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1.)
Basic concepts (Lilley Chap.1)

The Nuclei

Notation

The composition of a nucleus is often described using the notation:
A
ZXN

X represents the atoms name. A is defined to be the mass number, Z is the atomic number and N
is the neutron number.
It is of course sufficient to describe the nuclei byAX, since X automatically determines the letter Z,
which was defined above to be the atom number.

Particle masses

Particle Index Mass

Neutron mn mn = 1.008665u
Proton mp mp = 1.007276u
Electron me me = 0.000549u

Where u is the atomic mass unit, and 1u≡ 1
12
m(12C)

Particle data

All of the three particles above are spin- 1
2 fermions with non-zero magnetic moments µb. The

neutron and the proton belong to the Baryon (composition of three quarks) family and the electron
is a lepton.

Atomic mass of nucleus A

Z
X

m(A, Z) = ZmH + (A− Z)mn −
B

c2
(1)

Where B represents the total binding energy of A
ZX. For this to be valid, one has assumed that the

mean binding energy of the electrons in A
ZX is the same as in 1

1H . Mass excess of A
ZX is defined in

atomic mass units(u) to be:
∆ = m(A, Z) − A (2)
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The nuclear potential (Strong
force)

The potential within a nucleus can be approximately modelled as an infinite spherical potential well
where the potential is zero inside a given radius, and infinity outside it. This can be expressed as:

V =

{
0, if r ≤ a
∞, if r > a

(3)

Inserting 3 into the Schrødinger equation:

Hψ = Eψ (4)

Assuming a separable wave function solution of the form ψ = R(r) · Y m
l (φ, θ) where Y m

l repre-
sents the spherical harmonics.

The radial part of the wave function R(r) = jl(kr), is a spherical Bessel function.

Boundary condition: jl(kr) = 0 for kr = ka

l = 0 : j0(kr) = sin kr
kr

→ j0(ka) = 0 for ka = n · π. The wave function has its n’th zero at r = a.
l = 1 : j1(kr) = sin kr

(kr)2 − coskr
kr
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A centrifugal potential arises from the angular motion for l 6= 0.⇒ Energy levels E = Enl. l is
substituted with s,p,d,f for l=0,1,2,3....
For each value of l we have 2l+ 1 values for the quantum number ml = 0,±1,±2....± l

This simple model arranges the energy levels, Enl,in the right order up to a nucleus size of A=40.
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Stability and existence of nuclei

Chart of nuclides

Radioactivity

Spontaneous radioactive processes:

With or without a secondary
gamma ray emission.







α
β−

β+

electroncapture
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α : Induced by strong interactions A
ZX →A−4

Z−2 X
′ +4

2 α, Qα = c2(mP −mD −mHe) = Tx′ + Tα

Tα = Qα

1+ mα

m
x′

β− : Induced by weak interactions A
ZX →A

Z+1 X
′ + β− + ν Qβ−

= c2(mP −mD) = Tx′ + Tβ− + Tν

Qβ− = (∆P − ∆D), Tx′ ' 0

β+ : Induced by weak interactions A
ZX →A

Z−1 X
′ + β+ + ν Qβ+ = c2(mP −mD − 2me) = Tx′ + Tβ+ + Tν

Qβ+ = (∆P − ∆D − 2me)c
2, Tx′ ' 0

ε : Induced by weak interactions A
ZX + e− →A

Z−1 X
′ + ν QEC = (mP −mD)c2 − EB = Tν

Electron capture, where an electron is absorbed by the nucleus, is an energetically favorable process
which is competing with the β+ disintegration process. ε is followed by characteristic X-ray radiation.

γ : Induced by E.M interactions A
ZX

∗ →A
Z X + γ Qγ = (mP −mD)c2 = T ′

x + hν

Tx′ ' 0

γ- and X-ray radiation are both secondary processes, which are characteristic of the final daughter
nucleus after a disintegration.

The disintegration constant λ

dN

dt
= −λ ·N ⇒ N(t) = N(0)e−λt (5)

In the equation above, one can see that λ represents a constant transition probability per unit time.
[λ] = s−1 = Bq
A good argument supporting the assumed disintegration model in 5 is based on elementary time-
dependent perturbation theory.

Radioactivity. Disintegration kinetics

Statistically defined variables:
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Half-life T 1
2
, T 1

2
= ln 2

λ
' 0.693

λ

Mean life-time τ, τ = 1
N0

∫
∞

0
tλN(t)dt = 1

λ

Activity A, A = λ ·N

Specific activity SA SA = λ · n (n is the number of atoms per mass unit)

n = NA

A
where NA is Avogadro’s number,and A is the molar mass of the atom.

1Bq is defined to be the amount of radio-nuclei you need of a specific isotope, to get one disin-
tegration per second.

Disintegration chains

A disintegration chain appears when the daughter nucleus of the previous disintegration is unstable.

λA λB

A → B → C

Using equation 5 in several steps, assuming that nucleus C is stable, this reaction becomes:

dNA

dt
= −λA ·NA;

dNB

dt
= λA ·NA − λB ·NB ;

dNC

dt
= λB ·NB (6)
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Example:

C stable ⇒ NA +NB +NC = N0, initial values: NA(0) = N0; NB(0) = NC = 0
⇒

NB = λANA

λB−λA

(e−λAt − e−λBt)

NA = N0e
−λAt

⇒

NB = λA

λB
N0(1 − e−λBt) if λA << λB

Permanent equilibrium for t >> 1/λB (TA � TB):

QB = λBNB → λANA = QA

Transient equilibrium(TA > TB):

QB = λBNB → λAλBN0

λB−λA
e−λAt = QA

QB → λB

λB−λA

QA When t → ∞

No equilibrium (TA < TB)

Nuclear reactions

Entrance channel
︷ ︸︸ ︷

a+ A
︸︷︷︸

Target nucleus

→

Exit channel
︷ ︸︸ ︷

B + b

Energy released: Q = (ma +mA −mb −mB)c2 Q

{
> 0, exoterm, releases energy
< 0, endoterm, absorbs energy
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Scattering cross-section

Cross-section

Number of particles per second within ~dΩ: dR = dσ · Φ̇ per target atom.

Total cross-section: σ =
∫

Ω
dσ
dΩ
dΩ per target atom

Total rate of particles for a target consisting of N particles: R = σN · Φ̇

Where σ is commonly given in barns(b). 1b=10−28m2
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Examples:

Example: Production of isotopes by neutron capture

Production rate: dN0(t)
dt

= −σΦ̇N0

The radioactive nuclei produced have a disintegration constant λ

Rate of change of produced nuclei: dN1(t)
dt

= σΦ̇N0(t) − λN1(t)

Instantaneous radioactivity due to the produced nuclei: A1 = λ ·N1

Example: Rutherford scattering
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Elastic scattering; Central-symmetric Coulomb potential.

Differential cross-section: dσ
dΩ

=
[

Z1Z2e2

16πε0Ta

]2
1

sin4 θ

2
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2.)
Radiation-matter interaction
(Lilley Chap.5)

Interaction of charged particles with matter

Coulomb interactions

What characterizes these interactions, is that their origin of existence is due to the long range
Coulomb-force.

Type of interaction
Interacts with

Elastic Inelastic

Electrons Ionisation

Nuclei Rutherford Scattering Brems strahlung

These interaction processes result in a continuous retardation of charged particles, because of the
long range Coulomb force.
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Heavy charged particles

Energy transfer

Heavy charged particle of mass M , velocity ~V , and charge ze interacts with atomic electron of the
material.

Assuming the binding energy of the electron, EB = 0 and that initially the electron is found at
rest.

Conservation of energy and momentum: TM = T ′

M + T ′
e

~pM = ~pM
′ + ~pe

′

Maximum energy transfer happens when the particles collide head-on. An approximate non rela-
tivistic calculation of the maximum energy transfer from the heavy ion to the electron follows below.

Non relativistic calculation: pc =
√

T (T + 2mc2) ' c
√

2mT

Maximum energy transfer: T ′
emax = 4mM

(m+M)2 TM

For a heavy charged particle m � M ⇒ T ′
emax = 2mV 2

Where V is the initial velocity of the heavy particle, and m is the electron mass. The relativis-
tic expression is a bit more complicated.

Relativistic expression for maximum energy transfer: T ′
emax = 2γ2mV 2

1+ 2γm
M

+ m2

M2

Where γ represents the Lorenz factor:

γ =
1

√

1 − (V
c
)2

(1)
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Stopping power for heavy charged particles interacting with electrons.

Collision stopping power: Sc = −dT
dx

Force acting on the heavy particle: ~F = 1
4πε

ze2

r2 êr

Sc is loss of kinetic energy per unit path length in the scattering medium, due to interactions
between the heavy charged particle and the electrons.
All the electrons in a cylinder shell with a collision parameter b contribute equally to the stopping
power, since the Coulomb force is spherically symmetric.

If the x direction is defined to be along the charged particle’s direction as earlier implied, Fx

does not transfer energy. However, F⊥ does:
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Momentum transfer: ∆p⊥ =
∫
|F | cosθdt = ze2

4πε0

∫ π
2

−
π
2

cos3 θ
b2

b
V

dθ
cos2 θ

This is found assuming that: V' constant

Energy transferred to the electron: E = (∆p⊥)2

2me
= 1

(4πε0)2
2z2e4

meV 2b2

The differential cross section for energy transfer between E and E + dE, per electron in the
stopping medium:

dσ(E) =
dσ(E)

dE
dE = |2πbdb| =

2πz2e4

(4πε0)2meV 2

dE

E2
(2)

Again returning to the stopping power: Sc = −dT
dx

= −dE
dx

= nvZ
∫ Emax

Emin

dσ
dE

EdE

The total contribution to the interaction probability from all of the electrons
inside the cylinder shell(d3V ) is worked out below. nv is the number of atoms per unit volume.

Further on: nvZd3V =nvZ
dσ(E)

dE
dEdx ; nv = NA

A
· ρ

The Stopping power: Sc =
∫ Emax

Emin
nvZ

2πz2e4

(4πε0)2meV 2

dE
E2 E

The total stopping power then comes out to be:

Sc =
2πz2r2

0mec
2

β2
nvZ

[

ln
Emax

Emin

]

; r0 =
e2

4πε0mec2
(3)

Going back to the non relativistic case: Emax = 4mM
(m+M)2

TM

For heavy particles(M � m) ⇒ Emax = 2meV
2

Emin = I2

2meV 2 (I=mean exitation energy)

Mass stopping-power (non relatisvistic): Se

ρ
=

2πz2r2

0

β2 mec
2Na

[
Z
A

]

2 ln
[

Qmax

I

]

,

(M � m), Qmax ≡ Emax

Relativistic expression with corrections:

Sc

ρ
= NA

Z

A
·

z2e4

4πε20meV 2

[

ln
Qmax

I
− ln(l − β2) − β2 −

c(β2)

Z
−

1

2
δ
]

(4)

Where A represents the molar mass of the stopping material, V is the particle velocity.

The two last terms in the expression are added as a shell correction and a density effect, respectively.
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The last term is a correction which appears because there is also a field set up from other atoms
in the stopping material.
Note that this expression is independent of the mass of the incoming particle.

Stopping-power for composite materials: nvZ ln I ⇒
∑

i
nviZi ln Ii

Range

Range for heavy charged particles

Mono energetic particles, for example α particles:
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Particle range in a stopping-material: R(T ) =
∫ 0

T
dT

−
dT
dx

−dT
dx

= z2G(β)

dT = g(β) ·Mdβ

Particle range in a stopping-material: R(β) = M
z2

∫ 0

β
h(β)dβ=M

z2 f(β)

This is a useful formula for comparing range of particles having identical initial velocity.

Linear energy transfer(LET): LET =
[

− dT
dx

]

c

NOTE! The range is defined to be the distance along the particle track, not the penetration depth.
Generally, we have R > x0 where x0 is the penetration depth. Nevertheless, for heavy charged par-
ticles: R ' x0. This means that a heavy charged particle, fired at a target medium, will travel along
a path that hardly deviates from it’s original direction, until it is retarded down to zero velocity.

