
6.)
Nuclear reactions (Lilley Chap.4)

a + X → Y + b

X(a, b)Y

Scattering process: The particles do not change their identity.

Elastic scattering: The kinetic energy is conserved ⇒ no excitations.

Radiative capture: b ≡ γ

Nuclear photo effect a ≡ γ

Direct reactions: Only a few nucleons participate in the process, while the rest of
the nucleons remain passive.

”Compound nucleus” reactions: An excited intermediate state is formed, and the memory of
formation of this intermediate state is lost before de-excitation.

Conservation laws: Total energy

Total momentum

Total angular momentum

Proton numbers and neutron numbers (Not conserved in weak interactions)

Parity

Process:
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Conservation of energy:(relativistic) mXc2 + TX + mac2 + Ta = mY c2 + TY + mbc
2 + Tb

(ma + mX − mY − mb)c
2 ≡ Q = TY + Tb − TX − Ta

Q ≡ (minitial − mfinal)c
2 = Tfinal − Tinitial

If Q < 0, the reaction is called an endoterm reaction (requires an input of energy)
If Q > 0, the reaction is called an exoterm reaction (releases energy)

Conservation of momentum in the lab system: pa = pb cos θ + pY cos ξ

0 = pb sin θ − pY sin ξ

Assuming TX = 0. Furthermore, one defines the minimum energy required for the reaction to
take place (Threshold energy), as the energy corresponding to a reaction where the final products
are at rest in the CM system.

Threshold energy: Tth = Ta,min = −Q mY +mb

(mY +mb)−ma

Inelastic Coulomb scattering (Coulomb excitation)

Inelastic Coulomb scattering:Qex = (mx + ma − m∗
Y − mb)c

2 where m∗
Y c2 = mY c2 + Eex

and Qex = Q0 − Eex.

Typical reaction:

Excitation of even-even nuclei from their ground state (0+) to an excited state (2+) via absorp-

tion/emission of virtual photons (E2).

Qex = Q0 − Eex
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Nuclear force scattering(as opposed to Coulomb scattering)

⇒ Diffraction pattern in dσ
dΩ measured as a function of θCM

For neutron scattering: An evident diffraction pattern arise at all scattering angles (All energies)

For charged particles (protons): Diffraction pattern at high energies where the Coulomb potential is negligible,
and for large scattering angles also at low energies.

Reaction cross section

Cross section contribution per ”scatterer”: σ = 1
N

Rsc

Φin

Differential cross section: dσ
dΩ

=
dRsc

dΩ

NΦin
, [ barn

st.rad
]

Total cross section: σ =
∫

Ω
dσ
dΩdΩ = 2π

∫ π

0
dσ
dΩ sin θdθ

Several reactions: σtot =
∑

bi
σbi

Energy dependence:

Double diff. cross section: d2σ
dΩdEb

dσ
dEb

Where Eb represents the final energy of particle b.
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Scattering and reaction cross sections

Semi-classical angular momentum: lh̄ = pb

b = lh̄
p

= lh̄
kh̄

= l λ
2π

= l 6λ

For effective nuclear force scattering: lmax = R
6λ

= R1+R2
6λ

Where 6λ represents the reduced de Broglie wavelength for particle a (λ = h/p).

Total semiclassical cross section:

σ =

R
6λ∑

l=0

(2l + 1)π 6λ2 = π
(
R +6 λ

)2

The particle’s wave properties have a range 6λ.

Quantum mechanically:

The wave function describing the incoming wave:

Ψinc =
A

2kr

∞∑

l=0

il+1 (2l + 1)
[

e−i(kr− lπ
2 ) − ei(kr− lπ

2 )
]

Pl(cos θ)

Where the two exponential factors describe respectively an ingoing and an outgoing spherical wave.
A superposition of the two waves results in an incoming plane wave.

A scattered outgoing wave can have its phase and amplitude changed by the scattering process.

