
Qo = (mp —mp — mpue)c? (atomic masses)
Qo = (Ap — Ap — Ape)c?
Qo = Tx' + T, (Assuming X is initially at rest)
Conservation of momentum: ﬁx/ + ﬁa =0

= Ta:Q—Ma

1+ M/

These a-energies are well defined, i.e monoenergetic, because this is a two-body problem.
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weo Q= 487 MeV

Tz 13® n

211 e
Disintegration constant: X = f- P - A2

Where f is the number of collisions with the potential barrier per second, P is the tunneling prob-
ability and A is the spectroscopical factor expressed below.
2
Spectroscopical factor: A% = ’ < UHA -4V (4)[P,;(A) > ’

The physical interpretation of this spectroscopical factor is that it is the probability for creating
an a-particle inside the nucleus.

Gamow factor: G= fb 2 [V (r) = Qldr

a

. . . o 2mea 272’ e> Q Q Q
WXKB-approximation solution: G =/ $25 5= [arccos 1/ 5~ 1/ E(l - E)]

:g72\/g for oxB

—2G

@

Tunneling probability: P =
f

~

Collision frequency:

ISHIS]

Velocity : v «/% e

11



. \ )
Tunneling '\ 2-z

through a \ _ 4(2-2)e*
potential \ Coulomb potential \/= .

barrier 0 B

s
o

=V

Where v is the a-particle’s velocity inside its nucleus-orbital, and a is the nuclear radius R. A2
is assumed to be 1.

3 a mc mc z /82 s
Geiger-Nuttals rule: t1 =0.6932, /WJ:Q)exp [2, /ﬁ . 4{7—50(5 -2 %)]

This can again be simplified by introducing a few assumptions. Vo + Q ~ V5, 2 % < % =

lgty = Ci + \%. See Lilley Fig.3.9.

Effects due to angular momenta

The centrifugal potential makes the potential barrier increase.

- —

Selection rule: I; = ; + 1o
L = Iy| <o < Iy + I

Parity rule: 7p = mp(—1)k

A typical example is a transition to rotational energy-states in deformed nuclei. [, €even num-
bers because of symmetry and parity.
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Deviation from Geiger-Nuttals rule:

1.)

For deformed nuclei there is a higher probability for emitting through the poles,
because bigger a(= R) = lower potential barrier

A2 can be significantly < 1, for example if the creation of an a-particle requires a break-up
of nucleon bonds in filled shells.
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