β-particles

Stopping-power for β-particles (z=1)

Sc

ρ
= NA

Z

A

e4

4πε0mec2β2

[

ln
mec

2τ
√

τ + 2
√

2I
+ F±(β)

]

(5)

τ represents the β-particle’s kinetic energy: τ = T
mec2

For electrons: F−(β) = 1−β2

2

[

1 + τ2

8
− (2τ + 1) ln2

]

For positrons: F +(β) = ln2 − β2

24

[

23 + 14
τ+2 + 10

(τ+2)2 + 4
(τ+2)3

]

Differences between β, and heavy charged particles’ interactions with matter:
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1 β-particles can loose all their energy in one collision with an atomic electron.

2 β−-particles are identical with the object they interact with (electrons).

(We assume that the electron with the lowest energy is the one that belonged to the material.)

3 Relativistic formulas are required (for Te > 10keV ).

Bremsstrahlung contribution to the stopping power

−
[

dE
dx

]

rad

−
[

dE
dx

]

col

'
ZE

800
= 2.5 · 10−4ZE

︸ ︷︷ ︸

E is total energy in MeV

(6)

Effective bremsstrahlung contribution:

Y (T0) =
1

T0

∫ T0

0

y(T )dT '
6 · 10−4Z

MeV
︷︸︸︷

T

1 + 6 · 10−4ZT
; y(T ) ≡

−
[

dT
dx

]

rad

−
[

dT
dx

]

tot

(7)

This is the fraction of the incoming particle’s kinetic energy, which is converted into bremsstrahlung
during the entire retardation process.
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Range for β-particles

Usually, electrons have a continuous energy spectrum up to Emax, and the range is defined relative
to this energy Emax. The electron range is always greater than the penetration depth. NOTE
that in this case it is very important to use the total stopping power in the calculations, since the
bremsstrahlung contribution is highly significant.

R(T ) =

∫

s

ds =

∫ 0

T

dT

−
[

dT
dx

]

tot

(8)

Photons

Photon interactions

Type of interaction:

Interacts with:
Elastic scattering Inelastic scattering Absorption

(Coherent) (Incoherent)

Atomic electrons σCoh.sc ≡ σR σIncoh.sc ≡ σCT σpe

Rayleigh Compton Photo-electric effect

Nuclei/Nucleons Elastic nuclear Nuclear resonance Photo-nuclear
scattering scattering reactions

Electric field σpp

from charged particles Pair production
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Attenuation coefficients

When measuring attenuation coefficients, one always measure in a ”good(proper) geometry” setup.

Detected intensity with/without absorber I
I0

= e−µl·x

Linear attenuation coeff: µl =lim
x→0

1
x

ln I0

I
= −1

I
dI
dx

Atomic attenuation coeff: σa = µl

nV

Mass attenuation coeff: µl

ρ
= σa NA

A

The atomic attenuation coefficient is often called the atomic scattering cross-section. This is mea-
sured in barn. nv is the number of atoms per unit volume.
The atomic cross-sections for the different atoms in composite materials are additive.

Photon - atomic electron interaction

Compton scattering:
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Assuming that the electron is free and initially at rest:

Conservation of energy: hν + mec
2 = hν ′ + γmec

2

Conservation of momentum: hν
c

= hν′

c
cos θ + p′e cosφ

Relativistic electron after interaction: (p′ec)
2 = T ′(T ′ + 2mec

2)

Neglecting the electronic binding energy(as earlier implied): T ′ = h(ν − ν ′)

Change in wavelength: ∆λ = λ′ − λ = λc(1 − cosθ)

Compton wavelength: λc = h
mec

Scattered photon’s energy:hν ′ = hν
1+α(1−cosθ)

,α = hν
mec2

Scattering angles: cotφ = (1 + α) tan θ
2

Minimum scattering: θ ' 0 ⇒ φ = π
2 ; hν ′ ' hν ; T ′

e ' 0

Maximum scattering: θ = π ⇒ φ = 0 ; hν ′ → hν
1+2α

; T ′
e = hν 2α

1+2α

Fraction of energy scattered: hν′

hν

Fraction of energy transferred to the Compton electron: (1 − hν′

hν
)

Klein-Nishina cross-section (per electron)

σe,KN

dΩ
=

r2
0

2

[ 1 + cos2 θ

[1 + α(1 − cos θ)]2
+

α2(1 − cosθ)2

[1 + α(1− cos θ)]3

]

(9)

Where r0 is the classical electron radius as defined before.

Alternatively:
dσe,KN

dΩ
=

r2
0

2

[ν ′

ν

]2[ ν

ν ′
+

ν ′

ν
− sin2(θ)

]

(10)
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For low energies, α → 0:

dσKN

dΩ →
r2

0

2 [1 + cos2 θ]

This cross-section describes scattering of photons by a free electron target, consistent with clas-
sical electro-magnetic theory. This is also called the Thomson cross section. This scattering process
results in coherent scattering(hν ′ = hν). In reality one has to introduce a scattering form-factor F ,
for this formula to agree with experimental data.

Cross section for coherent scattering (Low energy description)

dσkoh.sc

dΩ
=

r2
0

2
(1 + cos2 θ)

[

F (hν, θ, Z)
]2

(11)

Cross section for incoherent scattering

dσis

dΩ
=

dσKN

dΩ
S(hν, θ, Z) (12)

S is here a structure-factor (fraction of incoherent scattering). This factor describes the probability
for the target atom to get excited, or ionized after interacting with the incoming photon.
Incoherent scattering ≡ compton scattering:

11



Total compton scattering cross-section σCT = σCA + σCS

Cross-section describing energy transfer to scattered photon: σCS = hν′

hν
σCT

Cross-section describing energy transfer to compton electron: σCA =
[

1 − hν′

hν

]

σCT

Photo-electric effect

This is not possible for a free electron (There is no solution to the compton equations for hν ′ = 0).

Kinetic energy for the electron: T ′
e = hν − EB

Photon - Coulomb field interaction

Pair production

Threshold energy: hν ≥ 2moc
2
[

1 + m0c2

Mxc2

]

Photon - nuclear Coulomb field interaction(Mx � m0): hν ≥ 2m0c
2
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Triplet production

Photon-electronic Coulomb field interaction:(Mx = m0): hν ≥ 4m0c
2

In this case, there is no way telling which two of the electrons are the produced ones, and which one
is the original target. That is why the process is called :”triplet production”.

β+ annihilation

β+ annihilation is usually a result of positronium(β+&e−) being formed after the β+ particle has
lost its kinetic energy. Positronium has lifetime, τ ' 10−10s. Alternatively, the β+ annihilation can
occur ”in flight”.

Total interaction cross-section for photons

Total attenuation coeff: µ = µR + µPE + µCT + µPP

Mass-energy transfer coefficient, (µtr

ρ
) represents the fraction of the incoming photon’s energy, which

is transferred to charged particles (secondary electrons), thus increasing their kinetic energy.

µtr

ρ
=

µPE

ρ

[

1 −
δ

hν

]

+
µCT

ρ

[

1 −
hν ′

hν

]

+
µPP

ρ

[

1 −
2m0c

2

hν

]

(13)

δ represents the mean energy emitted by characteristic X-ray radiation. δ = EB·Probability for
a de-excitation by X-ray radiation, as opposed to Auger electron emission.
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Mass-energy absorption coefficient:

µen

ρ
=

[µtr

ρ

]

[1− g] (14)

g is the fraction of the secondary electrons’ energy, which is emitted as bremsstrahlung. (This
energy is not locally deposited in the stopping media)

Z-dependence of the photon cross sections

Generally: σa = Z · σe

σe is one of the electron cross-sections,
for example σKN

Linear attenuation coeff: µl

ρ
= σa NA

A
= σe Z

A
NA

For most materials, Z' 0.45A for A > 1: µl

ρ
' 0.45NAσe

This means that µl

ρ
' constant(close to Z-independency) within the Compton range.

Photo-electric effect: σa
PE ∝ Z4

(hν)3

Compton: σa
CT ∝ Z → σe

CT ' constant

Pair production: σa
PP ∝ Z2

Neutrons

Classification of neutrons

Thermal neutrons: E ' 0.025eV

Epithermal neutrons: E ' 1eV

Slow neutrons: E ' 1keV

Fast neutrons: 100keV − 10MeV
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Neutron sources

(α, n)-sources consist of an α-emitter and 9Be:⇒ 4
2He +9

4 Be →12
6 C + n

For example, a mixture of 226Ra and 9Be ⇒ constant neutron emission rate (not mono-energetic,
due to energy loss of the α-particles in the sample).

(γ, n)-sources give nearly mono-energetic neutrons.: γ +9
4 Be →8

4 Be + n

The γ-photon’s threshold energy for this process to work: hν ≥ Eb

Where Eb is the binding energy of the neutron.

Spontaneous fission, for instance: 252Cf

Nuclear reactions: Choosing a specific Ta and exit angle θ ⇒ Selective mono-energetic neutron
flux.

Example:

3H + d →4 He + n Q=17.6MeV

9Be +4 He →12 C + n Q=5.7MeV

Reactor as a source: Large flux of neutrons for activation analysis.

Absorption and moderation of neutrons

There are several possible reactions for fast neutrons: (n,p), (n,α), (n, 2n) Usually, these reactions
have very strong resonances.

Without the resonances: σ ∝ 1
v

Attenuation of mono-energetic neutrons: I = I0e
−σtnx = I0e

−Σx

Where Σ represents the ”macroscopic cross-section”.(But really is a linear attenuation coefficient)
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Energy distribution after scattering of mono-energetic neutrons

Scattering is isotropic in the CM frame.

E′

E
=

A2 + 2A cos θ + 1

(A + 1)2

(E′

E

)

min
=

[A − 1

A + 1

]2

, for θ = π (15)

Logarithmic decrement: ξ = 1
4π

∫
ln E

E′
· dΩ = 1 +

(A−1)2

2A
ln A−1

A+1

Median energy after n interactions: E′
n

This energy is defined as: lnE′
n ≡ ln En = lnE0 − nξ
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Example:Thermal moderation of neutrons

Thermalizing 2 MeV neutrons in different moderators:

Moderator ξ n

1H 1.0 18

2H 0.725 25

12C 0.158 115

238U 0.008 2200
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3.)

Particle detectors and accelerators

(Lilley Chap. 6)

Detectors

Gas filled ionisation chamber

1



Electric field E = V

r ln b

a

Gas multiplication factor: G

Required energy per ion-pair produced: W = 20 − 40eV

Figure explanation

1.) Recombination (G < 1)

2.) Ionisation chamber. All the ion-pairs produced are collected by the electrodes, and
there is no secondary ionisation.

3.) Proportional counter. Puls height ∝ energy (G > 1)

4.) Area with limited proportionality due to nonlinearity

5.) Geiger-Müller range. Full discharge cascade (G → ∞)
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Semiconductor detectors

3



Depletion region:

There is an area containing no free charge-carriers on the border between the n and p material.
This is called the active detector volume.

Reversed high voltage:

This results in a greater depletion region, as the active detector volume increases.

Different detectors

Surface barrier detector:

The active detection area is very close to the surface, but it is not particularly thick. This de-
tector is well suitable for α− and β− detection.

Ge(Li)-detector(γ−detection):

The active detection volume is large because of neutralization of p-type material by inoculating
Li. The disadvantage is that this detector always has to be kept cooled down (Liquid Nitrogen) to
prevent leakage of Li.

HPGe-detector:

This is a modern detector for γ−detection. This detector has a big active detection volume, due
to the ultra pure Ge ”intrinsic” material inserted between the p- and n-region. The detector is
cooled down during the detection sessions to reduce noise, but when not used it can be kept at room
temperatures.

General advantages gained by using semi-conductor detectors:

1.) Very good energy resolution, since ion-pair production requires only a small amount of
energy.(W ' 3eV )

2.) Well defined linearity and good stability.

Scintillation counter

A scintillator (fluid or crystal) is excited by secondary electrons. This results in emission of visible
light which can be detected by a photo-multiplier-tube.(PMT)
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NaI(Tl)-crystal detector

The crystal’s excitation energy is converted into visible light by Tl-doping.

The Compton edge is given by the maximum energy of the Compton electron:

Maximum energy: Emax = T ′

emax = hν 2α
1+2α

; α = hν
mec2
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Photo-fraction: f =
# Counts in full energy peak

# Total counts

Counting-efficiency ε, which is used
to find the radioactivity A in a sample
by using the counting rate r in the photo-peak: r = εA

ε = f · pvxvΩ · k
In the last expression, f is the photo-fraction, pvxv is the probability for interaction within the
detector, Ω represents the solid angle seen by the detector and k is the number of photons with
energy hν emitted per disintegration.