Ψtot = Ψinc + Ψsc

Ψtot = A
2kr

∑
il+1 (2l + 1)

[

e−i[kr− lπ
2 ] − ηei[kr− lπ

2 ]
]

Pl(cos θ)

Ψsc = A
2kr

∑
ii

l+1

(2l + 1) (1 − ηl) ei(kr− lπ
2 )Pl(cos θ)

Ψsc = A
2k

eikr

r

∑∞
l=0(2l + 1)i(1 − ηl)Pl(cos θ)
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Scattered current density: jsc =
(
Ψ∗

sc
h̄

im
∇Ψsc

)

= h̄
2im

(

Ψ∗
sc

∂Ψsc

∂r
−

∂Ψ∗
sc

∂r
Ψsc

)

jsc = |A|
2 h̄

2mkr2 |
∑

l=0 (2l + 1) i (1 − ηl)Pl(cos θ)|
2

Incoming current density: jinc =
h̄k|A|2

m

Differential cross section: jscr2dΩ
jinc

⇒ dσsc

dΩ
= 1

4k2 |
∑∞

l=0 (2l + 1) i (1 − ηl)Pl(cos θ)|
2

The total cross section is obtained by integrating over all possible angles.

Orthogonality requires:
∫

Pl(cos θ)Pl′ (cos θ) sin θdθdφ = 4π
2l+1

for l = l′

∫
Pl(cos θ)Pl′ (cos θ) sin θdθdφ = 0 for l 6= l′

⇒ σsc =
∑∞

l=0 π 6λ2 (2l + 1) |1 − ηl|
2
, 6λ = 1

k

There is no scattering for ηl = 1. Only elastic scattering, i.e only a phase change and no re-
duction in amplitude is possible for |ηl| = 1 → ηl = e2iδl

Total cross section: σsc =
∑∞

l=0 4π 6λ2 (2l + 1) sin2 δl, |1 − e2iδl | = 2 sin δl
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Reaction cross section (≡ cross section concerning everything else than
elastic interactions)

This is also denoted as the rate of loss of particles from energy channel k.
Rate of loss: |jloss| = |jin| − |jout|

|jloss| = |A|2h̄

4mkr2

[∣
∣
∣
∑

(2l + 1) il+1ei lπ
2 Pl

∣
∣
∣

2

−
∣
∣
∣
∑

(2l + 1) il+1e−i lπ
2 ηlPl

∣
∣
∣

2
]

⇒ σr =
∑∞

l=0 π 6λ2 (2l + 1)
(
1 − |ηl|

2
)

Total cross section: σt = σsc + σr =
∑∞

l=0 2π 6λ2 (2l + 1) (1 −<ηl)

Note that only inelastic scattering (σr > 0, σsc = 0) is impossible to achieve. To obtain inelas-
tic scattering, |ηl| < 1. When this happens, (1 − ηl) 6= 0, i.e. σsc > 0.

”Black disc” absorber:

ηl = 0 for l ≤ R
6λ

i.e no outgoing wave for l ≤ R
6λ

ηl = 1 for l > R
6λ

i.e no scattering effect

Reaction cross section: σr =
∑R

6λ

l=0 π 6λ2 (2l + 1) = π(R+6λ)2

Scattering: σsc =
∑R

6λ

l=0 π 6λ2 (2l + 1) = π(R+6λ)2

Total: σt = σr + σsc = 2π(R+6λ)2 = 2 · σgeometrical

σgeometrical is the semiclassical cross section.

Calculation method

1.) Choose a form of the nuclear potential V (r).

2.) Solve the Schr. equation for the two regions, inside (r ≤ R) and outside (r ≥ R) the region of interaction.

3.) Ψ and ∂Ψ
∂r

must be continuous over the boundary r = R ⇒ ηl

4.) Calculate σr and σsc and compare with experimental results. This result tells us whether V (r) was reasonably
chosen.
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This is hard for everything else than elastic scattering, because all inelastic channels are coupled
together. Both in and out scattering relative to channel k, i.e from all k′ into k and from k to all
k′′.