Inside the detector, the photon energy hν is deposited as kinetic energy for n charge-carriers (elec-
trons from the photo-cathode of the PMT) which again results in a measurable pulse.

Measured energy E: E ∝ n

Where n is Poisson distributed, which again means that:

Standard deviation σ =
√

n

Energy variance (∆E)2 ∝ n
︸︷︷︸

Poisson variance

+

Rest variance
︷︸︸︷

σ2
0

(∆E)2 ' a · E + b
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Neutron detectors

Detection of neutrons is based on detection of secondary ionizing particles.

10B gas detector: BF3 gas naturally contains 20% 10B

Thermal capture cross-section: σthermalcap = 3840b for 10B ∝ 1
v

up to 100keV

10
5 B +1

0 n →







7
3Li∗ +4

2 He : Q96%=2.31MeV

{
TLi = 0.84MeV
THe = 1.47MeV

7
3Li +4

2 He : Q4%=2.79MeV

{
TLi = 1.01MeV
THe = 1.78MeV

The advantage of having a 1

v
dependent cross-section

Flux of neutrons entering the

detector with a velocity v ∈ (v, v + dv): Φ̇(v) = n(v)v · dv

Counting rate: dR = Nσ(v)n(v)vdv

R =
∫

Nσ(v)n(v)vdv = constant
∫

n(v)dv = const · n

Where n is the neutron density. This means that the detector’s counting rate is proportional to
the neutron density and hence, independent of the neutrons’ velocity.
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How to find the neutron energy by diffraction

For thermal neutrons, the wavelength λ ' 0.1nm, which is comparable to the distance d between
the atoms inside a crystal.

Constructive interference condition: nλ = 2d sin θ, n = 1, 2, 3...

Proton recoil spectroscopy:

Conservation of energy: ER = E − E′ = E · cos2 θ

If this interaction is measured using a lioquid scintillator, there is no angular resolution:

Particle identification

∆E-E telescope
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Energy loss: ∆E =
[

− dE
dx

]

col
∝ z2

v2 � E

∆E − E relation: ∆E · E ∝ z2

v2 [ 1
2
mv2] ∝ mz2 ; ∆E ∝ mz2

E

Magnetic spectrometer

Force acting on particle: F = qvB = mv2

r
⇒ r = mv

qB

If a · b = r2, there will be focusing in the horizontal plane. Focusing in the vertical direction
takes place when angle of approach 6= π

2
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Accelerators

Dual Van de Graaf accelerator

Terminal potential: HV = 20 MV

Particle energy: E = (1 + n)eHV

The advantage is that you get a DC beam with very high intensity.

Linear accelerator

A phase stabilization is possible to achieve, if the particles are crossing the accelerator gap between
two tubes when the field is increasing. Delayed particles will then feel a stronger acceleration. The
phase stabilization gives a certain lateral defocusing, because the field is strongest at the end of the
particle track between the tubes. The lateral defocusing described above, must be compensated for
by adding several focusing rings inside the accelerator tubes.

SLAC: (Stanford Linear Accelerator) 20GeV electrons. It is about 3km long.

Linear accelerators are being used as radiation-therapy machines.
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Cyclotron

Force acting on particle F = qvB = mv2

r
→ v = qBr

m

Period: T = 2πr
v

= 2πm
qB

≡ 1
f

Max energy for r=R: Emax = q2B2R2

2m

To keep the period constant as E approaches Emax, the magnetic field B has to increase with
r when r → R. This results in a defocusing of the particle beam in the vertical plane. This
has to be compensated for by splitting up the cyclotron in different sectors with higher and lower
magnetic-field magnitudes, and using the focusing effect which is achieved at incoming angles 6= π

2
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4.)

Nuclear structure (Lilley Chap. 2)

Models

Nuclear force

This is a short range attractive force, but repulsive for even shorter distances⇒ There is a certain
optimal distance between nuclear particles.

Liquid drop model

The nucleus is considered as a spherical liquid drop with constant internal density.

Evidence for the existence of the liquid drop model:

The internal charge distribution:

a.) Electron scattering experiments imply the charge density function below:

Number of nucleons per unit volume is approximately constant ⇒ ρ = A
4
3
πR3

b.) The nuclear charge distribution affects the energy levels of the S-orbital electrons.
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c.) The potential energy difference between mirror nuclei:

Example:

13
7 N6

β+

→ 13
6 C7, Measure Emax for β+

∆EC = 3
5

e2

4πε0

1
R

[

Z2 − (Z − 1)2
]

︸ ︷︷ ︸

(2Z−1)=A

⇒ ∆Ec = 3
5

e2

4πε0

1
R0

A
2
3

The internal mass distribution:

a.) Neutron scattering (elastic)

This is the same calculation as used for electron scattering, remembering to exchange the

electron’s electro-magnetic potential with the neutron’s potential

⇒ Scattering data give the Fourier transform of the mass distribution.

b.) Deviation from the expected angular dependency of Rutherford scattering for r > R.

c.) Calculating the tunneling probability for α-disintegration.

d.) Measuring the difference between Ek-energies for atoms

with π − mesons
︸ ︷︷ ︸

Strong force+Coulomb

and muons
︸ ︷︷ ︸

Coulomb only

instead of electrons.

These four points, from a.) through d.), result in a conclusion:ρm ' ρe, R = R0A
1
3 , R0 = 1.2fm
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Measuring atomic masses

Mass excess, ∆ = m− A is

{
≥0, if A < 12
≤0, if A > 12

Binding energy

Binding energy: B =
[

Zm(1H) + Nmn − m(A
ZX)

]

c2, where c2 = 931.5MeV
u

Neutron separation energy: Sn =
[

mn + m(A−1
Z XN−1) − m(A

ZXN)
]

c2

Proton separation energy: Sp =
[

mp + m(A−1
Z−1XN ) − m(A

ZXN )
]

c2

Binding energy: B = av · A − asA
2
3 − ac ·Z(Z − 1)A− 1

3 (Liquid drop model)

−asym · (A−2Z)2

A
+ δpair (Shell effects)

Where δ =







+apA
− 3

4 , if Z & N are even numbers
0, if A is an odd number
−apA

− 3
4 , if Z & N are odd numbers

Semi-empirical mass formula: M(Z, A) = Zm(1H) + Nmn − B(Z,A)
c2

M(A,Z) is sketched below for fixed values of A:
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Minimum mass: ∂M
∂Z

= 0 ⇒ Z = Zmin =
[mn−m(1H)]+acA

−

1
3 +4asym

2acA
−

1
3 +8asymA−1

The nuclear shell model

This model is the nuclear analogy to the electron shell model.
Experimental data show that the ionisation energy decreases and the atomic radius increases rapidly
for the first electron outside a full shell. I.e for Li, Na, K etc. The same occurs for nucleons in the
nucleus.

Experimental data that justify the theory of a nuclear shell structure

a.) There is a rapid fall in 2-neutron and 2-proton separation energy when passing

the magic nucleon numbers; 8, 20, 28, 50, 82, 126

b.) α-energy reaches maximum for radio-nuclei where the daughter nucleus has a structure

corresponding to magic numbers.

c.) The neutron scattering cross-section for nuclei with N=magic numbers is extraordinarily small.

d.) There is a huge increase in the nuclear radius when the number of neutrons exceed magic numbers.
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A realistic potential for the shell model (Woods-Saxon potential):

V =
−V0

1 + e
r−R

a

(1)

Where V0 ' 50MeV , R = R0A
1
3 , R0 = 1.2fm

Spin-Orbit coupling

Energy difference: ∆E = −(~l · ~s) Vso, Vso > 0

Total angular momentum: ~j = ~l + ~s

From this, it follows that < ~l · ~s >= 1
2 < [~j2 − ~l2 − ~s2] >=1

2 [j(j + 1) − l(l + 1) − s(s + 1)]h̄2

Energy splitting: δE = Vso[< ~l · ~s >j=l− 1
2
− < ~l · ~s >j=l+ 1

2
]= h̄2

2 Vso(2l + 1)

5



# of identical nucleons per energy level: (2j+1)

Remember that the Pauli principle applies only for identical Fermions (protons and neutrons are
counted independently).

Parity: (−1)l ⇒

{

π+ for s, d, g..
π− for p, f, h..

This shell model with spin-orbit coupling gives the right spin and parity. Further on, it predicts
reasonable energy levels, and introduces the magical numbers corresponding to filled shells.
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Angular momentum and spin

For each nucleon: ~j = ~l + ~s

For the nucleus: ~I =
∑

~ji

~I2 = h̄2I(I + 1)

Iz = mh̄

For nuclei with one valence-nucleon: ~I = ~jvn

For nuclei with two valence-nucleons: ~I = ~j1 +~j2

For nuclei with even numbers of A: I ∈ integer

For nuclei with odd numbers of A: I ∈ half integer

For even-even nuclei(Z&A even): I=0 in the ground state

Valence nucleons

Excited states: The valence nucleon jumps to a higher energy state in the shell model by absorbing
excitation energy. This model agrees with experimental data for nuclei with one valence nucleon.

Experimental data which justify the orbital model for nucleons

Electron-scattering experiments to find the charge-distribution difference between 206
82 Pb124 and

205
81 T l124. The difference, ∆ρe, takes place because Pb has one extra proton in a 3S 1

2
-state.

⇒ ∆ρe corresponds to a 3s 1
2
-orbital.
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Protons and neutrons are found as proton- and neutron-pairs in the shell structure. To excite a
nucleon, one has to break a pair bond (typically 2MeV binding energy). Energy and spin is then
found from the two odd nucleons. Coupling of the two angular momenta ~j1 +~j2 gives values from
|j1 + j2| to |j1 − j2|.

Collective structure contributions in even-even nuclei

Experimentally:

All even-even nuclei have a low 2+ excited state with excitation energy around half the energy re-
quired to separate a pair of nucleons, indicating another type of excited state than single nucleon
excitation.
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Experimental data:

Nuclear vibrations(for A < 150)

The nuclear surface:

R(t) = Rav +
∑

λ≥1

λ∑

µ=−λ

αλµ(t)Yλµ(θ, φ) (2)

A nuclear quadrupole-moment corresponds to Y20(l = 2)

Exited phonon states with equidistant energy levels ⇒ E = n · h̄ω

If the 4+ state is due to a two-phonon excitation and 2+ corresponds to a one-phonon excita-
tion, one can easily draw the conclusion that E(4+)/E(2+) = 2. Experimental data for A < 150
confirms this model.
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Rotating deformed nuclei (150 < A < 190, A > 220)

R(θ, φ) = R0

[
1 + βY20(θ, φ)

]
(3)

Deformation parameter: β = 4
3

√
π
5

∆R
Rav

' ∆R
Rav

Intrinsic quadrupole moment, Q ,in the nucleus’ rest frame: Q0 = 3√
5π

· R2
avZβ(1 + 0.16β)

A rotating prolate
︸ ︷︷ ︸

Q0>0

ellipsoid rotates perpendicular to the symmetry-axis ⇒ Q < 0.

Rotational states

E =
h̄2

2Υ
I(I + 1) (4)

The ground state for even-even nuclei has a total angular momentum I=0, and superimposed ro-
tational states have even spin due to symmetry. Υ is the effective nuclear mass moment of inertia.
Deformed nuclei are found where Z&N take values far from magic numbers.
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Super-deformation

The Schrødinger equation for deformed nuclei gives a new set of states. When deforming a nucleus
' 2:1 prolate ellipsoid, a new shell structure arises ⇒ super-deformed states.
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5.)

Nuclear instability (Lilley Chap 3)

γ-radioactivity

Transitions

Isomeric transition (leaves Z and
N unchanged) from an exited nuclear state: A

ZX
∗ →A

Z X + γ

Conservation of energy: Ei = Ef + Eγ + TR

Conservation of momentum: 0 = ~PR + ~Pγ ⇒ PR = Pγ = 1
c
Eγ

⇒ Eγ = ∆E

1+ ∆E

2Mxc2

' ∆E(1− ∆E
2Mxc2 )

Where, Ei and Ef represents the excitation energy in the initial and final states, ∆E = Ei − Ef ,
and TR is the recoil energy.

From the theory of classical electromagnetic radiation

Parity for multipole-field of order L: π(EL) = (−1)L, π(ML) = (−1)L+1

Radiated power: P (σL) = 2(L+1)c
ε0L[(2L+1)!!]2

[
ω
c

]2L+2

[m(σL)]2

Where (2L + 1)!! ≡ (2L + 1)(2L − 1)(2L − 3)....1, σ ∈ E,M , and m(σL) is the time dependent
multipole amplitude.

1



A quantum mechanical approach

Multipole moment: Mfi(σL) =
∫
ψ∗

fm(σL)ψid
3r

Emitted power: P (σL) = T (σL) · h̄ω

Emission rate: T (σL) = P(σL)
h̄ω

= 2(L+1)
h̄ε0L[(2L+1)!!]2

[
ω
c

]2L+1

B(σL)

Reduced transition probability: B(σL) =
∣
∣
∣Mfi

∣
∣
∣

2

Single nucleon (SP) model

Multipole operator: m(EL) ∝ erLYLM (θ, φ)

m(ML) ∝ rL−1YLM (θ, φ)

Weisskopf sp-approximations: Bsp(EL) = e2

4π

[
3RL

L+3

]2

Bsp(ML) = 10
[

h̄
mpcR

]2

Bsp(EL)

These approximations lead to: T (E1) = 1014A
2
3E3

γ

T (M1) = 3.1 · 1013E3
γ

If L→ L + 1: T (L + 1) → 6 · 10−7A
2

3E2
γ · T (L)

Note:

1.) The lowest multipole transition has the highest transition probability

2.) For a given order, T (EL) ' 100 · T (ML)

Selection rules

The photon is a S=1 Boson. The direction of this spin is either parallel or antiparallel to ~pγ . This

spin cannot be coupled to ~l = ~r × ~pγ because ~S ⊥ ~l.

Conservation of angular momentum: ~Ii = ~If + ~L

|Ii − If | ≤ L ≤ |Ii + If |, L 6= 0

2



Now, if:

∆π = 0: Even EL, odd ML ⇒ M1, E2, M3....

∆π 6= 0 Odd, EL, even ML ⇒ E1, M2, E3....

If Ii or If = 0 ⇒ A particular value of L ⇒ Pure multipole transition.
If Ii = If = 0 Forbidden transition for γ-transition, but an electron conversion is possible.

Experimental determination of multipole contribution

Generally, |Ii − If | ≤ L ≤ |If + Ii| give several possible L-values. This means that L has to be de-
termined experimentally. The easiest way to approach this problem is to find the angular-correlation:

Conversion electrons

The nucleus de-excites by interaction with an atomic electron (mainly S-orbital electrons) ⇒ elec-
tron emission.

Conservation of energy: Te = ∆E −EB

Binding energy: EB(K) > EB(L) > EB(M)....

Transition probability per unit time: λtot = λγ + λe

Conversion coeff.: α = λe

λγ
⇒ λt = λγ(1 + α)

α = αK + αLI + αLII + αLIII + αM ......

Maximum conversion: K-shell electron conversion (n=1) for low-energy, high-polarity transitions
(E � 2mec

2) in heavy nuclei (∝ Z3). The difference between α(EL) and α(ML) can be used to
determine the change of parity. α = ∞ for 0+ → 0+ because L=0 is a forbidden γ-emission tran-
sition. The competition between conversion electrons and γ-emission is analogous to the process

3



where Auger electrons and characteristic X-ray emission compete when a de-exitation of electronic
energy-states takes place. (K − LI transition is optically forbidden).

β-Disintegration

There are 3 different processes concerning this topic: β−, β+, ε

β−-disintegration

A
ZX →A

Z+1 X
′ + e− + νe

Energy released: Qβ− = (mP −mD)c2

Qβ− = (∆P − ∆D)c2

Qβ− = TX′ + Te + Tνe

Where TX′ , the recoil energy, is close to zero and mνe
' 0 ⇒ Tνe

= Eνe
. This means that the

energy released in the reaction can be written as below.

Energy released: Qβ− = Te + Tνe
= Te,max = Tνe,max
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β+-disintegration

A
ZX →A

Z−1 X
′ + β+ + νe

Energy released: Qβ+ = (mP −mD − 2me)c
2

Qβ+ = (∆P − ∆D − 2me)c
2

Qβ+ = TX′

︸︷︷︸

'0

+Tβ+
+ Tνe

︸︷︷︸

'Eνe

because mνe
' 0

Qβ− = Tβ+,max = Tνe,max

Electron capture (ε or EC)

A
ZX + e− →A

Z−1 X
′ + νe

Released energy: QEC = c2(mP −mD) −EB

QEC = T ′
X + Tνe

The recoil energy, T ′
X , is very small and can therefore in most cases be neglected. EB is the binding

energy for the captured electron’s initial orbital. Since this is a two-body problem, the neutrino is
emitted with well-defined energy and is therefore said to be mono-energetic.

Possible QEC values if mP ' mD: EB(K) > EB(L) ⇒
{
QEC(K) < 0 No transition
QEC(L) > 0 Transition possible
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Fermi theory for β-disintegration

Distinctive traits (in comparison to α-disintegration):

1.) The potential barrier is of no relevance (me � mα, and therefore P (tunneling) ' 1).

2.) An electron and an anti neutrino has to be created.

3.) A relativistic approach is necessary.

4.) ”3-body problem” for β±.

Fermi’s golden rule: λ = 2π
h̄
|Vfi|2ρ(Ef )

Matrix element: Vfi = g
∫
ψ∗

fV ψid
3r

Initial state: ψi = ψiN

Final state: ψf = ψfNφeφν̄e

Where g is a constant which characterizes the strength of the weak interactions.

Number of states: n = pL
h

, for x ∈ [0, L] and p ∈ [0, p]

⇒ d2n = dnednνe
= (4π)2V 2p2dpq2dq

h6

Where p is the linear momentum of the electron and q that of the neutrino. For the electron
and neutrino states, we use zero order approximations which give allowed transitions.

Electron state: φe(~r) = 1
√

V
ei

~p·~r
h̄ ' 1

√
V

[

1 + i~p·~r
h̄

+ ...
]

' 1
√

V

Neutrino state: φνe
(~r) = 1

√
V
ei ~q·~r

h̄ ' 1
√

V

[

1 + i~q·~r
h̄

+ ...
]

' 1
√

V

Now, by inserting this into Fermi’s golden rule one obtains:
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Transition probability rate: dλ(p) = 2π
h̄

∣
∣
∣g

∫
ψ∗

fNφ
∗
eφ

∗

νe
Oxψid

3r
∣
∣
∣

2
(4π)2V 2p2dpq2

h6

dq
dEf

Conservation of energy: Ef = Ee +Eνe
= Ee + qc, assuming Mνe

≡ 0

⇒ dEf

dq
= c for fixed Ee

Released energy: Q = Te + qc ⇒ q = Q−Te

c

Transition probability rate: dλ(p) = 2π
h̄
g2

∣
∣
∣Mfi

∣
∣
∣

2

(4π)2 p2dpq2

h6

1
c

dλ(p) ∝ N(p)dp = Cp2q2dp

Electron distribution: N(p) = C
c2 p

2(Q − Te)
2 = C

c2 p
2[Q−

√

(pc)2 + (mc2)2 +mc2]2

N(p)dp = N(Te)dTe ⇒ dp
dTe

= 1
c2p

(Te +mc2)

⇒ N(Te) = C
c5

√

T 2
e + 2Temc2(Q− Te)

2(Te +mc2)

The Fermi factor Fβ±(Z′, Te) represents the Coulomb interactions with the nucleus:

Electron distribution: N(p) ∝ p2(Q− Te)
2F (Z′, p)

∣
∣
∣Mfi

∣
∣
∣

2

S(p, q)

Where the form factor S(p, q) =

{
1, for allowed transitions
6= 1, for forbidden transitions
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Fermi-Curie-plot

y =

√

N(p)

p2F (Z′, p)
∝ (Q− Te), Mfi = constant

Total transition probability rate: λ =
∫ p,max

p=0
dλ(p)

The Fermi integral: f = 1
(mc)3

1
(mc2)2

∫ p,max

0
F (Z′, p)p2(E0 −Ee)

2dp

Conservation of energy: E0 −Ee = Q+mc2 − (Te +mc2) = Q− Te

Comparable half-life: ft 1
2

= f ln 2
λ

ft 1
2

= 0.693 · 2π3h̄7

g2m5
ec4|Mfi|

2 ' 103 − 1020s

For ”super-allowed transitions:
logft 1

2
∈ (3 − 4)

For 0+ − 0+, Mfi =
√

2 ⇒ ft 1
2
-values for these transitions should be of equal magnitude. This

corresponds with experiments performed. logft 1

2
increases for increasing order of forbiddenness.
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Selection rules

Conservation of angular momentum: ~Ii = ~If + ~Lβ + ~Sβ

Parity: πP = πD(−1)Lβ

Allowed transitions: ~Lβ = ~0

First forbidden: ~Lβ = ~1

Second forbidden: ~Lβ = ~2

Fermi transitions ~S = ~0

Gamow-Teller transitions ~S = ~1

Where ~Lβ and ~Sβ refer to the (β, ν) particle system.

1.) Allowed transitions:(~Lβ = 0, πP = πD)

Fermi type: (~S = ~0)

~Ii = ~If

∆I = 0

0+ → 0+ Super-allowed.

Gamow-Teller type: (~S = ~1)

~Ii = ~If +~1

∆I = 0, 1; not 0+ → 0+

0+ → 1+ Pure Gamow-Teller.

2.) First forbidden transitions:(~Lβ = ~1, πP = −πD)

Fermi type:(~S = ~0)

~Ii = ~If +~1

∆I = 0, 1

Gamow-Teller type:(~S = ~1)

~Ii = ~If +~1 +~1
︸ ︷︷ ︸

~0,~1,~2

Three types:

∆I = 0

∆I = 0, 1

∆I = 0, 1, 2
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Violation of parity conservation during β-disintegration

When a physical law is invariant during a symmetry operation, there is a corresponding conserved
quantity. Gravitation and electromagnetism are invariant during a spatial reflection (Parity operator
P), charge (C) and time (T) ⇒ Parity should be a conserved quantity.
⇒ < OPS >=

∫
Ψ∗ÔPSΨd3r = 0.

Where OPS is an operator that is representing a pseudo-scalar quantity, for example ~p · ~S, which is
a product of a polar vector (~p) and an axial vector ~S. P (~p) = −~p, P (~S) = ~S. < OPS >= 0 because
the integrand is an odd function if parity is a conserved quantity.

The P-reflection experiment emits in the ”forward” direction, while the original experiment emits
backwards relative to ~I. Wu et al. showed in 1957 that < ~p · ~I > < 0 in this experiment, i.e. parity
is not necessarily conserved in β−disintegration.

α-disintegration

α-disintegration takes place in nuclei with low N
P

-ratio.

A
ZX →A−4

Z−2 X
′ + α

Energy released:

Qα = (mP −mD −mHe)c
2 (atomic masses)

Qα = (∆P − ∆D − ∆He)c
2

Qα = TX′ + Tα(Assuming X is initially at rest)

Conservation of momentum: ~PX′ + ~Pα = 0

⇒ Tα = Qα

1+ Mα
M

X′

These α-energies are well defined, i.e monoenergetic, because this is a two-body problem.
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Disintegration constant: λ = f · P · A2
α

Where f is the number of collisions with the potential barrier per second, P is the tunneling prob-
ability and A is the spectroscopical factor expressed below.

Spectroscopical factor: A2
α =

∣
∣
∣ < Ψ∗

f (A− 4)Ψ∗
α(4)|Ψi(A) >

∣
∣
∣

2

The physical interpretation of this spectroscopical factor is that it is the probability for creating
an α-particle inside the nucleus.

Gamow factor: G =
∫ b

a

√
2mα

h̄2 [V (r) −Q]dr

WKB-approximation solution: G =
√

2mα

h̄2Q
zZ′e2

4πε0

[

arccos

√

Q

B
−

√

Q

B
(1 − Q

B
)
]

︸ ︷︷ ︸

'
π
2
−2

√
Q
B

for Q�B

Tunneling probability: P = e−2G

Collision frequency: f ' v
a

Velocity : v '
√

2(Q+V0)
mαc2 · c
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Where v is the α-particle’s velocity inside its nucleus-orbital, and a is the nuclear radius R. A2
α

is assumed to be 1.