Optical model of nuclear scattering:

Choose a particular potential as a model for elastic scattering + absorption.

Potential: U(r) = V (r)
︸ ︷︷ ︸

Elastic scattering

+ iW (r)
︸ ︷︷ ︸

Absorption

k = 1
h̄

√

2m(E − U)

Choose for example: U(r) = −V0 − iW0 for r < R

= 0 for r > R

Outgoing wave: Ψ = eikr

r
= eikr ·r · e−ki·r

r
for r < R

k = kr + iki =
1

h̄

√

2m(E + V0) + i
W0

2h̄

√
2m

E + V0
, W0 � V0

The only place where W (r) 6= 0 is close to the surface. This is because the internal nucleons
cannot take part in absorption processes at moderate energies, because all the possible states are
taken. This means that only the valence nucleons close to the surface can interact with incoming
particles.

A realistic potential must also include spin-orbit coupling for valence nucleons, and Coulomb con-
tribution if the incoming particle is charged. The optical model gives suprisingly good predictions
(by calculating ηl) to experimental data, even though it only represents average nucleon properties.
This model can only show that particles disappear from the elastic channel.

Direct reactions

An incoming particle interacts with single nucleons close to the surface of the nucleus. Typical
incoming energies≥Coulomb barrier. Direct reactions show strong angular dependencies.
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Selectivity:

Inelastic scattering reactions do not excite collective states. Transfer reactions result in excited
states for single nucleons.

Ex.: Transfer of angular momentum by deuteron stripping reactions (d,n),
(d,p)

p2 = p2
a + p2

b − 2papb cos θ

l · h̄ ' R · p ⇒ l =

[

2c2papb(2 sin2 θ
2)

(h̄c)2

R2

] 1
2

Large scattering angles for outgoing particle = large transfer of angular momentum, l ∝ sin θ
2 .

l = 1, 3, 5....(odd numbers)⇒ parity change for the nucleus
l = 0, 2, 4...(even numbers)⇒ leaves the parity unchanged

Nuclear spin: If = Ii + l ±
1

2
︸︷︷︸

n or p

Compound reactions

a + x → C∗ → Y + b

Well defined intermediate state (Compound nucleus) with a lifetime long enough that the final re-
action, C∗ → Y + b, has forgotten (i.e. is not influenced by) how C∗ was created.
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Resonance reactions

They appear at well defined excitation levels for C∗
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Breit-Wigner formula:

σα,β = gα(J) π
k2

α

ΓαΓβ

(E−Er)+( Γ
2
)2

σαβ(E = Er ±
Γ
2 ) = 1

2σαβ(E = Er)

Spin factor: gα(J) = 2J+1
(2ia+1)(2iA+1)

where ia and iA represent spin for the incoming particles.

gα = (2l + 1) for iα = iA = 0

Generally: ~IC∗ = ~ia +~lA +~l

in this case, ~l represents the transferred angular momentum by (a, A).

Resonance level width: Γ =
∑

i∈α,β Γi = h̄
∑

λi = h̄λ = h̄
τ

τ is the mean lifetime of the intermediate state C∗.

Assuming iα = iA = 0 :

Maximum cross section for elastic scattering (At E = Er): Γα ≡ Γβ = Γ ⇒ σαα(max) = (2l + 1) 4π
k2

α

Total absorption cross section: σabs ∝ Γα

∑

β 6=α Γβ = Γα(Γ − Γα)

⇒ σabs(max) = (2l + 1) π
k2

α

Γα(1 − Γα)max for Γα = Γ
2

Total capture cross section at (E = Eτ ): σC = (2l + 1) · 4π
k2

α

Γα

Γ

σαβ = σC ·
Γβ

Γ
= (2l + 1)

4π

k2
α

Γα

Γ
︸ ︷︷ ︸

σC

·
Γβ

Γ
︸︷︷︸

Exit channel β

Heavy ion reactions

Ex:
16O +27 Al
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Fusion
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