Geiger-Nuttals rule: t 1

2
= 0.693a

c

√
mc2

2(V0+Q)
exp

[

2
√

2mc2

(h̄c)2Q
· zZ′e2

4πε0
(π

2
− 2

√
Q
B

)
]

This can again be simplified by introducing a few assumptions. V0 + Q ' V0, 2
√

Q
B

� π
2

⇒
lg t 1

2
= C1 + C2√

Q
. See Lilley Fig.3.9.

Effects due to angular momenta

The centrifugal potential makes the potential barrier increase.

Selection rule: ~Ii = ~If +~lα

|Ii − If | ≤ lα ≤ |If + Ii|

Parity rule: πP = πD(−1)lα

A typical example is a transition to rotational energy-states in deformed nuclei. lα ∈even num-
bers because of symmetry and parity.
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Deviation from Geiger-Nuttals rule:

1.) For deformed nuclei there is a higher probability for emitting through the poles,

because bigger a(≡ R) ⇒ lower potential barrier

2.) A2
α can be significantly ≤ 1, for example if the creation of an α-particle requires a break-up

of nucleon bonds in filled shells.

13



7.)

Dosimetry (Lilley chap.7)

Including biological effects of radiation and radia-

tion protection

Basic principles

Definition of dose: D =lim
V →0

ε
ρV

[Gy = J
kg

]

Charged particles(Directly ionizing radiation)

Dose: D = Φ(Scol

ρ
)

Where Scol is the collision stopping power and Φ is the particle fluence.

1



For photons (Indirectly ionizing radiation)

Total linear attenuation coeff: μ = τ + σ + κ

Where τ represents the photo electric effect, σ the Compton effect and κ is pair production. These
quantities are as already discussed, additive.

Mass energy transfer coeff.: μtr

ρ = τ
ρ

[
1− δ

hν

]
+ σ

ρ

[
1− hν′

hν

]
+ κ

ρ

[
1− 2mc2

hν

]

Where the terms from left to right are corrections for X-ray radiation, compton scattering and
radiation due to annihilation.

KERMA (Kinetic Energy Released per Mass)

Definition of KERMA: K ≡ Ψ(μtr

ρ ) [ J
kg = Gy]

Mass energy absorption coeff.: μen

ρ
=

(
μtr

ρ

)
(1− g)

Where g is the correction factor for bremsstrahlung.

Collision KERMA: D
CPE= Kc ≡ Ψ

(
μen

ρ

)

CPE stands for Charged Particle Equilibrium (electron equilibrium).

2



Illustrated cases:
(

μen

ρ

)
1

<
(

μen

ρ

)
2(

Sc

ρ

)
1

>
(

Sc

ρ

)
2

Continuous fluence of secondary electrons at the boundary: D2
D1

=
( Sc

ρ )2

( Sc
ρ )1

Bragg-Gray cavity theory

For a gas-filled dosimeter, which is constructed to measure the dose deposited in a medium:

Bragg-Gray cavity:

The cavity is so small compared to the range of the secondary electrons, that the ionisation that
takes place in the dosimeter’s gas is due to secondary electrons from the walls and the medium. If
one assumes that the fluence of secondary electrons is approximately continuous over the boundary
between the gas and the wall:

At the boundary: Dwall

Dgas
=

( Sc
ρ )wall

( Sc
ρ )gas

In this case, Sc represents the mean collision stopping power for the actual energy spectrum of
the secondary electrons. Furtheron, if one assumes that the walls are so thick that CPE is reached
inside the wall:

Inside the wall: Dmedium

Dwall
=

( μen
ρ )medium

( μen
ρ )wall

⇒ Dmedium =
( μen

ρ )medium

(μen
ρ )wall

· ( Sc
ρ )wall

( Sc
ρ )gas

· Dgas︸ ︷︷ ︸
measured

3



Special case:

1.) Homogeneous dosimeter:
(

Sc

ρ

)
wall

=
(

Sc

ρ

)
gas

(gas cavity does not need to be small)

2.) Tissue equivalent wall:
(

μen

ρ

)
medium

=
(

μen

ρ

)
wall

(chamber walls do not need to be thick)

Micro dosimetry

Stochastic energy deposited in a small volume of gas, equivalent to the energy deposited in a micro-
scopic tissue volume.

Specific energy: z = ε
ρΔV

This is a stochastic quantity for a fixed micro-volume.

Equivalent volumes:

Equivalent energy deposition along a particle-track through the two volumes:

δε =
(
− dE

dx

)
gas
· lgas =

(
− dE

dx medium

)
· lmedium

⇒ lgas =
( Sc

ρ )medium

( Sc
ρ )gas

· ρmedium

ρgas
· lmedium

If we choose lgas of the order of 10mm, the detector will be equivalent to a cell diameter lmedium

around 10 μm, since
( Sc

ρ )medium

(Sc
ρ )gas

is about 1, and ρmedium

ρgas
around 103.
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Comparing the graphs of specific energy z versus dose D for gamma and neutron irradiation,
we see that energy deposition by neutrons typically occurs in ”packages” 100 times larger than by
gamma.

External dosimetry (γ-radiation)

From a point source of activity A:

Dose deposited in air, at distance r from the point source:

Dose rate: Ḋair
CPE= K̇c,air = A

r2 Γair

Specific gamma radiation constant: Γ = 1
4π

∑
γi

kiEγi

(
μen

ρ

)
air,Eγi

[
Gym2

sBq

]

Sometimes, Γ is given relative to the exposition rate [Coulomb
kg·s ]

Specific gamma exposition constant: ΓExp = ΓDose
W
e

Where W
e is the average amount of energy required to generate an ion pair in air (34 eV

ip ).
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Internal dosimetry

Dose rate in target organ: ḊT =
∑
S

AS · SEE(S ← T )

Specific effective energy: SEE(T ← S) = 1
MT

∑
i

kiEiφi(T ← S)

Where MT is the mass of the target organ, and the sum goes over the different types of radia-
tion i, ki is the yield of radiation of type i per disintegration, Ei is the mean quantum of energy of
radiation type i, and φi is the fraction of this type of energy which is absorbed.

Absorbed fraction: φi(T ← S) =

{ 1 if S ≡ T , for α, β
0 if S �= T , for α, β
Must be measured for γ

Dose: D =
∑
S

Ã · SEE(T ← S), Ã =
∫ t

0
A(t)dt

A biokinetic model for A(t) is
required to calculate Ã. λtot = λR︸︷︷︸

Radiological

+ λB︸︷︷︸
Biological

Biological effects of radiation

Indirect effects of ionising radiation

Radiation of water→ Water radicals → Possible biological damage

H2O+ionising radiation→
{

H2O
∗

H2O + e− → H2O
−

H2O
+

H2O
+ → H+ + OH ′

H2O
− → H ′ + OH−

Where OH ′ and H ′ are radicals. Effect of radicals on biomolecules:

RH + OH ′ → R′ + H2O

RH + H ′ → R′ + H2

6



Where R′ represents a potentially lethal damage. Fixation of a possible damage in presence of
oxygen:

R′ + O2 → RO′
2

RO′
2 + RH → RO2H + R′

Where RO2H is a biomolecule with a fixed damage.

Radiative effects are combinations of direct and indirect effects, i.e. direct hits in biomolecules and
generation of radicals through radiolysis of water).

Irradiation of biological cells decreases the colony forming ability of cells

Single hit, single target theory:

Probability of survival: P (survival) = P (no hits) = P (n = 0) =
(

μne−μ

n!

)
n=0

= e−μ = e
− D

D0

Where n is the Poisson distributed variable for the number of hits, D0 is the average dose cor-
responding to one lethal hit, and μ is the average number of hits at dose D, i.e. μ = D/D0.

Relative biological effect (RBE) for different types of radiation

RBE is per definition a comparison with Co-60 radiation.
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Chadwick and Leenhouts (1973)

S = e−(αD+βD2)

For small doses: P (damage) = 1− S � αD︸︷︷︸
HighLET

+ βD2︸︷︷︸
LowLET

1.) The critical molecule is DNA.

2.) Double strand damage is the critical event.

3.) Single strand damage can be repaired.

4.) A high density of single strand damage(∝ βD2) can result in double strand damage.
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Modifying effects

Dose rate

Fractionation

Cell cycle

Oxygen

Radiation protection

This formalism is meant to be used to estimate low doses of ionizing radiation (up to 100 mGy) that
may induce stochastic effects such as cancer development and/or genetic mutations.

Formalism

Equivalent dose (for organ T ): HT =
∑
R

ωR ·DT,R, [Sv]

Radiation weighting factor : ωR [ Sv
Gy ]

Tissue weighting factors:
∑
T

ωT = 1

ωR =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for γ, β
2 for protons
20 for α-particles, heavy ions, and fission fragments
2.5 for neutrons below 10 keV, increasing to
20 for neutrons around 1 MeV, decreasing to
2.5 for neutrons above 1000 MeV

ωT =

⎧⎪⎨
⎪⎩

0.12 for bone marrow, colon, lung, stomach, breast, remainder tissue
0.08 for gonads
0.04 for bladder, oesophagus, liver, thyroid
0.01 for bone surface, brain, salivary glands, skin

Effective dose for the entire body: E =
∑
T

ωT HT =
∑
T

ωT

∑
R

ωRDT,R [Sv]

The sums are over radiation doses to target tissue T from different types R of ionizing radiation
that hit the target tissue (i.e. alpha, beta, gamma, or neutron irradiation). The radiation weighting
factor ωR indicates the biological effectiveness of each type of radiation, and the tissue weighting
factors ωT represent the health risk associated with irradiation of tissue or organ T . Notice that
values for the radiation weighting factors and tissue weighting factors recently were revised (ICRP
Publication 103, 2007), and therefore are different from previously published ones (ICRP 60, and
Lilley 2001).

9



For internal radiation after inhalation or ingestion of radioactivity:

Committed effective dose: E(50) =
∫ 50

0

˙E(t)dt︸ ︷︷ ︸
Bio−kinetic model

For radiation protection: SEE(T ← S) =
∑
R

ωR · SEER(T ← S)

i.e. SEE in
[

Sv
dis.

]
Effective dose coefficients for inhalation and ingestion (ICRP 68, 1994): einh = E(50)

Ainh

eing = E(50)
Aing

Annual limit on intake (inh. or ing.): ALI = Elim

e50
= Elim

E(50)
Aintake

Where Elim represents a specific limit (20 mSv for workers).

The total sum: ∑
sources

Aintake,inh

ALIinh
+

∑
sources

Aintake,ing

ALIing
+

∑
sources

Eexternal

Elim
≤ 1.0

Risk coefficients (ICRP 103, 2007):
Fatal cancer development 5.5% pr.Sv.

Heritable (genetic) damage 0.2% pr.Sv.

5.7 % pr.Sv.

Dose limits (for effective dose)=

⎧⎨
⎩

20mSv
year

for worker in a radiation related profession

1mSV
year for the public
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Radiation protection guide lines

1.) Every dose counts

2.) ”Practice” is a will-fully chosen use of radiation.

Radiation protection principles that apply (only) for ”practices”:

- The reasons for use of radiation should be well-founded and properly stated.

- The dose should be ALARA (As Low As Reasonably Achievable)

- The usage of radiation (”practice”) should not exceed any accepted dose limits.
(20mSv/year for employees, 1mSv/year for the public)

3.) Intervention to reduce or eliminate radiation dose should have a net beneficial effect.

NB! Dose limits apply only to ”practices”, i.e dose contributions from natural background
radiation do not count (around 3mSv/year in Norway).
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6.)
Nuclear reactions (Lilley Chap.4)

a + X → Y + b

X(a, b)Y

Scattering process: The particles do not change their identity.

Elastic scattering: The kinetic energy is conserved ⇒ no excitations.

Radiative capture: b ≡ γ

Nuclear photo effect a ≡ γ

Direct reactions: Only a few nucleons participate in the process, while the rest of
the nucleons remain passive.

”Compound nucleus” reactions: An excited intermediate state is formed, and the memory of
formation of this intermediate state is lost before de-excitation.

Conservation laws: Total energy

Total momentum

Total angular momentum

Proton numbers and neutron numbers (Not conserved in weak interactions)

Parity

Process:

1



Conservation of energy:(relativistic) mXc2 + TX + mac2 + Ta = mY c2 + TY + mbc
2 + Tb

(ma + mX − mY − mb)c
2 ≡ Q = TY + Tb − TX − Ta

Q ≡ (minitial − mfinal)c
2 = Tfinal − Tinitial

If Q < 0, the reaction is called an endoterm reaction (requires an input of energy)
If Q > 0, the reaction is called an exoterm reaction (releases energy)

Conservation of momentum in the lab system: pa = pb cos θ + pY cos ξ

0 = pb sin θ − pY sin ξ

Assuming TX = 0. Furthermore, one defines the minimum energy required for the reaction to
take place (Threshold energy), as the energy corresponding to a reaction where the final products
are at rest in the CM system.

Threshold energy: Tth = Ta,min = −Q mY +mb

(mY +mb)−ma

Inelastic Coulomb scattering (Coulomb excitation)

Inelastic Coulomb scattering:Qex = (mx + ma − m∗

Y − mb)c
2 where m∗

Y c2 = mY c2 + Eex

and Qex = Q0 − Eex.

Typical reaction:

Excitation of even-even nuclei from their ground state (0+) to an excited state (2+) via absorp-

tion/emission of virtual photons (E2).

Qex = Q0 − Eex

2



Nuclear force scattering(as opposed to Coulomb scattering)

⇒ Diffraction pattern in dσ
dΩ measured as a function of θCM

For neutron scattering: An evident diffraction pattern arise at all scattering angles (All energies)

For charged particles (protons): Diffraction pattern at high energies where the Coulomb potential is negligible,
and for large scattering angles also at low energies.

Reaction cross section

Cross section contribution per ”scatterer”: σ = 1
N

Rsc

Φin

Differential cross section: dσ
dΩ

=
dRsc

dΩ

NΦin
, [ barn

st.rad
]

Total cross section: σ =
∫

Ω
dσ
dΩdΩ = 2π

∫ π

0
dσ
dΩ sin θdθ

Several reactions: σtot =
∑

bi
σbi

Energy dependence:

Double diff. cross section: d2σ
dΩdEb

dσ
dEb

Where Eb represents the final energy of particle b.
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Scattering and reaction cross sections

Semi-classical angular momentum: lh̄ = pb

b = lh̄
p

= lh̄
kh̄

= l λ
2π

= l 6λ

For effective nuclear force scattering: lmax = R
6λ

= R1+R2
6λ

Where 6λ represents the reduced de Broglie wavelength for particle a (λ = h/p).

Total semiclassical cross section:

σ =

R
6λ∑

l=0

(2l + 1)π 6λ2 = π
(
R +6 λ

)2

The particle’s wave properties have a range 6λ.

Quantum mechanically:

The wave function describing the incoming wave:

Ψinc =
A

2kr

∞∑

l=0

il+1 (2l + 1)
[

e−i(kr− lπ
2 ) − ei(kr− lπ

2 )
]

Pl(cos θ)

Where the two exponential factors describe respectively an ingoing and an outgoing spherical wave.
A superposition of the two waves results in an incoming plane wave.

A scattered outgoing wave can have its phase and amplitude changed by the scattering process.

Ψtot = Ψinc + Ψsc

Ψtot = A
2kr

∑
il+1 (2l + 1)

[

e−i[kr− lπ
2 ] − ηei[kr− lπ

2 ]
]

Pl(cos θ)

Ψsc = A
2kr

∑
ii

l+1

(2l + 1) (1 − ηl) ei(kr− lπ
2 )Pl(cos θ)

Ψsc = A
2k

eikr

r

∑
∞

l=0(2l + 1)i(1 − ηl)Pl(cos θ)
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Scattered current density: jsc =
(
Ψ∗

sc
h̄

im
∇Ψsc

)

= h̄
2im

(

Ψ∗

sc
∂Ψsc

∂r
−

∂Ψ∗

sc

∂r
Ψsc

)

jsc = |A|
2 h̄

2mkr2 |
∑

l=0 (2l + 1) i (1 − ηl)Pl(cos θ)|
2

Incoming current density: jinc =
h̄k|A|

2

m

Differential cross section: jscr2dΩ
jinc

⇒ dσsc

dΩ
= 1

4k2 |
∑

∞

l=0 (2l + 1) i (1 − ηl)Pl(cos θ)|
2

The total cross section is obtained by integrating over all possible angles.

Orthogonality requires:
∫

Pl(cos θ)Pl′ (cos θ) sin θdθdφ = 4π
2l+1

for l = l′

∫
Pl(cos θ)Pl′ (cos θ) sin θdθdφ = 0 for l 6= l′

⇒ σsc =
∑

∞

l=0 π 6λ2 (2l + 1) |1 − ηl|
2
, 6λ = 1

k

There is no scattering for ηl = 1. Only elastic scattering, i.e only a phase change and no re-
duction in amplitude is possible for |ηl| = 1 → ηl = e2iδl

Total cross section: σsc =
∑

∞

l=0 4π 6λ2 (2l + 1) sin2 δl, |1 − e2iδl | = 2 sin δl
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Reaction cross section (≡ cross section concerning everything else than
elastic interactions)

This is also denoted as the rate of loss of particles from energy channel k.
Rate of loss: |jloss| = |jin| − |jout|

|jloss| = |A|
2h̄

4mkr2

[∣
∣
∣
∑

(2l + 1) il+1ei lπ
2 Pl

∣
∣
∣

2

−
∣
∣
∣
∑

(2l + 1) il+1e−i lπ
2 ηlPl

∣
∣
∣

2
]

⇒ σr =
∑

∞

l=0 π 6λ2 (2l + 1)
(
1 − |ηl|

2
)

Total cross section: σt = σsc + σr =
∑

∞

l=0 2π 6λ2 (2l + 1) (1 −<ηl)

Note that only inelastic scattering (σr > 0, σsc = 0) is impossible to achieve. To obtain inelas-
tic scattering, |ηl| < 1. When this happens, (1 − ηl) 6= 0, i.e. σsc > 0.

”Black disc” absorber:

ηl = 0 for l ≤ R
6λ

i.e no outgoing wave for l ≤ R
6λ

ηl = 1 for l > R
6λ

i.e no scattering effect

Reaction cross section: σr =
∑R

6λ

l=0 π 6λ2 (2l + 1) = π(R+6λ)2

Scattering: σsc =
∑R

6λ

l=0 π 6λ2 (2l + 1) = π(R+6λ)2

Total: σt = σr + σsc = 2π(R+6λ)2 = 2 · σgeometrical

σgeometrical is the semiclassical cross section.

Calculation method

1.) Choose a form of the nuclear potential V (r).

2.) Solve the Schr. equation for the two regions, inside (r ≤ R) and outside (r ≥ R) the region of interaction.

3.) Ψ and ∂Ψ
∂r

must be continuous over the boundary r = R ⇒ ηl

4.) Calculate σr and σsc and compare with experimental results. This result tells us whether V (r) was reasonably
chosen.
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This is hard for everything else than elastic scattering, because all inelastic channels are coupled
together. Both in and out scattering relative to channel k, i.e from all k′ into k and from k to all
k′′.

Optical model of nuclear scattering:

Choose a particular potential as a model for elastic scattering + absorption.

Potential: U(r) = V (r)
︸ ︷︷ ︸

Elastic scattering

+ iW (r)
︸ ︷︷ ︸

Absorption

k = 1
h̄

√

2m(E − U)

Choose for example: U(r) = −V0 − iW0 for r < R

= 0 for r > R

Outgoing wave: Ψ = eikr

r
= eikr ·r · e−ki·r

r
for r < R

k = kr + iki =
1

h̄

√

2m(E + V0) + i
W0

2h̄

√
2m

E + V0
, W0 � V0

The only place where W (r) 6= 0 is close to the surface. This is because the internal nucleons
cannot take part in absorption processes at moderate energies, because all the possible states are
taken. This means that only the valence nucleons close to the surface can interact with incoming
particles.

A realistic potential must also include spin-orbit coupling for valence nucleons, and Coulomb con-
tribution if the incoming particle is charged. The optical model gives suprisingly good predictions
(by calculating ηl) to experimental data, even though it only represents average nucleon properties.
This model can only show that particles disappear from the elastic channel.

Direct reactions

An incoming particle interacts with single nucleons close to the surface of the nucleus. Typical
incoming energies≥Coulomb barrier. Direct reactions show strong angular dependencies.
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Selectivity:

Inelastic scattering reactions do not excite collective states. Transfer reactions result in excited
states for single nucleons.

Ex.: Transfer of angular momentum by deuteron stripping reactions (d,n),
(d,p)

p2 = p2
a + p2

b − 2papb cos θ

l · h̄ ' R · p ⇒ l =

[

2c2papb(2 sin2 θ
2)

(h̄c)2

R2

] 1
2

Large scattering angles for outgoing particle = large transfer of angular momentum, l ∝ sin θ
2 .

l = 1, 3, 5....(odd numbers)⇒ parity change for the nucleus
l = 0, 2, 4...(even numbers)⇒ leaves the parity unchanged

Nuclear spin: If = Ii + l ±
1

2
︸︷︷︸

n or p

Compound reactions

a + x → C∗ → Y + b

Well defined intermediate state (Compound nucleus) with a lifetime long enough that the final re-
action, C∗ → Y + b, has forgotten (i.e. is not influenced by) how C∗ was created.
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Resonance reactions

They appear at well defined excitation levels for C∗
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Breit-Wigner formula:

σα,β = gα(J) π
k2

α

ΓαΓβ

(E−Er)+( Γ
2
)2

σαβ(E = Er ±
Γ
2 ) = 1

2σαβ(E = Er)

Spin factor: gα(J) = 2J+1
(2ia+1)(2iA+1)

where ia and iA represent spin for the incoming particles.

gα = (2l + 1) for iα = iA = 0

Generally: ~IC∗ = ~ia +~lA +~l

in this case, ~l represents the transferred angular momentum by (a, A).

Resonance level width: Γ =
∑

i∈α,β Γi = h̄
∑

λi = h̄λ = h̄
τ

τ is the mean lifetime of the intermediate state C∗.

Assuming iα = iA = 0 :

Maximum cross section for elastic scattering (At E = Er): Γα ≡ Γβ = Γ ⇒ σαα(max) = (2l + 1) 4π
k2

α

Total absorption cross section: σabs ∝ Γα

∑

β 6=α Γβ = Γα(Γ − Γα)

⇒ σabs(max) = (2l + 1) π
k2

α

Γα(1 − Γα)max for Γα = Γ
2

Total capture cross section at (E = Eτ ): σC = (2l + 1) · 4π
k2

α

Γα

Γ

σαβ = σC ·
Γβ

Γ
= (2l + 1)

4π

k2
α

Γα

Γ
︸ ︷︷ ︸

σC

·
Γβ

Γ
︸︷︷︸

Exit channel β

Heavy ion reactions

Ex:
16O +27 Al
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Fusion
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8.)

Our radiological environment

The average effective annual dose

Indoor radon

Rn-222 is the biggest problem, because of a relatively large abundance of its element of origin, U -
238, and a relatively long lifetime compared to other Rn-isotopes (Rn-220 and Rn-219).

Building sites with high concentrations of Ra [Bq
kg

] (Ra − 226 → Rn − 222) and high gas per-
meability represent the biggest problem.
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Indoor Rn-concentration

dχRn

dt
= u̇(t) − χRn (λRn + λv)

- χRn,air= the concentration of Rn-222 activity in air.
[

Bq
m3

]

- u̇(t) =the rate of flow of Rn-222 into the building.
[

Bq
m3·s

]

- λRn= the disintegration constant. [ 1
s
]

- λv = the rate of flow out of the building. [ 1
s
]

If u̇ and λv are constant, the equilibrium concentration is:

χRn,air =
u̇

λRn + λv

What contributes to u̇(t) is:

- Ground conditions

- Building materials

- Water (household water)

- Outdoor air (ventilation)

Rn and Rn-daughters get stuck to tiny particles of dust and surfaces (plate-out).
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Rn-concentration in Norwegian houses

Most probable value: 20 Bq
m3

Mean value: 88 Bq
m3 in 2001

3% of the houses had values > 400 Bq
m3 in 2001

9% of the houses had values > 200 Bq
m3 in 2001

Rn dosimetry and risk limits (ICRP 50)

Contributions from Rn-222 (a gas) and its metal-like daughter nuclides have to be accounted for
separately.

1.) Contributions from Rn:

Dose rate in soft tissue excluding the lungs (due to Rn dissolved in the tissue):

Ḋsoft tissue = Sst · χRn,air, Sst = 0.005
nGy

h
Bq
m3

For lung tissue, the contribution from Rn in the alveolar air comes in addition to the contribu-
tion from dissolved Rn:

Dose rate: Ḋlungs = Sl · χRn,air, Sl = 0.04
nGy

h
Bq

m3

Equivalent dose rate: ḢT = ωRḊT,R, ωR = 20 for α

Effective dose rate: Ė =
∑

ωT ḢT = ωR(ωlḊl + ωstḊst), ωl = 0.12, ωst = 0.88

⇒ Ė = Stot,Rn · χRn,air, Stot,Rn = 0.2nSvh−1

Bqm−3

2.) Contributions from short-lived Rn-daughter nuclei:

Chain of disintegrations:
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No Nuclide T 1

2

Eα εpi
εpi

λi

[MeV ] [MeV ] [MeV
Bq

]

0 222Rn 3.82d 5.49

1 218Po 3.05m 6.00 13.7 3620

2 214Pb 26.8m 7.69 17800

3 214Bi 19.7m 7.69 13100

4 214Po 164µ s 7.69 7.69 2·10−3

5 210Pb 19.4yrs

Where numbers 1 through 4 represent short-lived daughter nuclei.

Equilibrium activity concentration: Cact,eq = λRn ·CRn = λi · Ci, i = 1, ..4

Where CRn is the number of Rn atoms per unit volume of air.
Now, in a real situation, the activity concentration of Rn-daughters will be lower than the equi-
librium Rn activity concentration. This is because of ventilation and plate-out, which affect the
daughters more than it affects Rn itself.
The potential α-energy per Rn-daughter atom (εpi, i = 1, ..4) is the sum of α-disintegration ener-
gies for one atom of the nuclide and its short-lived daughter nuclei:

εpi =

4
∑

j≥i

Eαj

Potential α-energy per unit activity:
εpi

λi
=

Niεpi

λiNi
=

εpiT 1

2
,i

ln 2

Potential α-energy concentration: Cp =
∑4

i=1
Cact,i · εpi

λi
[ J
m3 ]

Equivalent equilibrium Rn-concentration in air: EECRn ≡ χeq,Rn =

∑

4

i=1
Cact,i·

εpi

λi
∑

4

i=1

εpi

λi

=
Cp

∑

4

i=1

εpi
λi

= K ·Cp

EECRn is the concentration of activity of Rn in equilibrium with its short-lived daughter nuclei,
which would have the same potential α-energy per unit volume air as the mixture of interest:

χeq,Rn = 0.10 · Cact,Po−218 + 0.51 · Cact,Pb−214 + 0.38 · Cact,Bi−214

Note! Contribution from Cact,Po−214 is extremely small because
εpi

λi
� 1 for Po-214.

Empirical value of the equilibrium factor: F = EECRn

χRn,air
' 0.5
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Heavy duty ventilation results in a smaller F -value.

Intake of potential α-energy during a time interval T :

Ipot = E
A

V̇inT · χeq,Rn, E
A

=
∑4

i=1

εpi

λi
= 55.5 · 10−10 J/Bq

Assume the inhalation rate to be: V̇in = 0.8m3

h
during the time interval T .

The trachea-bronchial region: DT−B

Ipot
= 1.5Gy

J
≡ KT−B

Pulmonal region: DP

Ipot
= 0.2Gy

J
≡ KP

T-B dose rate: ḊT−B =
DT−B

T
= ST−B · χeq,Rn = F · ST−B · χRn,air

where ST−B = KT−B
E
A

V̇in = 7nGyh−1

Bqm−3

P dose rate: ḊP = DP

T
= SP · χeq,Rn = F · SP · χRn,air

where SP = KP · E
A
· V̇in = 0.9nGyh−1

Bqm−3

Equivalent dose rate: ḢT = ωRḊT,R, for α ωR = 20

Effective dose rate: Ė =
∑

ωT ḢT = ωR[ωT−BḊT−B + ωpḊp]

When taking into account the tissue weighting factors, it is assumed that T-B and P contribute
equally to the total lung tissue weighting factor.

⇒ ωT−B = ωP = ω l
2

= 0.06

⇒ Ė = Stot,Rn−daughters · χeq,Rn = F · Stot,Rn−daugthers · χRn,air

Stot,Rn−daughters = 9.5nSvh−1

Bqm−3

Finally, the total contribution from both Rn and its daughters becomes:

Ėtot = [Stot,Rn + F · Stot,Rn−daughters]χRn,air

Ėtot = S · χRn,air

If one assumes that F=0.5 ⇒ S = [0.2 + 0.5 · 9.5]nSvh−1

Bqm−3 = 5nSvh−1

Bqm−3

Yearly, one can assume that an average person stays indoors about 80% of the time. This be-
comes about 7000 hours per year. Further on, assuming that the Rn exposure outdoors can be
neglected:

⇒ Syr = 5nSvh−1

Bqm−3 · 7000 h
yr

= 35
µSv

yr

Bqm−3

The mean Rn-concentration in Norwegian houses was χRn,air = 88 Bq
m3 in 2001. From this, it follows

that the effective dose rate becomes:
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⇒ Ėtot = 35 · 88µSv
yr

= 3.0mSv
yr

Cancer risk due to Rn exposure

Concentration limits in Norway

χRn,air < 200: It is not necessary to take action.

200 < χRn,air < 400: Simple actions required.

χRn,air > 400: Expensive actions required

Measuring the amount of Rn and Rn-daughters

Important conditions to take into account

1.) The measuring device must not be affected by deposited Rn-daughters.
For example on the surface of the detector.

2.) It must be known to which degree it measures Rn, and to which degree it measures Rn-daughters.

3.) Integration over long time is necessary to obtain good accuracy.

6
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Measuring methods for air-borne Rn

1.) The CB (Coal Box)-method, consists of a box containing active coal, which absorbs Rn-gas.
The box is open only during exposure when Rn gas is adsorbed to the active coal. Measuring the
activity of Rn-daughters, originating from the absorbed Rn-gas, is done using a NaI scintillation
crystal via γ spectroscopy. A problem here is that the coal adsorbs air humidity more efficiently
than Rn-gas. This means that the measuring results are more accurate in dry places. Another
inaccuracy of this method is that it does not integrate over very long time.

Other sources of radiation

Cosmic radiation

Particle radiation (85% protons, 15% α-particles) from space, and particle radiation as well as γ-
radiation from the sun. These primary particles are transformed into secondary cosmic radiation
consisting of various particle types and some γ-radiation, due to interactions and reactions in the
atmosphere. Cosmic radiation increases with altitude above sea level.
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Ground-level: 0.35mSv
yr

i.e. 0.04 µSv
h

Air-traffic altitude: (10.000m) 5µSv
h

External γ-radiation

External γ-radiation is mostly due to the existence of radioactive minerals in the ground. The fol-
lowing nuclides constitute the main contributions to dose:

40K 40%

232Th 40%

226Ra 20%

The average effective dose from external γ is around 0.55mSv
yr

Naturally occuring internal radiation

Natural internal radiation is mainly due to radiation from 40K (β-emitter, T 1

2

=109yrs). Natural K

consists of about a fraction of 10−4 40K. The amount of K inside our bodies is regulated by the
metabolism. This again implies that the dose contribution is kept at a constant level.
Average effective dose from internal radiation is about 0.37mSv

yr
.

The Tsjernobyl accident

The outburst resulted in a release of about 3.5% of the total amount of activity contained in the
reactor. All the gaseous nuclei (85Kr and 133Xe) were released. The fall-out consisted mainly of
137Cs and 134Cs. The mean 137Cs fall-out in Norway was 7kBq

m2 , but some places had more than

80kBq
m2 .

Dosimetry

Total transfer factor for effective dose due to all the nuclides, based on 137Cs ground deposition.
For northern areas, in units of µSv

kBqm−2 :
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Year 1 Total

External 10 86

Internal 27 59

Sum ' 40 ' 150

Internal dosimetry is based on averaged transfer coefficients, assumptions concerning diet-composition
and biokinetical models for up-take of radioactive substances.

Average dose based on Norwegian conditions:

Year 1 40 µSv
kBqm−2 · 7kBq

m2 = 0.28mSv

Total 150 µSv
kBqm−2 · 7kBq

m2 = 1.0mSv

Dose-reducing measures

Use of Cs-binders (as feed-admixture and tablets) reduces the up-take of Cs in domestic animals
by up to 50-80%.
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9.)

Industrial, analytical, and medical

applications. (Lilley Chap.8 and 9)

Industrial use

1.) Tracer-based measurements (incorporation in biological systems, measuring abration and leaks)

2.) Thickness measurements, level measurements.

3.) Material modifications (hardening and shrinking)

4.) Food sterilization (spice)

5.) Industrial radiography (welding inspection)

Neutron activation analysis

1.) This is an alternative solution to the regular tracer techniques. Only the samples collected
are made radioactive.

2.) Deciding the amount of unknown elements in a sample.

Induced activity: A(t) = λn(t) = Φ̇σ ·Ntarget[1 − e−λt] for Φ̇σ � λ

dNtarget
dt

= −Φ̇σNtarget

dn
dt

= Φ̇σNtarget − λ · n

⇒ n(t) =
Φ̇σ·Ntarget

λ−Φ̇σ
[e−Φ̇σt − e−λt]

1



Rutherford backscattering

Rutherford scattering cross-section in the lab system for M < ∞ (M → ∞ makes the lab and CM
systems equivalent):

Rutherford cross-section: dσR
dΩ

= 1.296
[

zZ
E0

]2[
1

sin4 ψ

2

−
(

m
M

)2

+ .....
]

mb
sr

Where ψ is the scattering angle in the lab system. The energy of the particle (m) backscattered
from the target (M):

Particle energy: E(π) =
[

M−m
M+m

]2

E0

E0 is the particle energy immediately before interacting with the target (energy loss along par-
ticle track).

In ”thick” samples, the particle energy is degraded both before and after backscattering. The
method is ideal to detect occurance of heavy elements in a material consisting of light elements.

Particle-induced X-ray emission (PIXE)

This method is particularly sensitive when it comes to finding elements. The sensitivity is 0.1ppm,
i.e. 1000 times better than the usual method of X-ray microanalysis by electron microscopy. Both
identification and quantification based on excitation of characteristic X-ray radiation.

X-ray production rate: RX = Φ̇ · σx · nT
︸︷︷︸
#T
VT

· Adx
︸︷︷︸

VTarget
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LI → K is optically forbidden.

Accelerator-based mass spectroscopy

This is a sensitive method for counting 14C. This makes it ideal for carbon dating of biological ma-
terials. What makes this method so effective is that it counts all the 14C atoms in the sample, while
radioactivity-based counting only counts a fraction λ ·T � 1 during the time interval T .(λ = ln 2

5730yrs

for 14C)

Deflector magnets: ~F = q(~v × ~B) = m · ~a⇒ r = mv
qB
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Low-activity counting

Radioactivity is modelled as a Bernoulli process which is represented by a binomial distribution.

For N � 1, p = λt � 1, the Binomial distribution'Poisson distribution'Gaussian distribution.
To keep it simple, one uses a Gaussian distribution as a statistical model, combined with the result
from the Poisson distribution:

Standard deviation:
√
λt =

√
n

Net number of counts: S = ng − nb

Where ng is the gross counts and nb is the number of counts due to background radiation. Both
these numbers are counted during the same time interval t.

Standard deviation: σS =
√

σ2
ng + σ2

nb =
√
ng + nb =

√
S + 2nb

Minimum significant activity

P(Type I error)=P(false positive)≤ α for S ≤ LC

The sample has 0 activity ⇒ σS = σ0 =
√

2nb, (S ' 0)

P0(S) = 1√
2πσ0

· e
− S2

2σ2
0

Lc = kα · σ0

Where α represents an α-fractile in the Gaussian distribution. For example α = 0.05 ⇒ kα = 1.645
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Minimum detectable true activity

P(Type II error)=P(false negative)≤ β for S ≥ Ld

Ld = LC + kβσd = kασ0 + kβσd

In this case, S is N(Ld, σd).

Variance: σ2
d = Sd + 2nb = Ld + σ2

0

⇒ [Ld − kασ0]
2 = k2

βσ
2
d = k2

β[Ld + σ2
0 ]

⇒ Ld =
k2
β+2kασ0

2
+

√
[

k2
β
+2kασ0

2

]2

+ [k2
β − k2

α]σ2
0

1.) kα = kβ = k ⇒ Ld = k2 + 2kσ0

2.) kασ0 � k2
β ⇒ Ld = (kα + kβ)σ0

I II III

S < Lc Lc < S < Ld S > Ld

No significant activity Significant activity, Significant, true activity
but P(false negative)> β

Detection limits: Ac = Lc
ε·T , Ad = Ld

ε·T

During the time interval T , with an assumed counting efficiency ε.

If the accurate background counting rate, rb is known, the standard deviation: σ0 =
√
nb =

√
B

I.e, σnb = 0, B = rb · T
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Nuclear imaging (Lilley chap 9)

Projection imaging (external source, conventional X-ray)

Internal source distribution imaged by a gamma camera

Projection imaging: X =

∑
sixi

∑
si
, Y =

∑
siYi

∑
si

, where si is the signal in PMT i.

Energy discrimination: E =
∑
si inside the full-energy peak.
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X-ray CT (Computed Tomography)

Positron Emission Tomography (PET)

7



Filtered back-projection for reconstruction of images registered as a set of
projection profiles

Central section theorem: The one-dimensional Fourier transform of the object’s projection profile
in the φ direction, is equal to the central section of the two-dimensional Fourier transform of the
object through the origin in the φ-direction. →M(k′x, k

′
y = 0) = M(k, φ) = Pφ(k′x), where M is the

Fourier transform of the object and Pφ is the Fourier transform of the profile in direction φ.

Filtered profile: p
†
φ(x′) = F−1[Pφ(k) ·H(k)]

Filter function: H(k) = |k|

⇒ p
†
φ(x′) =

∫ ∞
−∞ pφ(u) · h(x′ − u)du

Filtered back-projection: µ(x, y) = F−1[MP (k, φ)] =
∫ φ

0
p
†
φ(x′) |x′=xcosφ+ysinφ dφ

Projection imaging results in averaging, which again leads to loss of high frequency information.
Filtering with high frequency enhancement before image reconstruction by back-projection. Fil-
tered back-projection can be used for SPECT, PET, X-ray CT, MR, etc.
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MR imaging

For all nuclei with spin I 6= 0.
Mostly used for 1H-mapping.

Net magnetization: ~M = γ~L, γ =
2µp
h̄

M = ∆N · µp

L = ∆N · SZ = ∆N · 1

2
h̄

∆N = N+ −N− = N+[1− e−
∆E
kT ] ' N

2
· 2µpB

kT
, ∆E = 2µpB

Precession of ~M around the direction of the ~B-field at the Larmor frequency ωL.

Torque: d~L
dt

= ~M × ~B

⇒ ωL =
2µp·B

h̄
= γB

Excitation field at Larmor frequency ωL: Bex in the horizontal plane. Bex
2

is found to be a constant
field in a rotating co-ordinate system, rotating at the Larmor frequency: ⇒ Precession around the
x′-axis at the frequency ω′ =

2µp
h

· Bex
2

90o excitation pulse: ω′ · T = π
2

180o excitation pulse: ω′ · T = π

After excitation, ~M will go through a relaxation process and turn back to it’s former direction
along the ~B-direction, during the time interval T1 (Spin-lattice relaxation period). Loss of phase
coherence in the x′y′ plane occurs due to spin-spin interaction with the time constant T ∗

2 (< T1).

Spin echo (measured by the observer in the rotating co-ordinate system, rotating at the Larmor

9



frequency).

1800 precession around x′ due to the excitation field Bex
2

.

Pulse sequence:
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MR tomography (cross-sectional imaging)

Selective excitation of a section by a field gradient (Bz) in the z-direction.

Field: ~B = ~B0 + z ~Bz

⇒ fex = fLarmor for a section of thickness ∆z

Read-out gradient in the φ-direction in the cross-sectional plane (x, y)
⇒ The signal represents the sum of the signal for all y′ at each value of x′ in the φ-direction.
⇒ Projection imaging and image reconstruction by filtered back-projection.
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10.)

Fission and fusion

Fission (Lilley Chap.10)

Average binding energy per nucleon:

Nuclear fission: A → A1 + A2

1



Fission barrier≡ activation energy

Example (Fission by capture of thermal neutrons)

235U + n →93
37 Rb +141

55 Cs + 2n

Where the last term, 2n, represents prompt, fast neutrons. Yield, ν = 2.5 n
fission

.

2



Thermal neutrons against 235U :

σfission = 584b

σrc = 97b (radiative capture)

σsc = 9b (elastic scattering)

Neutron capture results in a compound nucleus with an excitation energy Eex.

Reaction: 235U + n →236 U∗

Excitation energy: Eex =
[

m(236U∗) − m(236U)
]

c2

For low-energy neutrons
(Kinetic energy negligible): m(236U∗) = m(235U) + mn

⇒ Eex = 6.5MeV = Bn

Where Bn represents the binding energy of the captured neutron. Neutron capture in nuclei with
odd neutron numbers gives a larger value for Eex than neutron capture in nuclei with even neutron
numbers. This is because of pair-contributions to the binding energy. This all results in a large
fission cross-section for neutron-induced fission in nuclei with an odd number of neutrons.

Energy distribution

235U + n →236 U∗ →93 Rb +141 Cs + 2n, Q = 181MeV

Q = 200MeV (all possible outcomes)

Distribution:

Tm1
+ Tm2

80% 168MeV

T2n 5MeV

Prompt γ 7MeV

Gamma from radiative neutron capture 5MeV

β-disint. of fragments 20MeV

γ-fragments 7MeV

Sum: 212MeV

12 MeV of the β disintegration energy is in the form of neutrino energy, which is not recoverable.
Net result is therefore 200 MeV.
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Fission and nuclear structure

Deformed nuclei can reach intermediate states (fission isomeric states) with increased deformation
which results in a lower fission barrier.

Fission resonance: Transition from one of the ground state’s excited levels to one of the fission-
isomeric exited states, where energy, spin, and parity coincide with the former state.

Controlled fission reaction

Neutron reproduction factor for an infinite medium: k∞ = η · ε · p · f

Where η represents the yield of fast neutrons for each thermal neutron absorbed in the fission
fuel.

η = ν
σf

σf +σc
, ν = 2.42neutrons

fission
for 235U

η = 1.33 for (235U
︸︷︷︸

0.72%

& 238U
︸︷︷︸

99.28%

) in naturally occuring U.

ε: Fast fission factor (fast neutron capture→ fission.

p: Resonance escape probability (i.e. moderation probability)

f : Thermal utilization factor (fraction of thermal neutrons absorbed in the fuel
in contrast to the ones absorbed in the moderator or other non-fuel absorbers).

η is determined by the fuel composition. Moreover, ε, p and f are all dependent on both the
geometry and the moderator material.

Loss of fast and thermal neutrons lf and lt(fractions).

For a finite geometry: k = k∞ · (1 − lf ) · (1 − lt)

The chain reaction is easier to control due to delayed neutrons after β-disintegration of fission
fragments (”Delayed critical”).
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Nuclear reactor

Fuel: 1.) Naturally occuring 235U (0.72%) or enriched 235U .

2.) 239Pu or 233U from breeder reactors.

Moderator: 1.) Low mass number (effective moderation).

2.) Minimal neutron capture.

3.) Chemical stability

4.) Cheap and accessible.

Moderator materials used: Carbon is ok, but violates 1.), D2O is good, but violates 4.),
H2O is good, but violates 2.)

Control rods: Cd (Large capture cross section for thermal neutrons)

Reactor types: 1.) Boiling water reactor (has negative power feedback through void fraction)

2.) Pressurized water reactor

3.) Heavy-water reactor

4.) Gas-cooled reactor

5.) Natrium-cooled fast breeder reactor

Breeder reactor

This reactor burns 239Pu. Moreover, it converts 238U to 239Pu and 232Th to 233U :

Conversion of 238U : 238U + n →239 U(23m) →239 Np + β− + ν

Furthermore, 239Np has a half-life t 1

2

= 2.3d and decays into 239Pu + β− + ν.

Conversion of 232Th: 232Th + n →233 Th(22m) →233 Pa + β− + ν

Furthermore, 233Pa has a half-life t 1

2

= 27d and decays into 233U + β− + ν.
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Fission products

1.) Can disturb the chain reaction (”reactor poison” due to high neutron capture cross section) for example 135Xe.

2.) Can contain nuclei which are valuable for medical purposes.

3.) Are highly active radioactive waste. (Radioactive waste problems)

Thorium power?
232Th is an abundant, fertile nuclide that through conversion to 233U can be used as a component in
nuclear reactor fuels, for existing reactors and for new designs (advanced CANDU reactor, molten
salt reactor, accelerator-driven systems)

Fusion (Lilley Chap.11)

Advantages relative to a fission reactor for power production:

1.) Easily accessible fuel material (hydrogen, deuterium, tritium).

2.) The reaction products are light and stable nuclei, i.e no problems with highly
radioactive waste.

Main problem: To get a reliable reaction going, because the Coulomb-barrier has to be overcome.

Relevant processes: 1.) D-D reaction: D(d, n)3He

2H +2 H →3 He + n, Q=3.3MeV

D(d, p)T

2H +2 H →3 H + p, Q=4.0MeV

2.) D-T reaction: D(t, n)4He

3H +2 H →4 He + n, Q=17.6MeV

The D-T reaction is the reaction chosen for further fusion reactor development because:

1.) There is a large output of energy.

2.) The Coulomb barrier is the same as for the D-D reaction.
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Coulomb barrier: Vc = e2

4πε0

· Za·Zx

Ra+Rx

D-T reaction: Vc = 200keV

Energy: Ta ' 1 − 10keV � Vc which corresponds to a temperature 107 − 108K

This means that tunneling is required to overcome the barrier.

Fusion cross-section: σfu ∝ 1
v2 e−2G

Reaction rate: σfu · v

p(v) ∝ v2e−
mv2

2kT

〈σv〉 =
∫

1
v2 e−2G · v · e− mv2

2kT v2dv

Controlled thermal fusion reactor?

Heating the reactor up to about 108K (10keV).
Loss due to bremsstrahlung � fusion power output at T >4keV.

Fusion energy released per unit volume: Ef = 1
4
n2 < σv > Qτ

There are equal densities of D and T, n
2
. In addition there are free electrons in the plasma, i.e

ne = n. Q is the released energy per fusion reaction and is equal to 17.6MeV for D-T. τ is the
confinement time, i.e the time the reaction can be maintained by magnetic confinement of plasma.
Thermal energy required per unit volume to reach temperature T :

Energy required: Eth = 3
2
nkT + 3

2
nekT = 3nkT

Net energy output if Ef > Eth

⇒ Lawson criterion: nτ > 12kT
<σv>Q

' 1020 s
m3 for D-T
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Fusion reactions in the sun

The sun is a very successful fusion reactor, which maintains nearly constant output power.
Step 1(rate limiting): 1H +1 H → 2H + e+ + ν , Q = 1.44MeV
Low reaction rate due to weak interaction (p → n + e+ + ν) which must take place within the time
interval of the collision of the two protons.

Solar temperature: 15 · 106K ' 1keV

Reaction rate: 5 · 10−18s−1 1
proton

·1056protons ' 1038 reactions
sec

⇒ constant ”low” rate.

Further reactions follow quickly:

1.) 2H + 1H → 3He + γ, Q=5.49MeV

2.) 3He + 3He →4 He + 21H + γ, Q=12.86MeV

Total result: 41H →4 He + 2e+ + 2ν , Q=26.7MeV

The CNO-cycle (in second generation stars)

Same net result: 41H →4 He + 2e+ + 2ν, Q = 26.7MeV

Helium burning

Reaction 1: α + α + α ⇀↽ 8Be + α ⇀↽12 C∗ 0.04%→ 12C + γ

Reaction 2: α +12 C →16 O + γ etc → 20Ne,24 Mg

Further burning:

8



For example: 12C+ 12C →







20Ne + α
23Na + p
23Mg + n

16O +16 O →28 Si + α

⇒ Formation of 56Fe, is the last nucleus in this process. Further nucleon synthesis is mainly
due to neutron capture and β-disintegration.
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